3Delight User’s Manual
Version 1.0

Copyright (© 2000-2003 The 3Delight Team.

Short Contents

.. 1
1 Welcome to 3Delight! vvve e, 3
2 Installationceeeeeennnnnneeeeeieeennnnnnns D
3 Using3Delight v v v oo e e e i i i iiiieeeeeeeeeeeenennns 9
4 3Delight and RenderMancvvviiiieeeee... 23
5 Rendering Guidelines . v v v v v v e e e i i v i i i, 53
6 UsingShaders........oeeeiiiinnneeeeeeeennnnns 59
7 Display Driver System « o v v v v v e e e it i i i iin .. 67
8 Developer’s COrner v v v v veeeeeesssssooeeeosssssss 73
9 Acknowledgement . ..o i i ittt i i i 87
10 Copyrights and Trademarks . . o o oo v v v v v e e e e e oo 89
Concept Index oo v v ittt ii ittt ieenennnnnns 93

Function Index « v v o v v v v v e v oo e eeeeoceoceoooceoeeoos 97

11

3Delight User’s Manual

Table of Contents

.. 1
1 Welcome to 3Delight! 3
1.1 What Is In This Manual 7 3

1.2 Features..........iuiii 3

2 Installation...................... ..., 5
2.1 MacOS X ..o 5

2.2 UNIX o 5

2.3 WINdOWS ... ov e 6

2.4 Environment Variables.............. 6

3 Using 3Delight 9
3.1 Using the RIB Renderer - renderdl 9

3.1.1 Command Line Options........................ 10

3.1.2 The ‘.renderdl’ File 10

3.2 Using the Shader Compiler - shaderdl................... 11

3.2.1 Compilation Process 11

3.2.2 Command Line Options........................ 12

3.2.3 Customizing the Compilation Script............. 13

3.3 Using the Texture Optimizer - tdlmake 14

3.3.1 Command Line Options........................ 14

3.3.2 Supported Input Formats 17

3.3.3 Quality and Performance....................... 17

334 Examples........... 18

3.4 Using dsm2tif to Visualize DSMs........................ 18

3.5 Using hdri2tif on High Dynamic Range Images 19

3.6 Using shaderinfo to Interrogate Shaders................ 21

3.7 Using the 3Delight cur (Mac only) 21

4 3Delight and RenderMan 23
4.1 OPHIONS . oot 23

4.1.1 Image and Camera Options..................... 23

4.1.2 Implementation Specific Options................ 26

4.2 Attributes 30

4.3 Geometric Primitives.............. 34

4.3.1 Subdivision Surfaces........................... 34

4.3.2 Parametric Patches............................ 35

4.3.3 CUIVES. ..ttt 35

434 Polygons........ ... 35

4.3.5 Points...... ... 35

4.3.6 Implicit Surfaces (Blobbies) 36

iv 3Delight User’s Manual

4.3.7 Quadrics.........cooiiii 36

4.4 Optional Capabilities and Extensions 36
4.5 Shading Language.......... ... 38
4.5.1 Mathematics 38

4.5.2 Noise and Random 39

4.5.3 Geometry, Matrices and Colors 39

4.5.4 Lighting and Ray Tracing 41

4.5.5 Texture Mapping 45

4.5.6 String Manipulation 47

4.5.7 Message Passing and Information 48

4.5.8 Limitations 51

5 Rendering Guidelines 53
5.1 Shadows. . ..o 53
5.1.1 Standard Shadow Maps 53

5.1.2 Deep Shadow Maps............................ 54

5.1.3 Raytraced Shadows 54

5.2 Ray Tracingcoiiiii 55
5.3 Ray Tracingoo i 55
5.4 Network Cache.......... 55
5.4.1 Activating the Network Cache 56

5.4.2 Purging the Network Cache 56

5.4.3 Safety ... 57

6 Using Shaders............................ 59
6.1 Writing Shaders...... 59
6.2 Installing Shaders............. 60
6.3 Interrogating Shaders............... 60
6.3.1 Using ‘1ib3delight’ to Interrogate Shaders 60

6.3.2 CaveatS.......ooiii 65

7 Display Driver System 67
7.1 The framebuffer display driver 67
7.2 The TIFF display driver............o i 67
7.3 The zfile display driver 68
7.4 The shadowmap display driver 69
7.5 The bDsm display driver 69
7.6 Encapsulated Postsript display driver.................... 70
7.7 Kodak Cineon display driver 70
7.8 Radiance display driver............. L 71

7.9 OpenEXR display driver................... 71

8 Developer’s Corner 73
8.1 Linking with 3Delight 73

8.2 Writing Display Drivers............. 73

8.2.1 Required Entry Points 73
DspylmageQuery e

DspylmageOpen 74
DspylmageData............ 76

DspylmageClose, 76
DspylmageDelayClose 76

8.2.2 A Complete Example 76

8.2.3 Compilation Directives......................... 84

8.3 DSO Shadeops.......oooiiinii 84

9 Acknowledgement 87
10 Copyrights and Trademarks.............. 89
Concept Indexiiiiiiiinn... 93

Function Index iiiieennn. 97

vi

3Delight User’s Manual

3Delight User’s Manual

Chapter 1: Welcome to 3Delight! 3

1 Welcome to 3Delight!

3Delight is a fast, high quality, RenderMan compliant renderer. 3Delight comes as a set
of command line tools and libraries intended to help you render production quality images
from 3D scene descriptions. At the heart of the rendering tools is the 3Delight rendering
engine. This engine implements a fast scanline renderer, coupled with an on-demand ray-
tracer. This combination allows 3Delight to render images quickly, yet giving you the ability
to easily incorporate ray-tracing effects whenever you need them.

3Delight was first released publicly in August 2000. Since then, numerous releases, both
public and internal, have contributed to make it a stable software with strong features. In
the process, special care has been taken to make sure 3Delight keeps a performance edge.

Check regularly at http://www.3delight.com for the latest release of 3Delight.

1.1 What Is In This Manual ?

The remainder of this chapter will give an overview of the main features of the 3Delight
rendering tools.

RenderMan compliance and 3Delight specific extensions are discussed in Chapter 4 [3De-
light and RenderMan]|, page 23. The complete list of provided tools and libraries, along
with operational details, is given in Chapter 3 [Using 3Delight], page 9. Shading Language
(sL) support and details about shader compilation are given in Chapter 6 [Using shaders],
page 59. Rendering tips and useful suggestions can be found in Chapter 5 [Rendering
Guidelines], page 53. 3Delight’s extensible display driver interface and descriptions of all
provided display drivers can be found in Chapter 7 [Display Driver System], page 67.

The installation procedure and insights about 3Delight’s working environment are given
in Chapter 2 [Installation], page 5.

All bug reports are weclome! We will try to fix all bugs for the upcoming release of
3Delight. When sending a bug report, we would appreciate if you could provide:

System Identification
This means the platform and the version of 3Delight you are using. If you do not
have the latest version, please download it from http://www.3delight.com.

The rRIB If you do not have a RIB file (because you use the C API), you still can out-
put a RIB using the DL_RIB_OUTPUT environment variable. See Section 2.4
[Environment Variables], page 6.

The shaders
Send them if you think they have something to do with the problem;

The image If the problem is a glitch in the image, please attach it with the email. Do not
use heavy jpeg compression;

Everything should be sent to info@3delight.com. All material you send us will be kept
confidential and destroyed afterward.

http://www.3delight.com
http://www.3delight.com
mailto:info@3delight.com

4 3Delight User’s Manual

1.2 Features

Here is an overview of 3Delight features:

RenderMan Compliant
The renderdl program can render any RenderMan Interface Bytestream (RIB)
file (binary or text formats) or an application can link with the 1ib3delight
library and directly use the RenderMan Application Programming Interface
(API), refer to User’s Manual Chapter 4 [3Delight and RenderMan]|, page 23 for
details.

RenderMan Shading Language Support
Programmable shading and lighting with an optimizing shader compiler. Ren-
derMan shaders are fully supported (surface, displacement, light, volume and
imager). Matrices, arrays, normals, vectors and all the standard shadeops are
supported. DSO shadeops, message passing and output variables are also sup-
ported. Shaders can be either compiled or interpreted. See User’s Manual
Section 3.2 [Using the shader compiler], page 11.

Rich Rendering Features
Depth of field, motion blur and surface displacement. Standard and deep
shadow maps, as well as ray-traced shadows. Selective ray-tracing and global
illumination. Atmospheric effects.

Textures and Antialiasing
High quality filtered textures and selectable antialias filters including the quality
sinc and catmull-rom filters;

Rich Geometry Support
Subdivision Surfaces (catmull-clark), Polygons, patches (B-spline, Bezier,
Catmull-Rom and others), NURBS (with trim-curves), Curves (Fur & Hair),
quadrics, blobbies and procedural geometry. User defined variables, including
vertex variables, attached to geometry are fully supported.

Fast and Efficient Rendering
3Delight can handle complex scenes, made of millions of primitives. From its
initial design stage, rendering speed has been a TOP PRIORITY and it continues
to be in its ongoing developpement.

Ezxtensible Display Drivers
3Delight comes with the following display drivers: ‘framebuffer’, ‘tiff’, ‘bmp’,
‘zfile’, ‘shadowmap’, ‘dsm’, ‘cineon’, ‘radiance’, ‘exr’ and ‘eps’. Since 3De-
light’s uses the "standard" RenderMan display driver interface, third parties
display drivers are also supported. New extensions to display system are also
supported, including multiple displays per render and display specific quantize
parameters. See User’s Manual Section 4.1 [options|, page 23.

Multi-platform Support with Specific Code Optimisation
3Delight is available for Windows (Intel and AMD), Linux (Intel, AMD and
PowerPC with AltiVec support), MacOS X and IRIX (M1ps4).

Chapter 2: Installation 5

2 Installation

2.1 MacOS X

An auto-installing package is provided for MacOS X users.

Administrator privileges are needed to install 3Delight because everything will be copied
to ‘/Applications/Graphics/3Delight-1.0.6/’, which is not accessible to all users. The
installation program will ask you for the appropriate password.

During the installation procedure, 3Delight will add a few lines to your ‘~/.tcshrc’ file,
the original file will be saved to ‘*/.tcshrc.3delight.bck’

To test your installation perform the following easy steps:
1. Open a Terminal and type the following commands:

cd $$DELIGHT/examples/rtshadows
renderdl shadtest.rib

2. A file named ‘shadtest.tif’ should appear in the current directory. You can view it
with any image viewer.
Other examples are available in the ‘examples’ folder, we suggest you to run them.

If you have problems, write to info@3delight.com.

2.2 UNIX

For UNIX systems (IRIX, Linux), we provide an installation script that should do everything
for you. Here is an example of an installation session (the 3Delight .gz file has been
downloaded into the ‘~/downloads’ directory and we will install it into the ‘“/software’
directory).

- N

% cd ~/downloads

% gunzip 3delight-1.0.6-Linux-i686-1libstdc++-3.tar.gz
% tar xf 3delight-1.0.6-Linux-i686-1libstdc++-3.tar
% cd 3delight-1.0.6-Linux-i686-1libstdc++-3

% ./install --prefix ~/software/

% cd ~/software/3delight-1.0.6/

% unsetenv DELIGHT

% source .3delight_csh

% cd $DELIGHT/examples/opacity/

% shaderdl fonky.sl

% renderdl cubits.rib

% exit
_ J

After typing those commands, ‘cubits.tiff’ should appear in your directory.

mailto:info@3delight.com

6 3Delight User’s Manual

4

Note that if you do not specify the
installed in ‘/usr/local’’.

—--prefix’ option to install, 3Delight will be

Finally, you should add the following line to your ‘.login’ file:
source ~/software/3delight-1.0.6/.3delight_csh

If you use bash, then you should add:

source ~/software/3delight-1.0.6/.3delight_bash

2.3 Windows

On Windows systems, simply run setup-1.0.6.exe. On some systems (namely
Windows 2000), you’ll have to open the Environment Variables dialog (found in
“Start”->“Settings”->“Control Panel”->“System”->“Advanced”->“Environment Variables”
tab), and hit “apply”. This will set 3Delight’s environment variables properly.

2.4 Environment Variables

If your installation succeeded, you’ll only need to modify DL_SHADERS_PATH and
DL_TEXTURES_PATH variables to suit your needs. If for some reason 3Delight does not run
properly, check if the variables described below are set to correct values.

You may also contact us at info@3delight.com if you experience difficulties.
DELIGHT This variable must point to the root of your 3Delight installation.

DL_SHADERS_PATH
This variable contains search paths for 3Delight shaders. It must contains
a colon (or semi-colon on Windows systems) separated list of directories. A
default value is . : $DELIGHT/shaders’ (‘$DELIGHT/shaders; .’ in Windows).

DL_TEXTURES_PATH
Contains search paths for the textures used in the scenes rendered by 3Delight.
The default is ‘.” (current directory).

DL_DISPLAYS_PATH
Contains search paths for 3Delight display drivers. The default is
‘$DELIGHT/displays’.

DL_ARCHIVES_PATH
Contains seatch paths for RIB archives. Used when loading RIBs using
ReadArchive.

DL_RESOURCE_PATH
Setting this environment variable is equivalent to set each of the ‘shader’,
‘display’, ‘texture’ and ‘archive’ paths individually.

DL_RIB_OUTPUT
This variable may contain the name of an output RIB file. You do not need to
define this variable to use 3Delight. However, it may be useful if you want 3De-
light to output the scene it renders. This variable is mainly used for debugging
purposes.

I “root” persmissios are required when installing in ‘/usr/local’.

mailto:info@3delight.com

Chapter 2: Installation 7

INFOPATH If you use info to view the online documentation, add ‘$DELIGHT/doc/info’

PATH

to this variable.

You may also want to make the 3Delight executables accessibles by adding
‘$DELIGHT/bin’ to the this environment variable.

LD_LIBRARYN32_PATH

If you are installing 3Delight on an IRIX system and you decided to config-
ure your environment by hand, you’ll have to make the ‘1ib3delight.so’ dy-
namic library visible to the program loader. One way to do this is to add
‘$DELIGHT/1ib’ to the LD_LIBRARYN32_PATH environment variable.

LD_LIBRARY_PATH

If you are instsalling 3Delight on a Linux sytem and you decided to config-
ure your environment by hand, you have to make the ‘1ib3delight.so’ dy-
namic library visible to the program loader. One way to do this is to add
‘$DELIGHT/1ib’ to the LD_LIBRARY_PATH environment variable.

3Delight User’s Manual

Chapter 3: Using 3Delight 9

3 Using 3Delight

3Delights is a small collection of tools and a library. Here is an overview:

e renderdl, a RIB file reader. This programs reads a binary or AscCil-encoded RIB file
and calls the renderer to produce an image.

e shaderdl, a shader compiler. The compiler can produce either object-code shaders (a
DSO or a DLL) or byte-code shaders (commonly called interpreted shader).

e tdlmake, a texture optimizer which reads a variaty of inpout formats and produces a
TIFF optimized for the renderer. The optimized file typically has a ‘.td1l’ extension.

e shaderinfo, an utility used to gather information from compiled shaders, including:
shader type, shader’s parameters and parameters’ default values.

e dsm2tif, an utility to convert deep shadow maps into TIFFs;

e hdri2tif, a dynamic range compression utility. Converts HDR images to low dynamic
range TIFFS.

e 1ib3delight, a library that can be linked to other applications to render images and
interrogate shaders. The library complies to the RenderMan API.

e 3Delighter, a very neat interface to 3Delight for MacOS X users that do not whish to
play in an UNIX shell.

In the next sections, we will describe each of these tools in more details.

3.1 Using the RIB Renderer - renderdl

renderdl reads a file containing scene description commands and “executes” them. Such
files are commonly called RIB files (RIB stands for RenderMan Interface Bytestream). There
is two kinds of RIB files: ASCII encoded RIB files and binary encoded RIB files. A binary RIB
file is smaller than its ASCII encoded equivalent, but an AscII RIB file has the advantage of
being editable in any text editor or word processor.

To render a RIB named ‘file.rib’, just type:

% renderdl file.rib

It is possible to render more than one file:

% renderdl filel.rib file2.rib file3.rib

In this case, renderdl reads each file one after the other, and the graphic state is
retained from one file to another (in other words, the graphic state at the end of one file is
the starting graphic state for the next file). If a file cannot be found, it is simply skipped.
This behaviour is useful to separate the actual scene description from rendering options.
For example:

% renderdl fast.opt scene.rib

% renderdl slow.opt scene.rib

These will render the scene ‘scene.rib’ twice but with different rendering optionts
(note that ‘fast.opt’ and ‘slow.opt’ are normal RIB files). ‘file.opt’ contains options
for high quality rendering such as low ShadingRate and high PixelSamples, and ‘slow.opt’
contains low quality (speedy) option settings.

10

3Delight User’s Manual

If you do not specify a file name, renderdl will wait for you to enter scene description

commands.

This feature enables you to pipe commands directly in renderdl. For example,

to enter scene description commands interactively (which is not really practical), do the

following:

% renderdl

Reading

(stdin)

<enter commands here>

If you wish to pipe the content of ‘file.rib’ in renderdl, type:

% cat file.rib | renderdl

renderdl options are described in the following sub-section.

3.1.1 Command Line Options

-v Prints 3Delight’s version number and name;

‘~h’ Prints a short help screen;

‘~beep’ Beep when all RIBs are rendered;

‘~-beeps’ Beep after each rendered RIBs;

‘~d’ Will force a display to the ‘framebuffer’ display driver. Note that a
‘framebuffer’ display driver will be added to the displays declared inside the
RIB so those will still be called. If there is already a ‘framebuffer’ display
driver declared in the RIB then this options has no effect;

‘-D’ Has the same effect as ‘-=d’ but will automatically close the framebuffer display
driver when finished;

‘~frames f1 £2’
Only render the frames between fl and {2, inclusivly. This options enables you
to render some specific frames inside one RIB file. Frames outside the specified
interval are skipped;

‘~croplrtb
Sets a crop window defined by <l r t b> (left right top bottom). The values
should be given in screen coordinates, which means that all value are between
0.0 and 1.0 inclusively. This command line option will override any CropWindow
command present in the RIB file.

‘-noinit’ Do not read the ‘.renderdl’ file. See Section 3.1.2 [the .renderdl file], page 11.

‘-stats’ Prints "end of frame statistics". Has the same effect as putting the following
line in the RIB file: Option "statistics" "endofframe" 3

‘-progress’

Prints a progress status after each bucket. Can also be enabled from inside the
RIB. See [progress option|, page 28.

Chapter 3: Using 3Delight 11

3.1.2 The ¢.renderdl’ File

When started, renderdl immediatly looks for an initialization file named *.renderdl’. This
file is a normal RIB that may contain any standard RIB command, enabling the user to put
whatever default options are needed for rendering, such as variable declarations, standard
screen format, performance options, etc. . . .

The locations in which 3Delight will look for this file are (in order):
1. In the current working directory;
2. In user’s home directory!;

3. In the directory pointed to by the DELIGHT environment variable.

The loading of ‘. renderdl’ can be bypassed using the ‘-noinit’ option (see Section 3.1.1
[renderdl options], page 10).

3.2 Using the Shader Compiler - shaderdl

3Delight shaders are written in RenderMan Shading Language (SL). 3Delight also supports
most of the common extensions to this language.

The shader compiler can produce either an object-code shader (a DSO on IRIX and
Linux, a DLL on Windows) or a byte-code shader (commonly called interpreted shader).
By default, the compiler produces byte-code shaders. If you have a C++ compiler installed
on your computer, you can ask shaderdl to produce object-code shaders by setting the
‘~-dso’ command line switch.

The main advantage of byte-code (interpreted) shaders is that they are platform inde-
pendent: they can be used on IRIX, MacOSX, Linux or Windows computers. This is not the
case of object-code shaders. Object-code shaders, however, can be faster than byte-code
shaders. We suggest you to produce object-code for those shaders that are computationally
intensive, such as volume shaders.

To compile a shader, give the command:
% shaderdl shader.sl

As you may have noticed, you do not have to specify an output file name to shaderdl.
The output file name is the name of the shader (the identifier following the keyword surface,
displacement, light, or volume in the SL program) followed by the suffix ‘.sdl1’.

Some renderers’ shader compiler append the name of the platform at the end of object-
code shader’s name. 3Delight shader compiler does not use this convention. An object-code
shader will always have the same name, regardless of the platform for which it is compiled.
We recommend that you keep shaders compiled for different platforms in separate directories
(this of course is not necessary for interpreted shaders).

The shaderdl program is a script that call a suite of compilation tools. We explain
the compilation process in the next sub-section. Then, we list the command line options
accepted by shaderdl and explain how you can use them to modify the behaviour of
shaderdl. Finally, we explain how you can customize shaderdl to fit some particuliar
needs.

L As specified by the HOME environment variable.

12 3Delight User’s Manual

3.2.1 Compilation Process

This section details the steps that occur when a shader is compiled. The compilation process
is started by the shaderdl script. This script defines some variables and then gives control
to slcdl, which is responsible for calling other tools.

The first step is the preprocessing step. 3Delight has its own preprocessor (cppdl) which
does a work very similar to a standard C preprocessor. The preprocessor takes a SL program
with #-directives, processes the #-directives and outputs a SL program without #-directives.

Then comes the shading language translation step. If you elected to output byte-code
shaders, slcdl parses the SL file generated by the preprocessor and outputs byte-code in a
text file. The file name is the name of the shader found in the sL file, followed by the ‘.sd1’
extension.

If elected to output object-code shaders, slcdl parse the SL file and output a C++
program, instead of byte-code. This C++ program is then compiled by a C++ compiler (that
you must provide) and linked into a dynamic shared object (DSO) or a dynamic link library
(DLL). The DSO or DLL file name is the name of the shader found in the SL file, followed by
the ‘.sdl’ extension.

When using a shader, there is no need to worry about whether the shader is in byte-code
or object-code. 3Delight will guess this by itself.

3.2.2 Command Line Options

As every compiler, shaderdl understends a set of command-line options that control the
compilation process, those are specified before the input file name:

% shaderdl [options] shader.sl

There is no need to specify an output file name to shaderdl since it is automatically set
to the name of the shader (the identifier following the keyword surface, displacement,
light, volume or imager in the SL code) followed by the suffix ‘.sd1’.

Valid command line options are:

‘-d <directory>’
Specifies destination directory for compiled shaders. The default is the current
working directory.

‘--dso’ Generate object-code shaders. To use this option, you must have a C++ compiler
installed. The compilation script included with 3Delight is configured to work
with CC on IRIX, with g++ on Linux and with Visual C++ on Windows. If
you have a different compiler installed, you will have to modify the compilation
script. For more information, see Section 3.2.3 [Customizing the compile script],

page 13.
‘--int’ Generate byte-code shaders (default).
‘~0<n>’ Specifies the optimisation level, from 0 to 3. ‘=00’ turns off all optimisations,

‘-01’ optimises a little bit, ‘-03’ optimises aggressively. The default is ‘-03’.

‘—w<n>’ Sepcifies warning level:

Chapter 3: Using 3Delight 13

0. Disable all warnings (not recommanded);
1. Log important warnings only (default);
2. Log all warnings.

‘~-I<directory>’
Specifies a directory to search for #include’d files.

‘~-D<symbol>’
Defines a preprocessor symbol.

-E Stops after the preprocessing step. See Section 3.2.1 [Compilation process|,
page 12.

‘=c’ Stops after the shading language to C++ translation pass. See Section 3.2.1

[Compilation process], page 12.

‘-—keep-cpp-file’

‘-—dont-keep-cpp-file’
Specifies whether or not to keep the intermediate files generated by the prepro-
cessor. They are not kept by default. See Section 3.2.1 [Compilation process],
page 12.

‘--keep-c++-file’

‘-—dont-keep-c++-file’
Specifies whether or not to keep the C++ files generated by the shading language
translation pass. They are kept by default. See Section 3.2.1 [Compilation
process|, page 12.

‘-—no-array-check’
Turns off array run time bound checking. Enabled by defaut.

‘-—use-shadeops’
‘-—dont-use-shadeops’
Enable [disable] use of shadeops. Disabled by default.

ey

‘--version’
Print the compiler version number and exit.

4_h7

‘-—help’ Print a help message and exit.

3.2.3 Customizing the Compilation Script

The shaderdl script sets some environment variables and then calls slcdl. This program
uses those environment variables to find the C compiler and call it with the right options.

You can change the default settings of shaderdl by modifiying the configuration script
‘shaderdl.init’ (‘shaderdl.init.bat’ under Windows), which should be placed in your
‘$HOME/etc’ directory.

An example ‘shaderdl.init’ would be

14 3Delight User’s Manual

#! /bin/sh

SLC_CC_OPTIONS="-w -g"

This configuration file simply tells the C++ compiler to generate debug information in
the compiled DSO (or DLL).

Under Windows, the default compiler is Microsoft Visual C++. However, we provides
alternate shaderdl scripts for use with other popular compilers, like gcc or Borland. To
use them, just rename the one that you need to ‘shaderdl.bat’.

3.3 Using the Texture Optimizer - tdlmake

tdlmake preprocesses TIFF, JPEG, RADIANCE and OpenEXR? files in order to save them into
an efficient texture format suitable to 3Delight. It can also convert ‘zfile’s into shadow
maps. We recommend running tdlmake on all textures, before rendering, for two reasons:

e tdlmake will create a mipmapped version of the original texture, allowing 3Delight to
produce nicer images;

e 3Delight employs a caching mechanism for texture data which works well with tiled
images, using raw (striped) non-converted TIFFs may degrade overall performance.

Note that a converted file is a normal TIFF that can be viewed with any image viewer.
We suggest using a ‘.td1l’ extension for 3Delight texture files.

3.3.1 Command Line Options

tdlmake is invoqued by specifying at least two file names and an optional set of command-
line switches:

% tdlmake [options] input.tif [input2.tif ... input6.tif] output.tif
Valid options are:

‘~envlatl’
Generate a latitude-longitude environement map;

‘~envcube’
Generate a cubic environment map. Needs six TTFF's in input, ordered as follow:
+X7 -X, +Y> -y, +Z>)

‘-shadow’ Generate a shadowmap from a zfile. When generating a shadowmap, only the
‘~c-’ option is functional.

‘~lzw’ Compress output texture using LzZw algorithm. This option is enabled by de-
fault since compressed textures take much less space and there is no noticeable
speed penality when accessing them;

‘~deflate’

Compress output texture using the Deflate algorithm. Has a better compression
ration than Lzw;

2 OpenEXR format is only availabe on Linux and IRIX platforms.

Chapter 3: Using 3Delight 15

‘-packbits’
Compress output texture using Apple’s PackBits algorithm. Compression ratio
is not as good as with LZW or Deflate but decompression is very fast;

‘-c-’ Do not compress output texture;
‘~fov n’ Specifies a field of view, in degrees, for cubic environment maps. Default is ‘90’
degrees;

‘-mode <black|clamp|periodic>’

‘-smode <black|clamp|periodic>’

‘~tmode <black|clamp|periodic>’
Specifies what action should be taken when accessing a texture (using
texture()) outside its defined parametric range (s, t = [0..1]):

‘black’ Texture is black outside its paramtric range;
‘clamp’ Texture’s borders extend to infinity;
‘periodic’

Texture is tiled infinitely;

‘-smode’ and ‘-tmode’ specifiy the wrapping modes of the texture in s or ¢t
only. Default mode is ‘black’ for normal textures and ‘periodic’ for latitude-
longitude environment maps. Note that this option does not affect the look of
the ‘. tdl’, its effects will only be noticeable when using texture () from inside
a shader.

‘~filter <box|triangle|gaussian|catmull-rom|bessel|sinc>’
Specifies a downsampling filter to use when creating mipmap levels. The default
filter is sinc. Here is a table showing the complete list of supported filters, along
with their ‘filterwidth’ and window defaults:

3Delight User’s Manual

16
filter filterwidth
box 1.0
triangle 2.0
gaussian 2.50
catmull-rom 4.0
bessel 6.47660
sinc 8.0

window

‘lanczos’

‘lanczos’

Comment

This filter tends to blur textures, use
only if texture generation speed is an
issue;

filterwidth larger than 2.0 is unneces-
sary;

A good filter that might produce
slightly blurry results, not as much as
the box filter though;

A better filter (producing sharper tex-
tures);

Filter width choosen as to include 2
roots;

We recommend this high quality fil-
ter as the best choice. Although it
can produce some ringing artifacts on
some textures. Using a filterwidth
smaller than 4 is not recommended.

‘-window <lanczos|hamming|hann|blackman>’
A windowing function can be applied to bessel and sync filters (which are
infinite in width) to achieve a softer cut at the filter’s support boundaries.
Possible windowing schemes are ‘lanczos’, ‘hamming’, ‘hann’ and ‘blackman’.

‘~filterwidth n’

Overrides the default filter width in s and ¢t. Important : filter width is the

diameter of the filter and not the radius;

‘-sfilterwidth n’
‘~tfilterwidth n’

Overrides the default filter width in s or t;

‘~blur n’

Blurs or sharpens the output image.

Values larger than one will make the

image more blurry and values smaller than one will produce sharper results.
This function works by scaling the filter function by the specified value. This
is not the same thing as scaling ‘sfilterwidth’ and ‘tfilterwidth’. Default

is ‘17,

‘-quality <low|medium|high>’

Controls mipmap downsampling strategy: when using ‘low’, each mipmap level
is created from the previous one. At ‘medium’ quality, each level is created from
the 2nd previous level. At ‘high’ quality, each level is created from up to the

Chapter 3: Using 3Delight 17

4th previous level. The default ‘medium’ setting is more than enough for most
applications.

‘~flips’

‘~flipt’ Flip the image horizontally or vertically;

‘-flipst’ Flip the image in both directions;

‘-progress’

Shows texture creation progress, only useful for really large textures (or really
slow computers!);

-v Prints version and copyright informations;

‘~h’ Shows help text.

3.3.2 Supported Input Formats

tdlmake supports most of the common formats used in a production environment:

TIFF tdlmake supports stripped or tiled TIFFs with 1 to 6 channels. Suppported
data types are:

e 1,4, 8,16 or 32 bits of unsigned integer data;
e 8, 16 or 32 bits of signed integer data;
e 32 bits of floating point data.

Unsigned single channel images (grayscale or b&w) can have either MINISBLACK
or MINISWHITE photometric. Either way, the output file (‘.td1’) will be MINIS-
BLACK. Signed files are required to have either RGB or MINISBLACK photometric.
Files with less than 8 bits per sample are promoted to 8 bits per sample in the
output. Otherwise, the output format is the same as the input. LogLuv encoded
TIFFs are supported and are kept in their LogLuv form when processed. TIFFs
with separate planes are not supported.

JPEG tdlmake supports 8 bit (grayscale) and 24 bit JPEGS.

Radiance Picture Format
Files produced by Radiance® are supported. Both XYZE and RGBE encoding
modes are recognized by tdlmake. Run-lenght encoded files are also supported.
Note that there is a restriction on image orientation: only -Y +X orientation is
correctly recognized, any other orientation will be reverted to -Y +X. This is
not a major problem though because it can be corrected by using the ‘-flips’
and ‘-flipt’ options (see Section 3.3.1 [tdlmake options], page 14).

OpenEXR 1LM’s OpenEXR format is supported by tdlmake with the restriction that im-
ages should be in RGB or RGBA format®.

zfile zfiles are only used to produce shadow maps.

For cube environment maps (‘-envcube’), all six images are required to be of the same
file format.

3 Refer to http://floyd.1bl.gov/radiance/.
4 Refer to http://www.openexr.org.

http://floyd.lbl.gov/radiance/
http://www.openexr.org

18 3Delight User’s Manual

3.3.3 Quality and Performance

As all other 3Delight tools, tdlmake was designed to accomodate the tough demands of a
production environment. In this case, special attention was given to filtering quality and
memory usage, without penalising execution speed. Among other things:

e All internal filtering algorithms are executed in floating point to preserve as much
accuracy as possible;

e An efficient caching system is used to keep memory usage footprint very low. tdlmake
was tested on textures as large as 16K x 16K (1 Gigabyte of disk space) and accom-
plished its work by using less than 12Megs of memory.

e The filtering process has been designed to have a linear cost increase relative to
‘~filterwidth’, unlike some software in which the cost is quadratic. For example,
‘~filterwidth 8’ will run twice as slow as ‘-filterwidth 4’.

3.3.4 Examples

Here are some examples using tdlmake on the command line:

To create a 3Delight texture named ‘grid.tdl’ from a TIFF named ‘grid.tif’ using a
gaussian downsampling filter of width 4:

% tdlmake -filter gaussian -filterwidth 4 grid.tif grid.tdl

To create a cubic environment map in which all cube sides were rendered using 90 degrees
field of view:

% tdlmake -fov 90 -envcube \
inl.tif in2.tif in3.tif in4.tif in5.tif in6.tif \
envmap.tdl

or (won’t work in a DOS shell) :

% tdlmake -fov 90 -envcube in?.tif envmap.tdl

To create a texture using the high quality downsampling mode and show progress while
doing so:

% tdlmake -progress -quality high grid.tif grid.tdl

To create a shadow map from a zfile (Section 7.3 [dspyzfile], page 69):

% tdlmake -shadow data.z shadowmap.tdl

3.4 Using dsm2tif to Visualize DSMs

dsm2tif is an utility to convert 3Delight’s propriatary deep shadow map files into viewable
TIFF files. A DSM contains visibility informations for any given depth in a scene, so one
single 2D image (eg. a TIFF) cannot describe all the information provided by a DsMm; that
is why command line parameters are provided to specify at which depth the evaluation will
occur.

‘-z depth’ Specifies a relative depth at which the deep shadow map will be evaluated.
“Relative” meaning that each pixel in the image will be evaluated at its own

Chapter 3: Using 3Delight 19

‘~Z depth’

‘~bias n’

‘~opacity’

‘-mipmap n’

(_87

4_167

4_327
‘~float’
~lzw’
‘~deflate’
‘-packbits’
‘~logluv’

—y?

L_h7

depth, computed as follows: (pZmax — pZmin) * depth + pZmin. pZmin and
pZmax being the depths of the closest and the furtherst features present in
the pixel. ‘-z 1’ is the default, which shows the amount of light that passes
through to infinity at each pixel;

Specifies an absolute depth (range: [0..1]) to evaluate the deep shadow map.
“Absolute” meaning that all pixels in the output image will be evaluated at the
same depth, computed as follows: (Zmax — Zmin) * depth + Zmin. Zmin and
Zmax being the depths of the closest and the furtherst features in the DSM;

Specifies a shadow bias for deep shadow map evaluation. This is needed to avoid
self-occlusion problems. If the produced TIFF contains noisy areas, consider
increasing this parameter. Default is 0.015;

By default, dsm2tif will assign a “visibility” value to each pixel in the output
TIFF, specifying this option will assign “opacity” values to each pixel (opacity =
1—wisiblity). This means that dark areas in the image indicate that light passes
through unnocluded;

This options specifies which mipmap level will be converted. Note that mipmap-
ping can be diseabled by an option given to the display driver (see Section 7.5
[dspy_dsm], page 69);

Choose data format for the output TIFF. Default is 8 bits per channel;

Selects a compression scheme. Default is ‘1zw’. ‘~logluv’ is only supported
with ‘-float’ data type;

Prints version and copyright informations;

Shows help text.

3.5 Using hdri2tif on High Dynamic Range Images

hdri2tif emplois a range compression algorithm® to convert high dynamic range images
into displayable, low dynamic range, TIFFs. All the important HDRI formats are recognized

in input:

1. Floating point TIFFs as well as LogL.uv encoded TIFFs;

2. Radiance files, uncompressed or RLE packed;

5 Erik Reinhard, Mike Stark, Peter Shirley and Jim Ferwerda, ’Photographic Tone Reproduction for Digital
Images’, ACM Transactions on Graphics, 21(3), pp 267-276, July 2002 (Proceedings of SIGGRAPH

2002).

20

3Delight User’s Manual

3. 1LM’s OpenEXR files.

Note that all formats must have 3 or 4 channels. The fourth channel will be considered
as alpha information and will stay untouched in the output image.

hdri2tif accepts the following options:

‘-middle-gray n’

‘~key n’

‘-simple’

‘-white n’

‘-gamma n’

‘-nthreads

‘~verbose’

‘~help’

Sets the value of the middle-gray in the image, default is 0.18. Range is [0..1].
Specifying a value of 0 will enable an histogram based automatic estimation
(one can use ‘-verbose’ to display the computed key value);

By default, hdri2tif uses a “dodging-and-burning” algorithm which is rela-
tively costly®. Specifying this option will force the use of a simpler algorithm
that is well suited for images with a medium dynamic range (lower than 10
“zones”). Note that this method may produce bad results on very high dy-
namic range images;

Sets the luminance value in the image that will be mapped to pure white (1.0 in
the low dynamic range output image). Setting this parameter to smaller values
will produce more “burning”. The default action is to set the white point to
the maximum luminance in the image, which removes burning. This option
is only meaningful when paired with the ‘-simple’ option because the default
algorithm automatically computes the white point. Specifying a value of 0 will
enable an histogram based automatic estimation (one can use ‘-verbose’ to
display the computed value);

Specifies a gamma correction to be applied on the produced image. Gamma
correction is performed after the range compression algorithm.

n?

hdri2tif can run in a multi-threaded mode for increased performance. This
options specifies how many threads to use. This option has no effect when
‘-simple-operator’ is used.

Displays information while processing the image;

Displays a brief help text.

The following options can be used to further control the “dodging-and-burning” algo-
rithm. Modifying these options is not recommanded.

‘-numscales n’

Specifies the number of gaussian convolutions to use when computing luminance
information for each pixel. More gaussians mean a more precise result but also
a slower computation. This option is only meaningfull with the “dodging-and-
burning” algorithm (no ‘-simple’). Default is 8;

‘-sharpness n’

Sets the sharpness parameter. Higher values mean sharper images. Default is
8;

6 Implies frequency domain computations.

Chapter 3: Using 3Delight 21

‘=lzw’

‘~deflate’

‘-packbits’

‘-none’ Selects compression method to use for output TIFF. ‘~1zw’ is enabled by default.

3.6 Using shaderinfo to Interrogate Shaders

shaderinfo is a utility to interrogate compiled shader. This can prove usefull when you do
not have the shader’s source code and you want to know what are its parameters.

To get information about a shader, use shaderinfo like this:
% shaderinfo matte
shaderinfo generate the following output:

surface "matte"
"Ka" "uniform float"
Default value: 1
"Kd" "uniform float"
Default value: 1

To find a shader, shaderinfo will use the search paths specified by the DL_SHADERS_PATH
(or DL_RESOURCE_PATH) environment variable.

shaderinfo has a special switch that helps declaring parameter types in a RIB file:
% shaderinfo -d matte
will generate the following output:

surface "matte"
Declare "Ka" "uniform float"
Declare "Kd" "uniform float"

Declarations can be pasted directly into the RIB.

3.7 Using the 3Delight cul (Mac only)

3Delight includes a simple Gul for MacOS X users. This is good news for those of you
who are not familiar with a UNIX shell. Shader compilation, RIB rendering and editing are
among the services provided by this software.

3Delighter may be updated after a 3Delight release, we suggest you to check for the
latest version at http://icoldwell.com/3delighter/.

3Delighter can be lauched from the ‘/Applications/Graphics/3Delight-1.0.6/bin’
directory.

Many thanks to Robert Coldwell for this software.

http://icoldwell.com/3delighter/

22

3Delight User’s Manual

Chapter 4: 3Delight and RenderMan 23

4 3Delight and RenderMan

There are two ways to describe a scene to 3Delight: the first is by using the RenderMan
Application Programming interface (API) and the second is by using the RenderMan In-
terface Bytestream (RIB) files. The RenderMan API (as well as the RIB format) is well
described in RenderMan Interface Version 3.2. This document is available electronically at
http://www.pixar.com/renderman/developers_corner/rispec/index.html.

A RiB file is a set of commands meant to be interpreted by a RIB reader such as renderdl.
There is almost a one to one correspondance between the API calls and RIB commands.

For an in depth documentation about RenderMan and the RenderMan API, consult the
following two classics.

e The RenderMan Companion. Steve UPSTILL. Addison Wesley.

e Advanced RenderMan: Creating CGI for Motion Pictures. Larry GRITZ and Anthony
A. APODACA. Morgan Kauffman.

Check www.3delight.com/links.htm for a direct link to those references.

4.1 Options

Options are parameters of the graphic state that apply to the entire scene. All options are
saved at each FrameBegin and restored at the corresponding FrameEnd call. It is important
to set these options before the WorldBegin...WorldEnd block since it is a RenderMan as-
sumption that rendering may begin any time after WorldBegin; all options must be fixed by
then. Also, and contrary to transforms, the order in which options appear is not important.

The RenderMan API declares a standard set of options (which are used to control camera
and image parameters) and opens a door to implementation specific options through the
RiOption call. 3Delight supports all of the standard options and has some specific calls;
both groups are described in the following sections.

4.1.1 Image and Camera Options

All the standard options are supported and are listed in the table below along with their
default values. Some of those options have an extended behaviour in 3Delight:

Display You can open more than one display at once by giving Display a file name
that begins with a "+". For example, the following two commands will write
the image to ‘image.tif’ and to the framebuffer.

Display "image.tif" "file" "rgb"

Display "+window" "framebuffer" "rgb"
Since the renderer uses floating point numbers internally, the colors are exposed
and quantized using the values specified with the Exposure and Quantize com-
mands. However, you may want to expose and quantize values differently for
each Display. This is made possible by specifying exposure, quantization and

dithering values directly on the Display line. An extended Display command
would look like:

http://www.pixar.com/renderman/developers_corner/rispec/index.html
www.3delight.com/links.htm

24

Hider

3Delight User’s Manual

Display "file" "driver" "variable"
"exposure" [gain gammal
"quantize" [zero one min max]
"dither" [amplitude]

Note that there are four values given to the quantize token, compared to three
for the Quantize command. This extended syntax allows to specify a value
for zero (black), whereas the Quantize command assumes this value to be ‘0’.
Using this fourth parameter, colors are quantized using the following formula:

value = round(zero + value * (one - zero) + dithervalue)
value clamp(value, min, max)

Hider only supports the ‘hidden’ hider. It takes one optional parameter,
‘jitter’, to tell 3Delight what sampling pattern to use. Valid values for this
parameter are ‘0’ (regular sampling grid), ‘1’ (jittered grid) or ‘2’ (quasi Monte-
Carlo sampling). For example:

Hider "hidden" "jitter" O

tells 3Delight to sample the scene using a regular grid pattern. The default
sampling pattern is the jittered grid.

Hider "depthfilter" "filter name"

Sets a filter type for depth values filtering. The following filters are recognized:

min The renderer will take the minimum z value of all the subsamples
in a given pixel;

max The renderer will take the maximum z value of all the subsamples
in a given pixel;

‘average’ The renderer will average all subsamples z values in a given pixel;

‘midpoint’
For each subsample in a pixel, the renderer takes the average z
value of the two closest surfaces. Depth associated with the pixel
is then computed using a min filter of these averages. Note that
midpoint filtering may slowdown your renders slightly.

Chapter 4: 3Delight and RenderMan 25

Option Default Value Comments

Format 640 480 1 -

FrameAspectRatio 1.0 Square pixels

ScreenWindow -1.3333 1.3333 -1 1 Computed using Format (640/480 =
1.333...)

CropWindow 0101 No croping, the entire screen is visible;

Projection "orthographic" —

Clipping 0 1e30 -

PixelSamples 22 Enough for a preview. If motion-blur or

depth of field is used increase those values
to at least 4 4;

PixelFilter "box" 2 2 Enough for a preview. A high quality set-
ting would be "sinc" 6 6;
Exposure 1.0 1.0 Gain = 1, Gamma = 1;
Display "default.tif" "tiff" Create a RGB TIFF named ‘default.tif’.
Ilrgb"

Standard options and their default values.

26

3Delight User’s Manual

4.1.2 Implementation Specific Options

Rendering Options

Option "shadow" "float biasO" [0.225]
Option "shadow" "float bias1" [0.3]
Option "shadow" "float bias" [0.225]

When using shadow maps, a surface may exhibit self-shadowing.
This problem is caused by precision errors and appears as gray
spots on the surface. This problem occurs when the distance of
an object to a light source computed while rendering a shadow
map is slightly less than the distance computed while rendering the
image. To prevent self shadowing, you can specify a bias, which
is a value that will be added to the shadow map value. If ‘bias0’
is different from ‘bias1’, the renderer will choose a random value
between them for each sample. Note that those parameters do not
affect ray-traced shadows. The value of "bias0" and "bias1" should
be set to ‘0’ if the "midpoint" algorithm is used to compute the
shadow map, see Section 4.1 [options|, page 23 for more details on
how to use the "midpoint" algorithm.

Option "render" "string bucketorder" "horizontal"

In order to save memory, the image is rendered progressivly in small
group of pixels refered to as "buckets". This option specifies the
rendering order of the buckets. Valid values are:

‘horizontal’
Left to right, top to bottom (this is the default);

‘vertical’
Buckets are rendered from top to bottom, left to right;

‘spiral’ In a clockwise spiral starting at the center of the image;
‘circle’ In concentric circles starting at the center of the image;

‘random’ In no particular order. Should not be used since it is
not memory efficient.

Quality vs. Performance Options

Option "limits" "integer bucketsize[2]" [16 16]

This option specifies the dimension of a bucket, in pixels.

Option "limits" "integer gridsize" [256]'

During the rendering process, geometry is split into small grids of
micro-polygons. Shading is performed on one grid at a time. This
option specifies the maximum number of such micro-polygons per
grid.

1 Grid size set to cover approximately one bucket when ShadingRate=1.

Chapter 4: 3Delight and RenderMan 27

Option "limits" "integer eyesplits" [6]?
Specifies the number of times a primitive crossing the eye plane will
be split before being discarded.

Option "limits" "integer texturememory" [8192]
The memory needed to hold the texture for some scene may exceed
the amount of physical (and logicall) memory available. To render
such scenes efficiently, 3Delight uses a memory caching system to
keep texture memory usage below some predefined threshold. This
option specifies the amount of memory, in kilobytes, dedicated to
the textures. Increasing this amount may improve texture map,
shadow map and environment map access performances. Note that
3Delight also offers a texture file caching mechanism over networks,
see Section 5.4 [Network Cache], page 55.

Option "limits" "integer texturesample" [1]
Specifies the default oversampling value for texture/environment
lookups.

Option "shadow" "integer sample" [16]
Specifies the default oversampling value for shadow map and deep
shadow map lookups. This only applies if the shadow call does
not contain an oversampling value (see Section 4.5.5 [texture map-
ping shadeops], page 45). This option does not affect ray-traced
shadows.

Option "trace" "integer maxdepth" [4]3
This option sets the maximum recursion level for the ray tracer.
Valid values are between 0 and 16, inclusively. Any value outside
of this range will be interpreted as 16. A value of 0 turns off ray
tracing.

Search Paths

A search path is a colon or semi-colon separated list of directories. The directo-
ries should be separated using a slash (‘/’) character. Under Windows, it is also
possible to use cygwin’s convention: ‘//c/dirl/...’. When an environment
variable is encountered in a path, it is replaced by its value. The environment
variable should be specified using the UNIX convention (e.g. $HOME). The tilde
(‘~7) character, when placed at the beginning of a path, has the same signifi-
cation as the HOME environment variable. If the path specified path is ‘@, it is
replaced by the default path (see below); if a ‘&’ is specified, it is replaced by
the previous path list.

Search paths are specified using the following commands:

Option "searchpath" "string shader" "path-list"
Sets ‘shader’ and DSO shadeops search path;

2 See Advanced RenderMan: Creating CGI for Motion Pictures, p.151, for a complete discussion about eye
splits.
3 Was Option "render" "max_raylevel" in versions prior to 1.0 .

28 3Delight User’s Manual

Option "searchpath" "string texture" "path-list"
Sets ‘texture’ search path;

Option "searchpath" "string display" "path-list"
Sets ‘display’ search path;

Option "searchpath" "string archive" "path-list"
Sets ‘archive’ search path.

Option "searchpath" "string resource" "path-list"
Sets ‘resource’ search path. This is equivalent to adding this path
to all the above search paths.

The default values for these options are taken from the environment
variables ~ DL_SHADERS_PATH, DL_TEXTURES_PATH, DL_DISPLAYS_PATH,
DL_ARCHIVES_PATH and DL_RESOURCE_PATH respectively. Default values are
shown in the table below.

Statistics

Statistics can prove useful when finetuning renderer’s behaviour (for quality or
performance reason).

Option "statistics" "integer endofframe" [0]
Specifies the desired statistics level. The level ranges from 0 to 3,
0 meaning no statistics at all and 3 meaning all possible statistics.
A level of ‘2’ is enough for most usages.

Option "statistics" "string filename" [""]
By default, statistics are dumped to the console (more specifically,
to ‘stdout’); this option can be used to specify an output file name
instead.

Option "statistics" "string progress" ["off"]
Turning this option ‘on’” will force 3Delight to output a progress
status? to the console. The outputted text will look like this:

3DL INFO: Progress: 0.00 %
3DL INFO: Progress: 0.08 7%
3DL INFO: Progress: 0.17 7%
3DL INFO: Progress: 0.25
3DL INFO: Progress: 0.33 7%
3DL INFO: Progress: 0.42 %
3DL INFO: Progress: 0.50 %

Each line is printed after a bucket is done rendering.

Network Cache
3Delight has a network caching system for texture files located on "slow access"
media (such as NFs and ¢D-ROM drives). Refer to Section 5.4 [Network Cache],
page 55 for a detailed description.

Option "netcache" "string cachedir" [""]
Specifies a directory for data caching. The directory should be
locally mounted, such as ‘/tmp/3delight_cache’ and should be

numbero fbucketsrendered
totalnumbero fbuckets

4 Approximate, since it is computed as follow :

Chapter 4: 3Delight and RenderMan

29

dedicated solely to 3Delight. Do not use ‘/tmp’ as a cache directory
(‘/tmp/3delight_cache/’ is a better choice).

Option "netcache" "integer cachesize" [1000]

Specifies cache size in megabytes.

Kbytes. Make sure the specified size is enough to hold many

One megabyte being 1024

textures if you want to fully take advantage of this performance
feature. Idealy big enough to hold all the textures used in a given

scene.

Option

"shadow" "bias(Q"
"shadow" "biasl"
"render" "bucketorder"
"limits" "bucketsize"

"limits" "gridsize"

"limits" "eyesplits"

"limits" "texturememory"
"limits" "texturesample"
"shadow" "sample"
"trace" "maxdepth"
"searchpath" "shader"
"searchpath" "texture"
"searchpath" "display"
"searchpath" "archive"
"searchpath" "resource"
"netcache" "cachename"

"netcache" "cachesize"

"statistics" "endofframe"

"statistics" "file"

Default Value
0.225

0.300
["horizontal"]
[16 16]

256

8192

1

16

4
‘$DELIGHT/shaders’
‘$DELIGHT/textures’
‘$DELIGHT/displays’

‘$DELIGHT/archive’

[n ||]
1000

Comments

One grid is approximatly as large as
a bucket when ShadingRate=1;

Enough for most cases, larger values
may slow down rendering;

8 megabytes;

No caching;

1 Gig of disk space. Has no effect if
caching is disabled;

No stats;

Output to console (‘stdout’).

Implementation specific options and their default values

30

4.2 Attributes

3Delight User’s Manual

Attributes are components of the graphic state that are associated with elements of the
scene, such as geometric primitives and light sources. As with options, there are two kinds
of attributes: the standard and the implementation specific. Standard attributes, along
with their default values, are listed in the table below. Implementation specific attributes
are passed through the Attribute command. All attributes are saved at AttributeBegin
and restored at AttributeEnd.

Attribute Name
Color
Opacity

TextureCoordinates

Surface

Atmosphere
Displacement
LightSource
ShadingRate

GeometricApproximation
"motionfactor"

Matte
Sides
Orientation

TrimCurve

Default values
[111]

[111]
00100111]

‘defaultsurface’

0
2

"outside"

Comments
White;
Opaque;

Only applies to paramtric surfaces such
as Patch and NuPatch;

A surface shader that does not need a
lightsource to produce visible results;

Approximatly one shading computation
at every pixel;

ShadingRate is highered by one for each
16 pixels of motion, this also affects depth
of field;

Objects visible from both sides;
Do not inverse transform handedness;

No trim curves defined.

Standard attributes and their default values.

3Delight has a set of implementation specific attributes, they are listed below in their

respective category.

Primitives Identifiaction

Attribute "identifier" "name" "none"
Subsequent objects will be named using the string given by this
attribute. This is useful when 3Delight reports warning or errors
about some primitive.

Chapter 4: 3Delight and RenderMan 31

Primitives Visiblity and Ray Tracing

Attribute
Attribute
Attribute

Attribute

Attribute

Global Illumination

Attribute

Attribute

Attribute

Displacement

"visibility" "integer camera" [1]

"visibility" "integer trace" [0]’

"visibility" "string transmission" ["transparent"]?
Specifies to wich specific ray an object is visible. For
‘transmission’ rays, controls how a specific surface cast shadows
on other surfaces. Possible values for this attribute are:

"transparent"
The object will not cast shadows on any other object
since it is completly transparent;

"opaque" The object will cast a shadow as if it was a completely
opaque object;

"Os" The object will cast shadow according to the opacity
value given by the Opacity attribute;

"shader" The object will cast shadows according to the opacity
value computed by the surface shader.

"trace" "float bias" [.01]

This bias affects all traced rays. The bias specifies an offset added
to ray’s starting point (in ray’s direction) so to avoid intersection
with the emitting surface.

"light" "string shadows" ["off"]
Turns automatic shadow calculation ["on"] or ["off"] for
LightSources specified after this directive.

"irradiance" "nsamples" [64]

Specifies the default number of samples to use when calling
occlusion() or indirectdiffuse() shadeops. This default value
can be overriden by passing a parameter to those shadeops. See
Section 4.5.4 [Lighting and Ray Tracing], page 41.

"irradiance" "shadingrate" [1]

3Delight can use a different shading rate for irradiance computa-
tions to speed up occlusion() and indirectdiffuse() computa-
tions. Using higher shading rates will enable irradiance interpola-
tion across shaded grids which will speed up rendering;

"irradiance" "maxerror" [1]
Controls a maximum tolerable error when using interpolation (for
irradiance shading rate higher than 1). Parameter range is [0..1].

1 Was Attribute "visibility" "integer reflection" in versions prior to 1.0 .

2 Was Attribute "visibility" "integer shadow" in versions prior to 1.0 .

32 3Delight User’s Manual

Attribute "displacementbound" "float sphere" [radius] "string

coordinatesystem" "ss-name"

Attribute "displacementbound" "float sphere" [radius] "matrix

transform" [matrix]

Attribute "bound" "float displacements" [radius]
Whenever a displacement shader is applied to a primitive, one must
specify a displacement bound to inform the renderer about max-
imum displacement amplitude. There are three ways to specify a
displacement bound: the first way is to tell the renderer that a
displaced point will not move outside a sphere of a given radius,
in a given coordinate system. The second way, very similar to the
first one, uses a matrix instead of a name to describe the space.
The third way, provided for backward compatibility only, specifies
a sphere of a given radius living in the camera coordinate system.

Attribute "trace" "int displacements" [0]®
If true, objects will be displaced prior to ray/primitive intersection
tests. If false, displaced object will only be bump-mapped when
viewied from traced rays. Turning on this option may degrade
performance (in terms of memory usage and speed).

Other Attributes

Attribute "trimcurve" "string sense" ["inside"]
Specifies wether the "interior" or the "exterior" of a trim curve
should be trimmed (cut) on a NURB surface. The default value is
"inside". Specifying "outside" will reverse the behaviour.

Attribute "dice" "rasterorient" [1]
When raster oriented dicing is off ([0]), surfaces are diced in cam-
era space instead of being adaptivly diced to meet a certain shading
rate when rasterized*. The default is on.

3 This is the equivalent of the deprecated Attribute "render" "int truedisplacment".
4 Useful for "ambient occlusion" renderings.

Chapter 4: 3Delight and RenderMan

33

Attribute
"identifier" "name"

"visibility" "camera"

"visibility" "trace"

"visibility" "transmission"

"trace" "bias"
"trace" "displacements"

"irradiance" "shadingrate"

"irradiance" "maxerror"

"displacementbound"

"light" "shadows"
"limits" "eyesplits"

"trimcurve" "sense"

"dice" "rasterorient"

Default value

1]

[0]

"transparent"

"ot
0

["inside"]

[1]

Comment
Primitives are not named by default;

Everything is visible to the camera by de-
fault;

Invisible to trace();

Invisible to shadow(), transmission() and
occlusion();

No true dispalements when tracing rays;

indirect () and occlusion() evaluation oc-
curs at every shading sample;

Interpolation disabled;

No displacement bound by default. Do
not forget to specify one when using
Displacement;

Large values can lead to long render times;

By default, trim curves cut holes in surfaces.
Specifying ‘outside’ reverses the behaviour
(trim curves cut what is outside the curve);

Implementation specific attributes and their default values

34 3Delight User’s Manual

Here is a few examples showing how to set some attributes:

1. Primitives visible from camera and shadow rays (as opaque objects) but not reflec-
tion/refraction rays

Attribute "visibility" "camera" [1]
Attribute "visibility" "transmission" ["opaque"]
Attribute "visibility" "trace" [0]
or in a more compact way,
Attribute "visibility" "camera" 1 "transmission" ["opaque"] "trace" 0
2. Specify a displacement bound of 0.1 in object space

Attribute "displacementbound" "sphere" [0.1]
"coordinatesystem" ["object"]

4.3 Geometric Primitives

3Delight supports the entire set of geometric primitives defined by RenderMan. Since
the primitives are explained in great detail in the RenderMan specification, the following
chapters will only give a brief description and some useful implementation details.

4.3.1 Subdivision Surfaces

Catmull-Clark subdivision surfaces are supported by 3Delight!. Also, all the standard tags
are recognized:

"hole" A per-face value, tagging faces that are considered as holes. The parameter is
an array of integers listing the indices of the hole faces;

"corner" A per-vertex value, tagging vertices that are considered semi-sharp. The tag
should be specified with an array of integers, giving the indices of the vertices
as well as an array of floating point values giving their sharpness. A sharpness
of 0.0 indicates a smooth corner and a sharpness of 10.0 indicating an infinitely
sharp one;

"crease" A per-edge value, tagging edges that are considered as semi-sharp. This tag is
specified with an array of integers, indicating the list of vertices that form an
edge chain. An array of floating point values specifies the sharpness value for
each edge in the chain;

"interpolateboundary"
A per-surface value, specifying that all boundary edges and vertices are infinitly
sharp. There is no parameters to this tag.

Unlike other rendering packages, 3Delight does not attempt to tesselate the entire sub-
division surface into many small polygons (thus taking a large amount of memory); instead,
a lazy and adaptive process is used to generate only those portions of the surface that are
needed for some specific bucket. Also, 3Delight generates smooth b-spline surfaces (instead
of polygons) whenever possible.

L Other subdivision schemes (such as Loop and Butterfly) will be rendered as polygonal meshes.

Chapter 4: 3Delight and RenderMan 35

All standard variable types are supported: constant, uniform, varying, vertex,
facevarying and facevertex. facevertex is used exactly as facevarying but
interpolates the variables according to surface’s subdivision rules. This eliminates many
distortion artifacts due to bilinear interpolation in facevaryings.

4.3.2 Parametric Patches

All parametric patches are supported, this includes:

Patch Specifies a single bicubic or bilinear patch. All the standard basis matrices are
supported: "bezier", "bspline", "catmull-rom" and "hermite".

PatchMesh
Specifies a rectangular mesh of bilinear or bicubic patches. As with Patch, all
the basis matrices are supported. It is recommanded to use PatchMesh instead
of Patch when specifying connected surfaces.

NuPatch Specfies a NURBS surface. Trimming is supported.

The following variable types are allowed for parametric patches: constant, uniform,
varying, vertex and facevarying.

4.3.3 Curves

Both linear and cubic curves are supported. The following variables are implemented:
constant, uniform, varying, vertex and facevarying. Note that uniforms are specified
per curve segement (and not per curve), this may change in a futur version.

4.3.4 Polygons

All polygonal primitives are supported, this includes: Polygon, GeneralPolygon,
PointsPolygons and PointsGeneralPolygons. All polygonal primitives support the
following variable types: constant, uniform, varying, vertex and facevarying.

4.3.5 Points

Points are supported in 3Delight through the standard RenderMan Points primitive.
Points’ size is controlled using either "width" or "constantwidth" variable (RI_WIDTH
or RI_CONSTANTWIDTH in the API). The way 3Delight renders points is selectable during
primitive declaration using the "uniform string type" variable which can take two
values: ‘sphere’ or ‘disk’. Default is ‘sphere’.

EXAMPLE

36 3Delight User’s Manual

WorldBegin
Translate 0 0 10
Color 1 11
TransformBegin
Rotate -30 0 1 O
Rotate 60 1 0 O
Scale 0.3 0.3 0.3
Render some points using the ’sphere’ primitive ...
Points
"p" [-321321-301-101101301
-1-411-41-32-1
32-1-30-1-10-110-130-1-1-4-11-4-11]
"constantwidth" [0.2]
"uniform string type" "sphere"
TransformEnd
WorldEnd

4.3.6 Implicit Surfaces (Blobbies)

Implicit surfaces are implemented and can be specified using blobs, segments and planes.
All the standard operators are supported, including: add, substract, min, max, multiply,
divide and negate. Depth files specified to repulsion planes are not supported yet. Variables
specified to implicit surfaces will be correctly interpolated over the surface.

4.3.7 Quadrics

All six quadrics (plus the torus) are supported. This includes: Sphere, Disk, Hyperboloid,
Paraboloid, Cone, Cylinder and Torus. All those primitives accept the following variable
types: constant, uniform, varying and vertex. Note that vertex variables behave ezactly
as varyings on quadrics.

4.4 Optional Capabilities and Extensions

3Delight is RenderMan compliant. It supports all RenderMan required capabilities and a
great deal of optional ones. Here is a list of only the optional capabilities that are either
partially or not yet supported:

MotionBegin
MotionEnd
Partially implemented. You can only specifies two motion steps.

PixelVariance
Adaptive oversampling is not supported. Use PixelSamples to specify over-
sampling.

ColorSamples
Colors samples other than RGB are not supported by 3Delight.

The following list of features are also not yet implemented.

Chapter 4: 3Delight and RenderMan

SolidBegin
SolidEnd
Deformation
Interior
Exterior
ArchiveRecord
ArealightSource
Detail
DetailRange
RelativeDetail
ProcDelayedReadArchive
ProcDynamicLoad
ProcRunProgram

37

You are welcome to contact us at info@3delight.com in the event you need any of the

above functionalities.

mailto:info@3delight.com

38 3Delight User’s Manual

4.5 Shading Language

3Delight supports all the standard Shading Language (SL) built-in shadeops and constructs.
The complete set of standard shadeops is listed below. Descriptions are kept brief, if
any, since shadeops are already described in great details in the RenderMan specifications.
Shadeops marked with (*) contain specific extensions and those marked with (**) are not
part of the current standard. It is also possible to link shaders with C or C++ code to add
new shadeops, see Section 8.3 [DSO Shadeops], page 84.

4.5.1 Mathematics

float radians (float degrees)
float degrees (float radians)
float sin (float radians)
float asin (float a)

float cos (float radians)
float acos (float a)

float tan (float radians)
float atan (float a)

float pow (float x, y)
float exp (float x)

float sqrt (float x)

float inversesqrt (float x)
float log (float x [, base])
float mod (float x, y)
float abs (float x)

float sign (float x)

float floor (float x)
float ceil (float x)

float round (float x)

type min (type x, y)

type max (type x, y)

type clamp (type x, min, max)

float step (float min, value)

float smoothstep (float min, max, value)

type mix (type x, y, alpha)
Returns x*(1-alpha) + y*alpha. For multi-component types (color, point, ...), the
operation is performed for each component.

float filteredstep (float edge, value, ...)

float filteredstep (float edge, valuel, value2, ...)
Simliar to step() but the return value is filtered over the area of the micro-polygon
being shaded. Useful for shader anti-aliasing. Filtering kernel is selected using the
"filter" optional parameter. Recognized filters are "gaussian", "box", "triangle" and
"catmull-rom". Default is "catmull-rom". If two values are provided, return value is
filtered in the range [valuel..value2].

Chapter 4: 3Delight and RenderMan 39

type
type
type

Du (type x)
Dv (type x)
Deriv (type num; float denom)

Du() and Dv () compute the parametric derivative of the given expressions with respect
to the u and the v parameters of the underlying surface!.

4.5.2 Noise and Random

type
type
type
type

type
type
type
type

type
type
type
type

type

noise (float x)

noise (float x, y)

noise (point Pt)

noise (point Pt; float w)

1D, 2D, 3D and 4D noise function. type can be float, color, point or vector.

pnoise (float x, period)

pnoise (float x, y, xperiod, yperiod)

pnoise (point Pt, Ptperiod)

pnoise (point Pt; float w; point Ptperiod; float wperiod)
Same as noise but has periodicity period. Maximum period is 256.

cellnoise (float x)

cellnoise (float x, y)

cellnoise (point Pt)

cellnoise (point Pt, float w)

Cellular noise functions (1D, 2D, 3D and 4D).

random ()

Returns a random float, color or point. Returned range is [0..1]. Can return
uniform or varying values. Here is a trick to put a random color in each grid of
micro-polygons:

uniform color red = random();
uniform color green = random();
uniform color blue = random();

Ci = color(red, green, blue);

4.5.3 Geometry, Matrices and Colors

float xcomp
float ycomp

point Pt)
point Pt)

(
(

float zcomp (point Pt)

void setxcomp (output point Pt; float x)
void setycomp (output point Pt; float y)
void setzcomp (output point Pt; float z)

! Deriv() computes the following expression:

Du(num) + Dv(num)
Du(denum) Dv(denum)

40 3Delight User’s Manual

float comp (matrix M; float row, col)
Returns M[row,col].

void setcomp (output matrix M; float row, col, x)
M[row,col] = x.

float comp (color c; float i)
void setcomp (output color c, float i, x)

point transform (string [fromspace,] tospace; point Pt)

point transform ([string fromspace;] matrix M; point Pt)

vector vtransform (string [fromspace,] tospace; vector V)

vector vtransform ([string fromspace ;]| matrix M; vector V)

normal ntransform (string [fromspace,| tospace; normal Nr)

normal ntransform ([string fromspace;| matrix M; normal Nr)
Transform a point, vector or normal from some given space (fromspace) to another
space (tospace). If the optional fromspace is not given, it is assumed to be the
‘current’ space.

color ctransform (string [fromspace,| tospace; color src_color)
Transforms color src_color from color space fromspace to color space tospace. If the
optional fromspace is not specified, it is assumed to be ‘rgb’. 3Delight knows about
the following color spaces: RGB, HSV, HSL, YIQ and XYZz2. If an unknown color space
is given, 3Delight will return src_color.

float distance (point Pt1, Pt2)
float length (vector V)
vector normalize (vector V)

float ptlined (point Pt1, Pt2, Q)
Returns minimum distance between a point @) and a line segment defined by Ptl,
Pt2.

point rotate (point @; float angle; point Pt1, Pt2)
Rotates a point Q around the line defined by Ptl, Pt2 by a given angle. New point
position is returned. Note that angle is assumed to be in radians.

float area (point Pt)
Returns length(Du(Pt) "Dv(Pt)), which is approximatly the area of one micro-
polygon on the surface defined by Pt.

vector faceforward (vector N, I[, Nref])
Flip N, if needed, so it faces in the direction opposite to I. Nref gives the element
surface normal; if not provided, NRef will be set to Ng.

vector reflect (vector I, N)

2 When converting to and from XYz color space, 3Delight considers that RGB tristimulus values conform
to Rec. 709 (with a white point of Dgs).

Chapter 4: 3Delight and RenderMan 41

vector refract (vector I, Nr; float eta)
Returns the refracted vector for the incoming vector I, surface normal Nr and index
of refraction ratio eta.

float depth (point Pt)
Returns the normalized z coordinate of Pt in camera space. Return value is in the
range [0..1] (O=near clipping plane, 1=far clipping plane). Pt is assumed to be defined
in ‘current’ space.

normal calculatenormal (point Pt)
Use this function to compute the normal of a surface defined by Pt. Often used after
a displacement operation. Equivalent to Du(Pt) "Dv(Pt), but faster.

float determinent (matrix M)

matrix translate (matrix M; point Tr)

matrix rotate (matrix M; float angle; vector axis)

matrix scale (matrix M; point Sc)
Basic matrix operations. The angle parameter passed to rotate() is assumed to be
in radians.

4.5.4 Lighting and Ray Tracing

color ambient ()
Returns the contribution from ambient lights. A light is considered ambient if it does
not contain an illuminate() or solar() statement.

color diffuse (vector Nr)
Computes the diffuse light contribution. Lights placed behind the surface element
being shaded are not considered. Nr is assumed to be of unit length. Light shaders
that contain a parameter named uniform float __nondiffuse will ony be evaluated
if the parameter is set to 0.

color specular (vector Nr, V; float roughness) *
Computes the specular light contribution. Lights placed behind the object are not
considered. Nr and V are assumed to be of unit length. Light shaders that con-
tain a parameter named uniform float __nonspecular will ony be evaluated if the
parameter is set to 0.

color specularbrdf (vector L, Nr, V; float roughness)
Computes the specular light contribution. Similar to specular() but receives a L
variable (incoming light vector) enabling it to run in custom illuminance() loops.

color specularstd (normal N; vector V; float roughness)
Since 3Delight implements its own specular model in specular, we provide this func-
tion in case you need the standard specular model described in all graphic books.
specularstd() is implemented as follows:

42 3Delight User’s Manual

color specularstd(normal N; vector V; float roughness)
{

extern point P;

color C = 0;

point Nn = normalize(N);

point Vn = normalize(V);

illuminance(P, Nn, PI/2)
{
extern vector L;
extern color Cl;

vector H = normalize(normalize(L)+Vn);
C += Cl * pow(max(0.0, Nn.H), 1/roughness);

return C;

3

color phong (vector Nr, V; float size)
Computes specular light contribution using the Phong illumination model. Nr and V
are assumed to be of unit length. As in specular (), this function is also sensitive to
the __nonspecular light shader parameter.

color trace (point Pt; vector R [; output float dist]) *
Returns color of light arriving to Pt from direction R. This is accomplished by tracing
a ray from position Pt in direction specified R. Only objects tagged as visible to re-
flection rays will be considered during the operation (using Attribute "visibility"
"trace", Section 4.2 [attributes], page 30). If the optional dist parameter is specified,
it will contain the distance to the intersection point or a very large number (> 1e30)
if no intersections found. Note that Pt and R must lie in ‘current’ space.

float trace (point Pt; vector R)
Returns distance to the nearest object, when looking from Pt in the direction specified
by the unit vector R. This function may be substancially faster than the color version
of trace() since it might avoid costly shading operations. Pt and R must lie in
‘current’ space.

color transmission (point Pt1, Pt2)3
Determines the visibility between Pt1 and Pt2 using ray tracing. Returns color 1 if
unoccluded and color O if totally occluded. Inbetween values indicate the presence
of a translucent surface between Ptl and Pt2. Only objects tagged as visible to
transmission/shadow rays will be considered during the operation (using Attribute
"visibility" "transmission", Section 4.2 [attributes], page 30). Pt1 and Pt2 must
lie in ‘current’ space.

3 Was visibility() in versions prior to 1.0.

Chapter 4: 3Delight and RenderMan 43

float occlusion (point Pt; vector R; [float samples;| ...) *

Computes the amount of occlusion, using ray tracing, as seen from Pt in direction
R and solid angle 2*PI (hemisphere). Returns 1.0 if all rays hit an object (totally
occluded) and 0.0 if no hits (totally unoccluded). The optional samples parameter
specifies the number of rays to trace to compute occlusion; if absent or set to 0,
3Delight will use Attribute "irradiance" "nsamples", see Section 4.2 [attributes],
page 30. occlusion() accepts optional token/value pairs, those are explained in the
table below. Pt and R must lie in ‘current’ space.

EXAMPLE

/* Returns the amount of occlusion using default number of
samples */
float hemi_occ = occlusion(P, Ng);

/* Returns the amount of occlusion for the hemisphere surrounding P,
uses a rough approximation with 8 samples */
hemi_occ = occlusion(P, Ng, 8);

/* Same as above, but only consider objects closer than 10 units and
in a solid angle of Pi/2
*/

hemi_occ = occlusion(P, Ng, 8, "maxdist", 10, "angle", PI/4);

/* Same as above, but only consider light coming from an hemisphere
oriented toward (0,1,0)

*/
uniform vector sky = vector (0, 1, 0);
hemi_occ =
occlusion(P, Ng, 8, "maxdist", 10, "angle", PI/4, "axis", sky);
float indirectdiffuse (point Pt; vector R; [float samples;] ...) *

Computes diffuse illumination arising from diffuse-to-diffuse indirect light transport
by sampling an hemisphere around some point Pt and direction R*. Use this shadeop
to render "color bleeding" effects. Also, this function makes it possible to lookup into
an HDR image when sampled rays do not hit any geometry; the map is specified using
the "environmentmap" parameter as shown in the table below. Computing the occlu-
sion while calling this function is also possible (through the occlusion parameter),
with the following two restrictions:

e [t is not possible to specify an axis parameter to indirectdiffuse() as with
occlusion();

e indirectdiffuse() only sees geometry tagged as visible to reflections, as op-
posed to occlusion() which sees geometry visible to shadows. For more infor-
mations about visibility attributes refer to Section 4.2 [attributes|, page 30.

Pt and R must lie in ‘current’ space.

4 Ray directions are sampled from a cosine distribution. Also applies to occlusion().

44

3Delight User’s Manual

Name

uanglen

"axis"

"bias"

"maxdist"

"environmentmap"

"environmentdir"

Type

uniform float

uniform
vector

uniform float

uniform float

uniform
string

output
varying
vector

Default Description

PI/2

0.01

1e38

Controls the solid angle considered, default
covers the entire hemisphere;

If specified, and different from vector O,
indicates the direction of the light casting
hemisphere. Rays that are not directed to-
ward this axis will not be considered. This
is useful for specifying skylights. This has
not effect on indirect diffusion computa-
tions, only occlusion() shadeop uses this
parameter. axis doesn’t have to be of unit
length;

Bias to add when intersecting surfaces to
avoid precision related self-intersections.
Default value taken from Attribute
"trace" "bias", see Section 4.2 [at-
tributes|, page 30;

Only consider intersections closer than this
distance;

Specifies an environment map to
lookup when a sampled ray doesn’t hit
any geometry. Only available in the
indirectdiffuse() shadeop;

If specified, will be set to the averange
un-occluded direction, which is the aver-
age of all sampled directions that did not
hit any geometry. Note that this vector is
defined in ‘current’ space, so it is neces-
sary to transform it to ‘world’ space if an
environment () lookup is intended.

occlusion() and indirectdiffuse() optional parameters.

Chapter 4: 3Delight and RenderMan 45

4.5.5 Texture Mapping

type texture (string texturename|[float channell; ...)

type texture (string texturename|[float channel|; float s, t; ...)

type texture (string texturename|[float channel|; float s1, t1, s2, t2, s3,
t3, s4, t4; ...)

Returns a filtered texture value (type can be either a float or a color), at the
specified texture coordinates. If no texture coordinates are provided, s and t will
be used. An optional channel can be specified to select a starting channel in the
texture, this can be useful when a texture contains more that three channels. Use
tdlmake to prepare your textures for improved performance and memory usage (see
Section 3.3 [Using the texture optimizer|, page 14). texture() accepts a list of
optional parameters as summerized in the table below.

EXAMPLE

/* Sharper result (width<1) */
color c = texture("grid.tdl", s, t, "width", 0.8);

/* Returns the green component */
float green = texture("grid.tdl"[1]);

/* Returns the alpha channel, or 1.0 (opaque) if no
alpha channel is present */
float alpha = texture("grid.tdl"[3], "fill", 1.0);

type environment (string texturename|channel]; vector V; ...)

type environment (string texturename|channell; vector V1, V2, V3, V4;
Returns a filtered texture value from an environment map, for some specified di-
rection. As in texture(), an optional channel can be specified to select a starting
channel when performing texture lookups. Use tdlmake to prepare cubic and long-lat
envmaps. If an unprepared TIFF is given to environment (), it will be considered as
a lat-long environment map. environement() recognizes the same list of optional
parameters as texture().

EXAMPLE

/* Do an env lookup */
normal Nf = faceforward(N, I);
color ¢ = environment("env.tdl", Nf);

/* Only fetch the alpha channel, if no alpha present, returns 1 */
float red_comp = environment("env.tdl"[3], Nf, "fill", 1);

46 3Delight User’s Manual

Name Type Default Description

"blur" varying float 0 Specifies an additional area to be added to the
texture lookup area in both s and ¢, expressed
in units of texture coordinates (range = [0..1]).
A value of 1.0 would request that the entire
texture be blurred in the result;

"sblur" varying float 0 Specifies "blur" in s only;

"tblur" varying float 0 Specifies "blur" in ¢ only;

"width" uniform float 1 Multiplies the width of the filtered area in both
s and t;

"swidth" wuniform float 1 Specifies "width" in s only;

"twidth" wuniform float 1 Specifies "width" in t only;

"samples" uniform float 4 Specifies the sampling rate. Only useful for
environment (), texture() uses an addapta-
tive sampling algorithm;

"l uniform float 0 If a channel is not present in the texture, use
this value;

"filter" uniform "gaussian" Specifies the reconstruction filter to use when

string accessing the texture map. Supported filters

are: ‘gaussian’, ‘triangle’ and ‘box’.

texture() and environment () optional parameters.

Chapter 4: 3Delight and RenderMan 47

type shadow (string shadowmap|float channel]; point Pt; ...) *
type shadow (string shadowmap|float channel]; point Pt1, Pt2, Pt3, Pt4;
L) *

Computes occlusion at some point in space using a shadow map or a deep shadow
map. Shadow lookups are automatically antialiased. When using deep shadow maps,
colored shadows and motion blur will be correclty computed. It is possible to perform
a ray traced shadow test by passing a "!" or "shadow". Note that if ray tracing is
used, only objects tagged as visible to shadows will be considered (using Attribute
"visibility" "transmission", Section 4.2 [attributes], page 30). Optional param-
eters to shadow () are described in the table below. For additional information about
shadow maps and deep shadow maps refer to Section 5.1 [Shadows], page 53.

Name Type Default Description

"blur" varying float 0 Specifies an additional area to be added to the tex-
ture lookup area in both s and ¢, expressed in units
of texture coordinates (range = [0..1]). A value of

1.0 would request that the entire texture be blurred
in the result;

"sblur" varying float 0 Specifies "blur" in s only;

"tblur" varying float 0 Specifies "blur" in ¢ only;

"width" uniform float 1.0 Multiplies the width of the filtered area in both s
and t;

"swidth" wuniform float 1.0 Specifies "width" in s only;

"twidth" uniform float 1.0 Specifies "width" in t only;

"samples" uniform float 16 Specifies the number of samples to use for shadow

lookups. This influances the antialis quality. A value
of 16 is recommended for shadow maps and, 4 for
deep shadow maps;

"bias" varying float 0.225 Used to prevent self-shadowing. If set to 0, the global
bias will be used, as specified by Option "shadow"
"bias" (see Section 4.1 [options|, page 23);

shadow () optional parameters.

4.5.6 String Manipulation

string concat (string stri, ..., strn)
Concatenates one or more strings into one string.

string format (string pattern; vall, ..., valn) *
Similar to the C sprintf function. pattern is a string contening conversion characters.
Recognized conversion characters are :

48 3Delight User’s Manual

ht Formats a float using the style [-]Jddd.ddd. Number of fractional digits
depends on the precision used (see example);

he Formats a float using the style [-]d.ddde dd (that is, exponential notation).
This is the recommended conversion for floats when precision matters;

he The floating point is converted to style %f or %e. Here is a snapshot from
the info pages on printf ():
The style used depends on the value convered; style %e will be used
only if the exponent resulting from the conversion is less than -4 or
greater than or equal to the precision. Trailing zeros are removed
from the fractional part of the result; a decimal-point character ap-
pears only if it is followed by a digit. . .

Al Equivalent to %.0f, useful to format integers;

hp Formats a point-like type (point, vector, normal) using the style [%f
Wt %],

he Same as %p, but for colors;

%m Formats a matrix using the style [%f %f %f %, %f %E %f %E, % Kf %E
YA A S ARy ARy ATK

s Formats a string.

Note that all conversion characters recognise the precision specifier.

EXAMPLE

/* Formats a float using exponential notation */
string expo = format("%e", sqrt(27));

/* Formats a float, with 5 decimals in the fractional part */
point p = sqrt(5);
string precision5 = format("p = %.5p", p);

/* Aligns text */

string aligned = format("J20s", "align me please");
void printf (string pattern; vall, ..., valn) *
Same as format () but prints the formatted string to ‘stdout’ instead of returning a
string.

float match (string pattern, subject)
Does a string pattern match on subject. Returns 1 if pattern exists anywhere within
sibjuct, 0 otherwhise. The pattern can be any standard regex! expression.

4.5.7 Message Passing and Information

float textureinfo (string texturename, fieldname; output uniform type
variable)
Returns information about a particular texture, environment or shadow map. field-
name specifies the name of the information as listed in the table below. If fieldname

1 See ‘man regex’ for details (man pages available on UNIX-like platforms only).

Chapter 4: 3Delight and RenderMan

49

is known, and variable is of the correct type, textureinfo () will return 1.0. In case

of failure, 0.0 is returned.

EXAMPLE

/* mapres[0] will contain map resolution in x,
mapres[1] will contain map resolution in y */

uniform float mapres[2];

textureinfo("grid.tdl", "resolution", mapres);

/* Get current to camera matrix used to create the shadow map */

uniform matrix N1;

if (textureinfo("main-spot.tdl", "viewingmatrix", N1)!= 1.0)

{
N1 = 1;
}

Field Type Description

"resolution" uniform float [2] Returns texture map resolution;

"type" uniform string Returns type of texture map. Can be one of
the following: "texture", "shadow" or "environ-
ment";

"channels" uniform float Returns the total number of channels in the
map;

"viewingmatrix" uniform matrix Returns a matrix representing the transform

"projectionmatrix" uniform matrix

from "current" space to "camera" space in
which the map was created;

Returns a matrix representing the transform
from "current" space to map’s raster space in
which x varies from -1 to 1 and y from 1 to -1
(x increases from left to right and y increases
from top to bottom).

J

textureinfo () possible field names.

float atomosphere (string paramname; output type variable)

float displacement (string paramname; output type variable)

float lightsource (string paramname; output type variable)

float surface (string paramname; output type variable)
Functions to access a parameter in one of the shaders attached to the geometric
primitive being shaded. The operation will succeed if the shader exists, the parameter
is present and the type is compatible, in which case 1.0 is returned. In case of failure,
0.0 is returned and variable is unchanged. Note that assigning a varying shader

50

3Delight User’s Manual

parameter to an uniform variable will fail. Also, lightsource() is only available
inside an illuminance () block and refers to the light source being examined.

float attribute (string dataname; output type varaible)
Returns the value of the data that is part of the primitive’s attribute state. The
operation will succeed if dataname is known and the type is correct, in which case 1.0
will be returned. In case of failure, 0.0 is returned and variable is unchanged. The
supported data names are listed in the table below.

Name
"ShadingRate"
"Sides"
"Matte"

"GeometricApproximation:motionfactor"

"displacementbound:sphere"

"displacementbound:coordinatesystem"

"identifer:name"

Type

uniform float
uniform float
uniform float
uniform float
uniform float
uniform string

uniform string

Data fields known to attribute().

float option (string dataname; output type varaible)
Returns the data that is part of the renderer’s global option state. The operation
will succeed if dataname is known and the type is correct, in which case 1.0 will be
returned. In case of failure, 0.0 is returned and variable is unchanged. The supported

data names are listed in the table below.

Name

"Format"
"FrameAspectRatio"
"CropWindow"

"DepthOfField"

"Shutter"

"Clipping"

Type
uniform float [3]
uniform float

uniform float [4]

uniform float [3]

uniform float[2]

uniform float [2]

Description
= [x res, y res, aspect ratio [;
Frame aspect ratio;

Crop window coordinates; as specified
by RiCropWindow;

= [fstop, focal length, focal distance |;
as specified by RiDepth0OfField;

= [shutter open, shutter close |; as
specified by RiShutter;

= |[near, far]; as specified by
RiClipping.

Data fields known to option().

Chapter 4: 3Delight and RenderMan 51

float rendererinfo (string dataname; output type varaible)
Returns information about the renderer. The operation will succeed if dataname is
known and the type is correct, in which case 1.0 will be returned. In case of failure,
0.0 is returned and variable is unchanged. The supported data names are listed in
the table below.

Name Type Description

"renderer" uniform string = "3Delight";

"version" uniform float [4] = [Major, Minor, release, 0] (eg
[1,0,6,0]);

"versionstring" uniform string version expressed as a string, (e.g.,
"1.0.6.0").

data fields known to rendererinfo().

float raylevel () *x
Returns ray tracer recursion level. 0 is returned for camera rays.

float isshadowray () *x
Returns 1.0 if the shader is being run to evalute the opacity of an object.

float isindirectray () *x*
Returns 1.0 if the shader is being run to evalute indirect illumination.

4.5.8 Limitations

Some features are not currently supported by the 3Delight shader compiler:
e Smooth derivatives.
e Light categories.
e Broad solar lights.

You are welcome to contact us at info@3delight.com in the event you need any of the
above functionalities.

mailto:info@3delight.com

52

3Delight User’s Manual

Chapter 5: Rendering Guidelines 53

5

Rendering Guidelines

5.1 Shadows

3Delight has an extensive support of shadow rendering methods, it is up to you to choose
the algorithm that suits you the best.

5.1.1 Standard Shadow Maps

Those are normal shadow maps that are widely used in the industry. Generating such
shadow maps implies placing the camera at the position of the light source and rendering
the scene from that view point (‘zfile’ or ‘shadowmap’ display driver has to be selected, see
Section 7.3 [dspyzfile], page 69 and Section 7.4 [dspyshadowmap], page 69). The shadow
map is then used from inside a light source shader to cast shadows on objects. Shadow
maps have a number of advantages:

They are fast to generate. Indeed, shadow maps can be generated much faster than
a normal "color" image, mainly because only depth informations are needed. When
rendering a shadow map, one could remove all surface and light shaders, even dis-
placement shaders can be removed if they do not affect the geometry too much. Also,
filtering (using PixelFilter command) can be lowered (even to 1x1) and ShadingRate
increased (up to 10 or more).

They can be reused in more than one render. If the scene is static and only the camera
moves, a generated shadow map can be used for all subsequent renders. This often
happens in the lighting stage of a production pipeline;

They can be used to generate low cost penumbra. Specifying an appropriate blur to the
shadow () call, one can simulate penumbra effects;

They provide fairly good results when used carefully. Many of the recent CG productions
use normal shadow maps and obtain excellent results.

Now, the drawbacks:
Self shadowing. The most common problem encountoured when using shadow maps.
It appears as dark artifacts in areas that should appear completly lit;

Nearly impossible to generate high quality area shadows. Even if tweeking with shadow
blur can give a nice penumbra effect, it is impossible to generate a true area shadow;

Ezpensive to generate really sharp shadows. High resolution shadow maps are needed
which often leads to higher render times and memory/disk usage;

No motion blur in shadows. Moving geometry will cast still shadows, it is wise to
remove motion blur when rendering shadow maps;

No coloured shadows. Translucent surfaces will cast opaque shadows;

Only objects that are in the shadow map can cast shadows. That is why shadow maps
work so well with spot lights: they can only light a limited field of view. Point lights
are more tricky to handle (need six shadow maps) and distant lights are difficult to
setup with shadow maps.

54 3Delight User’s Manual

When creating shadow maps, make sure that shadow casting objects are framed correctly
(and tightly) in the camera view which is used to render the shadow map. If objects are too
far (small in shadow map view), precision problems may arise and high resolutions shadow
maps will be needed. If objects are too close and parts of them are clipped, shadows might
be missed.

3Delight supports the "midpoint" (Section 4.1 [options], page 23) algorithm for normal
shadow maps. This should help you get rid of shadow bias problems in most cases.

5.1.2 Deep Shadow Maps

Deep shadow maps retain many of the features found in normal shadow maps and provide
some more goodies:

e Translucent shadows. Translucent surfaces will cast correct shadows;

e Shadows in participating media. 1t is possible to render volumetric shadows using DSMs
(the display driver has a flag to account for this feature, see Section 7.5 [dspy_dsm],
page 69);

e Supports mip-mapping. DSMs are mip-mapped, which means that they will exhibit
much less aliasing artifacts than normal shadow maps;

e Need lower resolutions. Instead of generating large shadow maps to boost quality, one
can generate a smaller DSM by using higher PixelSample values when creating the
DSM;

o Cope well with fine geometric details. Fine details such as hair and particles can be
handled without increasing shadow maps resolution too much;

e Render time shadow lookups are faster. Since DSMs are prefiltered, render time lookups
will be faster (in general) than with normal shadow maps since the signal reconstruction
step is more efficient. Also, DSMs are more texture cache friendly than shadow maps.

e Fasily integrateable in a rendering pipeline. No modifications are necessary in shaders
when changing shadow map format (normal or deep), the shadow() shadeop will work
with both formats.

Before throwing DsMs into your production pipeline, consider the following facts:

e More expensive to compute. Generating good DSMs is generally slower than shadow
maps. This is often the case when many PixelSamples are used during the generation
step;

o Need more disk space. DSMs can grow quite large, mainly for two reasons:
1. DSMs are mipmapped by default;
2. more informations are stored per texel.
Using the "midpoint" option to produce deep shadow maps can lead to unpredictable
results!

For deep shadow map creation please refer to Section 7.5 [dspy_dsm], page 69.

Chapter 5: Rendering Guidelines 55

5.1.3 Raytraced Shadows

Tracing shadow rays can be used as an alternative to shadow maps. This has the advantage
of being simple to use, but it can be slow compared to shadow maps, especially with complex
scenes. To enable tracing of shadow rays for a luminaire, use this directive in the RIB file
(before the LightSource directive):

Attribute "light" "shadows" ["on"]

You can control how each objects will cast shadows by using Attribute "visiblity"
"transmission". Refer to Section 4.2 [attributes], page 30.

Also, the shadow() shadeop has a support for ray-traced shadows: by passing "!" or
"shadow" as a prameter instead of a shadow map name, a shadow ray will be traced!

5.2 Ray Tracing

The trace() function of the shading language is fully implemented in 3Delight, with the
exception that moving object will not be motion blurred.

3Delight also implements other functions related to ray-tracing, they are listed below
and described in more detail in Section 4.5 [shading language], page 38.

color trace (point from; vector dir [; output float dist])
float trace (point from; vector dir)
color transmission (point pl, p2)
float isshadowray()
float raylevel()
Make sure that visibility attributes are properly set: by default, 3Delight marks objects
as being visible to camera only.

5.3 Ray Tracing

3Delight is capable of exporting and importing 3Delight has an extensive support for HDRI
I/0.

5.4 Network Cache

3Delight offers a special extension for more efficient rendering in networked environments
in case of sustained texture access': a file cache to minimize network traffic and file server
load. This proves particulary powerfull when using a large quantity of rendering servers.

The working principle of 3Delight’s network cache is to copy files locally and reuse them
when needed. Cache size and location are controlled using RiOption. If a texture is needed
and the file cache is full, one or more textures will be removed from the cache to make space
for the new one; a LRU (Least Recently Used) strategy is used to choose which texture(s)
to remove.

The design of the network cache was justified by the following observations:

1 Not avilable on Windows platforms.

56 3Delight User’s Manual

e Rendering a sequence on a render farm puts a great amount of pressure on the network
and file server(s): starting a heavy job simultaneously on many machines can make
the network inusable and the file server non responsive, especially on slow networks or
weakly configured environment;

e Accessing a texture locally is faster than accessing it on a network mounted system
such as a NFS. Clearly, texture access can have a significant impact on rendering speed;

e File server(s) load would be greatly minimized since file access requests happen less
often;

e The nature of the rendering process makes it very probable that a texture used during
a rendering of a given image will be used again in forthcoming renderings of more
images, so keeping it handy is a good investment;

e Storage is cheaper, and simpler, than bandwidth!

5.4.1 Activating the Network Cache

To enable the network cache, use the following RiOption:

Option "netcache" "string cachedir" ["/tmp/3delight_cache/"]

This informs 3Delight to use a directory named ‘/tmp/3delight_cache/’ to cache tex-
tures files. If the directory is already created, 3Delight will use whatever cached files it
contains. It is important to use a locally mounted directory since caching network files on
a network volume is useless. Also, the choosen directory should be dedicated to 3Delight:
do not put any of your files in that directory since they can disapear without notice.

It is possible to disable the cache again by calling the same RiOption with an null file
name. This can be useful in multi-frame RIBs.

Option "netcache" "string cachedir" [""]

Cache size is controlled using another RiOption. For example, to specify 1000 megabytes
of network cache, use:

Option "netcache" "integer cachesize" 1000

Specifiying a size which is smaller than the actual cache size will cause files to be removed
from the cache until the specified size is reached.

There is no need to specify which files to cache, 3Delight will automatically detect slow
access files and cache them. Slow access files are files mounted on a NFs disk or a CD-ROM.
Also, caching is perfomed in a lazy fashion: if an object is not visible, its textures will not
be cached.

Chapter 5: Rendering Guidelines 57

5.4.2 Purging the Network Cache

The network cache can be purged manually at any moment if no renderings are running
on the machine. Simply erase the directory and all its contained files:

rm -rf /tmp/3delight_cache

5.4.3 Safety

Many precautions have been taken to ensure the proper operation of the network cache:

1.

3delight will not access the original textures in any dangerous way, only reading is
performed on those textures;

The cache is kept synchronized with the files it mirrors: if an original texture is newer
than the cached one, the cache will be updated;

A texture is identified by its full path: texture files that have the same name in different
directories will not collide;

UNIX file links are resolved prior to caching, this ensures that a given texture will be
cached only once even if many links point to it;

The network cache is multi-process safe. Even if many renderings are running on the
same machine, the cache is kept in a consistant state: one 3Delight instance will not
remove a texture used by another instance!

Cache directory is created with full access permissions to ‘user’ and ‘group’, but only
read access to ‘other’?;

If, for any reason, 3Delight is unable to cache a texture, it will revert to use the original,
and this is the worst case scenario.

2 Permissions mask : 0775.

58

3Delight User’s Manual

Chapter 6: Using Shaders 59

6 Using Shaders

You can control precisely the look of the image produced by 3Delight by associating shaders
with elements of your scene. There are many types of shaders; each one is used to control
a particular aspect:

e surface shaders control the way an object reflects light;

e displacement shaders modify the geometry of underlying surfaces;

e lightsource shaders control how a luminaire emits light in the scene;

e atmosphere shaders are used to create atmospherical effects, such as fog and smoke;

e imager shaders are applied on the computed image and can perform simple image
processing tasks.

Shaders can be bought from third parties or found on various web sites. You
can also write your own shaders, see Section 6.1 [Writing shaders|, page 59 for
more information. If you wish to write your own shaders then The RenderMan
Interface Version 3.2 is a good document to read. Is is available electronically at
http://www.pixar.com/renderman/developers_corner/rispec/index.html.

The next sections explains how to write your own shaders, how to use specific features
of the 3Delight shading language and how to install your shaders properly, so that 3Delight
will be able to find them.

6.1 Writing Shaders

Some shader examples can be found in the ‘shaders/src’ directory. If you need a tutorial
on how to write shaders you should read the following classics:
e Steve UPSTILL. The RenderMan Companion. Addison Wesley.

e Larry GRITZ and Anthony A. APODACA. Advanced RenderMan: Creating CGI for
Motion Pictures. Morgan Kauffman.

Since each renderer has its own implementation of the shading language, shaders writers
may want to isolate compiler specific code. shaderdl predefines the preprocessor symbol
DELIGHT in order to make this possbile.

#if defined (DELIGHT)

print ("Compiled with 3Delight\n");

#elif defined(RDC)

print ("Compiled with RenderDotC\n");

#elif defined (BMRT)

print("Compiled with Blue Moon Rendering Tools\n");
#else

print("yet another rman renderer\n");

#endif
N

http://www.pixar.com/renderman/developers_corner/rispec/index.html

60 3Delight User’s Manual

Do not forget that before using a shader in 3Delight, one must compile it using 3Delight
shader compiler, shaderdl. See Section 3.2 [Using the shader compiler|, page 11 for details
on this.

6.2 Installing Shaders

Once you have compiled a shader, you must install it at the appropriate place in your file
system. The "appropriate place" is a place where 3Delight can find them!

When 3Delight receives a Surface, Displacement, LightSource or Volume command,
it searches immediately for the shader given as the first argument to the command. The
shader can be specified using a full path or a relative path to the shader file. On Unix, a
full path is a path that starts with a ‘/’. On Windows, a full path starts with a drive (e.g.
‘C:”). All other paths are interpreted as relative paths. If you want to write cross-platform
RIB files, then you should not specify your shaders using full paths.

If you specify a shader using its full path, 3Delight only looks for the shader at the
location specified by that path.

If you specify a shader using a relative path, 3Delight tries to find the shader in the
directories specified by the shader search paths list. Each directory from the list is tried in
turn, starting with the first one. As soon as a matching shader is found, the search stops.
For more information, see Section 4.1 [options]|, page 23.

When specifying a shader, you should use the slash (‘/’) character to separate directories,
even under Windows. If 3Delight encounters an environment variable, it will replace it by
its value. The environment variable has to be specified using the Unix convention (like this:
$HOME).

A tilde (‘7’) character at the beginning of a path has the same signification as the $HOME
environment variable.

If the specified shader cannot be found, 3Delight signals an error message and replaces
it by the default shader. The default shader is ‘defaultsurface’ for surfaces, ‘spotlight’
for lightsources, ‘bumpy’ for displacements and ‘null’ for atmosphere.

6.3 Interrogating Shaders

The easiest way to get informations about a specific shader is to run shaderinfo, see
Section 3.6 [Using shaderinfol], page 21. Alternatively, it is possible to write a program that
makes calls to the ‘1ib3delight’ library.

6.3.1 Using ‘1ib3delight’ to Interrogate Shaders

You can link your program with ‘1ib3delight’ (see Section 8.1 [linking with 3delight],
page 73 to query informations about shaders. Include the file ‘slo.h’ to get the prototypes
of the following functions and the type definitions they use.

void Slo_SetPath (charx i_path)
Set the paths where the library will look for shaders.

Chapter 6: Using Shaders 61

void Slo_SetShader (char* i_name)
Find and open the shader named i_name. Close any shader that was previously
opened by Slo_SetShader.

char* Slo_GetName (void)
Returns the name of the currently opened shader.

SLO_TYPE Slo_GetType (void)
Return the type of the currently opened shader. See the file ‘slo.h’ for details about
SLO_TYPE.

int Slo_GetNArgs (void)

Return the number of parameters of this shader.

SLO_VISSYMDEF* Slo_GetArgByld (int i)
Return information about the i-th parameter of the shader. The first parameter has
an id of 1. See the file ‘slo.h’ for details about SLO_VISSYMDEF.

SLO_VISSYMDEF* Slo_GetArgByName (char *i_name)
Return information about the parameter named i_name. See the file ‘slo.h’ for
details about SLO_VISSYMDEF.

SLO_VISSYMDEF *Slo_GetArrayArgElement (SLO_VISSYMDEF *i_array, int
i_index)
If a parameter is an array (as specified by Slo_GetArgById() or Slo_GetArgByName),
each of its element should be accessed using this function.

void Slo_EndShader (void)

Close the current shader.

charx Slo_TypetoStr (SLO_TYPE i_type)
Get a string representation of type i_type.

char* Slo_StortoStr (SLO_STORAGE i_storage)
Get a string representation of storage class i_storage.

char* Slo_DetailtoStr (SLO_DETAIL i_detail)
Get a string representation of variable detail i_detail.

Next is the complete source code of the shaderinfo utility, it is compilable on all
supported platforms, see Section 8.1 [linking with 3delight], page 73. Note that string
parameters are represented using a const char * const * and not a const char * like in
some implementations.

62

3Delight User’s Manual

/**/

/* */
/* Copyright (c)The 3Delight Team. */
/* A1l Rights Reserved. */
/* */
/**/
//

// = VERSION

// $Revision: 1.44 $

// = AUTHOR

// Aghiles Kheffache

// = DATE RELEASED

// $Date: 2003/07/16 19:55:54 $

// = RCSID

// $Id: 3delight.texinfo,v 1.44 2003/07/16 19:55:54 aghiles Exp $

//

#include "slo.h"
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
int main(int argc, char ** argv)
{
unsigned i, j, k, kk;

int exitCode = O0;

bool RIBDeclare = false;
int start = 1;

/* DlDebug: :InitErrorSignalsHandling(); */

if(arge<=1 || !strcmp(argv[1], "-h") || !strcmp(argv[1], "--help"))
{
printf("Usage: shaderinfo filel [file2 ... fileN]\n");
printf(" -d : output declarations in RIB format\n");
printf(" -v : show version to console\n");
printf(" ~-h : show this help\n\n");
return O;
}
if(arge==2 && (!strcmp(argv([1], "-v") || !strcmp(argv[1], "--version")))
{

printf("shaderinfo version 2.0.\n");
printf("Copyright (c) 1999-2003 The 3Delight Team.\n");

return O;
}
if((argc == 1) || !strcmp(argv[1], "-d"))
{

RIBDeclare = true;

Chapter 6: Using Shaders

start++;

}
const char* path = getenv("DL_SHADERS_PATH");
Slo_SetPath(path 7 path : ".");
for(i = start; i < argc; i++)
{
int err = Slo_SetShader(argv[i]);
if(err !'=0)
{
fprintf (
stderr,
"shaderinfo: unable to open shader \"s\" (error %d).\n",
argv[i], err);

exitCode = 1;

continue;

}
printf("\n%s \"%s\"\n", Slo_TypetoStr(Slo_GetType()), Slo_GetName());

for(j = 0; j < Slo_GetNArgs(); j++)

{
SLO_VISSYMDEF *parameter = Slo_GetArgById(j+1);
if(!parameter || !parameter->svd_valisvalid)
{

fprintf(stderr, "shaderinfor: parameter %d is invalid\n", j);
continue;

const char *name = parameter->svd_name;

const char *detail = Slo_DetailtoStr(parameter->svd_detail);
const char *type = Slo_TypetoStr(parameter->svd_type);
unsigned arraylen = parameter->svd_arraylen;

if (RIBDeclare)

{
/* Output a string suitable for RIB syntax */
if (arraylen == 1)
printf("Declare \"%s\" \"%s %s\"\n", name, detail, type);
else
printf("Declare \"%s\" \"%s %s[%dI\"\n",
name, detail, type, arraylen);
continue;
}
if (parameter->svd_storage == SLO_STOR_OUTPUTPARAMETER)
printf(" \"%s\" \"output %s %s", name, detail, type);
else

printf(" \"%s\" \"%s %s", name, detail, type);

63

64

if (

3Delight User’s Manual

arraylen > 1)
printf("[%d]", arraylen);

printf("\"\n");
printf("\t\tDefault value: ");

swit
{

case
case
case
case
case

ch(parameter->svd_type)

SLO_TYPE_COLOR:
SLO_TYPE_POINT:
SLO_TYPE_VECTOR:
SLO_TYPE_NORMAL:
SLO_TYPE_MATRIX:

if (parameter->svd_spacename[0] != (char)O)
printf("\"%s\" ", parameter->svd_spacename);

break;

default:

}

if(

for(
{

break;

arraylen > 1)
printf("{");

k=0; k<arraylen; k++)
SLO_VISSYMDEF *elem = Slo_GetArrayArgElement(parameter, k+1);

if(lelem)

{
printf("<error>");
continue;

}

switch(parameter->svd_type)

{

case SLO_TYPE_SCALAR:
printf("%g", *elem->svd_default.scalarval);
break;

case SLO_TYPE_POINT:
case SLO_TYPE_VECTOR:
case SLO_TYPE_NORMAL:
case SLO_TYPE_COLOR:
printf("[%g %g %gl",
elem->svd_default.pointval->xval,
elem->svd_default.pointval->yval,
elem->svd_default.pointval->zval)
break;

case SLO_TYPE_MATRIX:
printf("[%g ", elem->svd_default.matrixvall[O0]);

for(kk = 1; kk < 15; kk++)
printf("%g ", elem->svd_default.matrixvall[kk]);

Chapter 6: Using Shaders 65

printf("%gl", elem->svd_default.matrixval[15]);
break;

case SLO_TYPE_STRING:
printf("\"%s\"", *elem->svd_default.stringval);

break;
default:
break;
¥
if(k != (arraylen-1))
{
printf(", ");
¥

}

if(arraylen > 1)
printf("}");

printf("\n");
}

Slo_EndShader();

printf("\n");
}

return exitCode;

}

6.3.2 Caveats

There are some cases where the default value information is not accurate. The information
below applies both to shaderinfo and to ‘1libSloInfo’.

If the default value is the result of a function call, the default value is undefined. The
library will do its best to evaluate the function, but the results are not guaranteed to be
exact or logical.

If the default value is the result of an arithmetic operation between two points that are
not in the same space, for example:

surface bad(

point A = point "object" (3, 2, 1) + point "camera" (1, 2, 3))

{

}

The default returned value will be the result of the arithmetic operation as if the two
point were in the ‘current’ space, and the space of the default value will be set to ‘current’:

"A" "uniform point"
Default value: "current" [4 4 4]

66

3Delight User’s Manual

Chapter 7: Display Driver System 67

7 Display Driver System

3Delight comes with a set of useful display drivers. Since 3Delight uses the “standard”
RenderMan display driver interface, it is possible to use third parties display drivers also.
Fach display driver is discribed with more detail in the following sections.

7.1 The framebuffer display driver

This display driver opens a window and displays the rendered image in it. It supports the
following parameter:

"string autoclose" "off"
If this parameter is set to ‘on’, the window is automatically closed at the end
of the render. The default behavior is to leave the window open until the user
closes it.

Note that when 3Delight finishes the render, it will exit without waiting for the user to
close the window opened by this display driver, letting the user start multiple renders while
keeping the windows open. Of course, if autoclose is enabled, the window will be closed
automatically.

7.2 The TIFF display driver

This display driver lets you write the rendered image into a TIFF file. Compressed TIFFs
and cropping are supported. Only RI_RGB, RI_RGBA, RI_A are supported for now. This
display driver understands the following parameters.

"string fullimage" ["on"]
When using CropWindow, this parameter enables you to create an image of the
original size, with the cropped region placed inside. Areas that are outside
the crop window will be set to black (and alpha will be 0). This option is
useful when compositing a cropped image with a matching complete image.
The default value is ‘off’.

"string compression" ["1lzw"]

"lzw" LZW compression, default;
"none" no compression;
"packbits"

run length encoding;

"deflate"
Deflate compression (zip);

"logluv"! LogLuv compression, perfect for high dynamic range images. Ex-
pects floating point data as input. A limitation of this compression

L Visit http://positron.cs.berkeley.edu/ gwlarson/pixformat/tiffluv.html for more informations
about this encoding scheme.

68

3Delight User’s Manual

scheme is that the alpha channel cannot be stored in the same TIFF
directory as the image, so it is written separatly in a 2nd direc-
tory. The white point is also stored in the TIFF when using this

compression.

"string description" "s"

Specifies a description string which will be stored in the TIFF.

"string extratags" ["on"]

By default, this display driver will write some useful informations to the TIFF
by using the tagging mechanism?; however, some tags are not supported by all
TIFF software (See table below), this option can turn those tags to ‘off’;

Vs

Tag name

TIFFTAG_SOFTWARE

TIFFTAG_IMAGEDESCRIPTION

TIFFTAG_XPOSITION

TIFFTAG_YPOSITION

TIFFTAG_WHITEPOINT

TIFFTAG _PIXAR_IMAGEFULLWIDTH*

TIFFTAG _PIXAR_IMAGEFULLLENGTH™

TIFFTAG_PIXAR_TEXTUREFORMAT*

TIFFTAG_PIXAR_MATRIX_WORLDTOSCREEN*

TIFFTAG _PIXAR_MATRIX_WORLDTOCAMERA*

Description

Will be set to something like "3Delight
0.9.6 (Sep 26 2002) "Fidelio"";

Will be set to a user provided description,
if any;

x cropping position in pixels, only active
when cropping and "fullimage" is "off" (de-
fault);

y cropping position in pixels, only active
when cropping and "fullimage" is "off" (de-
fault);

White point when using LOGLUV compres-
sion;

Set when an image has been cropped out
of a larger image; reflects the width of the
original uncropped image;

Set when an image has been cropped out
of a larger image; reflects the height of the
original uncropped image;

Set to "Image"

World to Normalized Device Coordinates
transformation matrix;

Wrold to Camera transformation matrix.

Supported Tags. Those marked with an *’ can be disabled using ‘extratags’ option

2 For a detailed specification of the TIFF format, refer to http://www.libtiff.org.

http://www.libtiff.org

Chapter 7: Display Driver System 69

7.3 The zfile display driver

A ‘zfile’ is a file that contains enough informations to build a shadow map. The format
of a zfile is as follows:

Offset Type Name Description

0 int32 magic 0x2f0867ab on big indian machines, and
0xab67082f on little indian machines;

4 short Xres x resolution in pixels;

6 short yres y resolution in pixels;

8 float[16] Np World to Normalized Device Coordinate trans-
formation matrix, in row major order;

72 float[16] N1 World to Camera matrix, in row major order;

136 float[xres*yres| z data top to bottom, left to right ordering.

To build a shadow map using a zfile, use "tdlmake ‘-shadow’" as described in Section 3.3
[Using the texture optimizer], page 14 or issue a MakeShadow command in a RIB file.

7.4 The shadowmap display driver

Use this display driver to create shadow maps without passing by a zfile. Shadow maps in
3Delight are normal TiFFs. The following parameter can be passed to this display driver.

"uniform string zcompression" "lzw|zip|none"
Enables or disables compression. Disabled by default.

Do not run tdlmake on files produced by this display driver, since they are already in
the right format.

7.5 The DsM display driver

This display driver produces deep shadow maps. As explained in Section 5.1 [Shadows],
page 53, DSMs support opacity, prefiltering and motion blur. It is suggested to use DSMs
whenever possible.

"float tolerance" [0.01]

DsMs tend to grow quite large, unfortunatly. The display driver will try to
compress them using an algorithm that will shrink file size without exceeding
some specified error threshold. A value of ‘0’ (that is, no error allowed) will
produce huge DSMs and should never be used and a value of ‘1’ will compress
DSMs too much and results will be unsatisfactory. A typical good value is 0.05.
If this parameter is not specified or set to -1, the display driver will choose an
appropriate tolerance, which is the recommended action.

"string compressionlevel" ["1"]
This option turns on an additional compression method which makes DSMs even
smaller without sacrificing quality or performance. The default is "1" which
enables some additional compression. "0" can be used to disable the additional
compression.

70 3Delight User’s Manual

"string mipmaping" ["on"]
Disables or enables mipmapping for this deep shadow map. Mipmapping is
enabled by default but one could save more than 25% of storage space by using
raw DSMs. Be careful though, since mipmapped DSMs usually produce nicer
results (especially when viewed from far away).

"string volumeinterpretation" ["discrete"]
Specifies whatever the deep shadow map will be used to compute shadows cast
by solid objects or those cast by participating media (fog, clouds, smoke, etc).
When rendering participating media shadows, one should specify "continuous"
to this parameter. Default is ‘discrete’.

EXAMPLE

Write out a deep shadow map for partictipating media
Display "shadow.dsm" "dsm" "rgbaz"
"string volumeinterpretation" ["continuous"]

Do not run tdlmake on files produced by this display driver, since they are already in
the right format.

7.6 Encapsulated Postsript display driver

Use this display driver to produce ‘.eps’ files. Those are Poscript files that can be used
inside ‘.pdf’ and ‘.ps’ files. The alpha channel is ignored in an ‘. eps’ file. Only one option
is supported:

"uniform string fullimage" "off"
When using a crop window, this parameter enables the user to create an image
of the original size, with the rendered crop window placed inside. Areas that
are outside the crop window will be set to black. The default value is ‘off’.

7.7 Kodak Cineon display driver

This display driver allows you to write Kodak’s Cineon files. Each channel is encoded in
10bits using a logarithmic scale (regardless of Exposure and Quantize). Such an encoding
is appropriate for film recording since it is designed to cover film’s recordable color range.
A color encoded using the Cineon format can be much brighter than white, therefore it is
recommended to use unquantized values for this display driver to avoid clipping the colors
to (1,1,1).

The alpha channel is supported by this display driver but it is not guaranteed to be
readable by other software. We suggest to use RGB (no alpha) for maximum portabilty.

Three parameters are recognised by this display driver:
"uniform integer setpoints[2]" [ref_white ref_black]

This sets the reference black and the reference white values. The default values
are 180 for reference black and 685 for reference white;

Chapter 7: Display Driver System 71

"uniform integer ref_white" value
Only sets the reference white;

"uniform integer ref_black" value
Only sets the reference black;
An explanation of those parameters can be found in the Cineon documentations available

)

on the web. The standard extension for a Cineon file is ‘. cin’.
7.8 Radiance display driver

Use this display driver to write files compatible with Radiance. Floating point values are
required for this display driver since it is intended as a HDRI output. The following parameter
is recognised by this display driver:

"uniform string colorspace" ["rgb"]
Specifies in which color space to encode the values. The two possible values are
"rgb" and "xyz" and the default is "rgb". Be careful when using "xyz" color
space since it implies a RGB to XYZ conversion inside the display driver and RGB
values are assumed to be linear, so setting Exposure to 1 1 is essential. Note
that run-length encoding of Radiance files is not supported.

EXAMPLE

Write out a radiance file, using XYZ colorspace.

Exposure 1 1

Quantize "rgb" 0 0 O O # use floating point data

Display "hdri.pic" "radiance" "rgb" "string colorspace" "xyz"

7.9 OpenEXR display driver

This display driver® writes out ILM’s OpenEXR files using the ‘half’ floating point format.
Floating point input is requested. Only one parameter is supported:

"uniform string compression" ["zip"]
Specifies which compression to use. Valid compression schemes are:

"none" Disable compression;

"zip" Enable ‘deflate’ compression using the ‘z1ib’ library. This is the
default compression scheme;

"rle" Enable run-lenght encoding. Compression ratio is good only on
images with large constant color areas. Use only if compression or
decompression speed matters;

"piz" Data is compressed using a huffman algorith applied to wavelet
transformed data. Apparently provides good compression ratios on
photographic data.

3 Only supported on Linux and IRIX platforms.

72

3Delight User’s Manual

Chapter 8: Developer’s Corner 73

8 Developer’s Corner

8.1 Linking with 3Delight

3Delight comes with a library which implements the RenderMan API interface. Here is how
to link with it on different platforms.

‘IRIX’ CC -0 main main.cpp -I$DELIGHT/include -L$DELIGHT/1ib/ -L/1ib/i1686
-13delight -1m -1d1 -1c

‘Linux’ g++ —o main main.cpp -I$DELIGHT/include -L$DELIGHT/1ib/ -L/1ib/i686
-13delight -1m -1d1 -1c

‘Windows’ ¢l /I%DELIGHTY,/include %DELIGHTY,/1ib/3delight.lib main.cpp

‘Mac0S X’ g++ -o main main.cpp -I$DELIGHT/include -L$DELIGHT/1ib -framework
CoreFoundation -1stdc++ -13delight

8.2 Writing Display Drivers

3Delight comes with a set of standard display drivers that are suitable for most applications
(see Chapter 7 [Display Driver System|, page 67). However, it is possible to write custom
display drivers if some specific functionality is needed. Basically, a display driver is a DSO
(DLL under Windows) which implements an interface that 3Delight understends. This inter-
face, along with all the data types used, is described in the ‘$DELIGHT/include/ndspy.h’
header file and is further investigated in the following sections.

8.2.1 Required Entry Points

A display driver must implement four mandatory entry points:

PtDspyError DspylmageQuery (PtDspylmageHandle image,
PtDspyQueryType type, size_t size, void *data)
Queries the display driver about format informations.

PtDspyError DspylmageOpen (PtDspyImageHandle * image, const char
*drivername, const char *xfilename, int width, int height, int
paramcount, const UserParameter *parameters, int formatcount,
PtDspyDevFormat *format, PtFlagStuff *flagsstuff)

Opens a display driver.

PtDspyError DspylmageData (PtDspyImageHandle image, int xmin, int
xmax_plus_one, int ymin, int ymax_plus_one, int entrysize, const
unsigned char *data)

Sends data to display driver.

PtDspyError DspylmageClose (PtDspyImageHandle image)
Close the display driver.

74 3Delight User’s Manual

An optional entry point is also defined:

PtDspyError DspylmageDelayClose (PtDspyImageHandle image)
Close the display driver in a separate process.

Every function is detailed in the following sections.
DspylmageQuery

This function is called for two reasons:

1. 3Delight needs to know the default resolution of the display driver. This may happen
if the user did not call Format;

2. 3Delight needs to know whether the display driver overwrites or not the specified file
(not used at the moment).

Parameters are:

type Can take two values: PkOverwriteQuery and PkSizeQuery. For each query,
a different data structure needs to be filled. The structures are declared in
‘$DELIGHT/include/ndspy.h’.

size Maximum size of the structure to fill;
data A pointer to the data to fill. Copy the appropriate structure here.

See Section 8.2.2 [display driver example], page 77.
DspylmageOpen

Called before rendering starts. It is time for the display driver to initialize data, open file(s),

Here is a description of all the parameters passed to this function.

image This is an opaque pointer that is not used in any way by 3Delight. It should be
allocated and used by the display driver to pass informations to DspyImageData
and DspyImageClose. For instance, a TIFF display driver would put some useful
informations about the TIFF during DspyImageOpen so that DspyImageData
could access the opened file.

drivername
Gives the device driver name as specified by Display. For example:
Display "super_render" "framebuffer" "rgb"

will provide ‘framebuffer’ in drivername;

filename Gives the filename provided in the Display command. For example:
Display "render.tif" "tiff" "rgb"

will provide ‘render.tif’ in filename;

Chapter 8: Developer’s Corner 75

width
height Give the resolution of the image, in pixels. If the image is cropped, width and
height will reflect the size of the cropped window;
paramcount
Total number of user parameters provided in this call;
UserParameter
An array of user parameters, of size paramcount. UserParameter is defined as:
typedef struct
{
const char *name;
char valueType, valueCount;
const void *value;
int nbytes;
} UserParameter;
name is the name of the parameter, valueType is its type, which can be one of
the following: ‘i’ for an integer type, ‘f’ for an IEEE floating point type and ‘s’
for a string type. valueCount is used for parameters that have more than one
value, such as matrices and arrays. value is the pointer to the actual data. A
set of standard parameters is alway provided, those are described in the table
below.
formatcount
Number of output channels.
formats An array of channel descriptions of size formatcount. A channel description

contains a name and a type:

typedef struct
{

char *name;
unsigned type;
} PtDspyDevFormat;

Parameters can be passed to a display driver when issuing the Display command:

Display "render" "my_display" "rgb" "string compression" "zip"

In this case, ‘my_display’ driver will receive the parameter "compression".

76 3Delight User’s Manual

Name Type Count Comments

NP £ 16 World to Normalized Device Coordinates (NDC) trans-
fom

NI ‘£ 16 World => Camera transform

near £ 1 Near clipping plane, as declared by Clipping

far ‘£ 1 Far clipping plane, as declared by Clipping

origin ‘i’ 2 Crop window origin in the image, in pixels

OriginalSize ‘i’ 2 Since width and height only provide to DspyImageOpen
reflect the size of the croped window, this variable gives
the original, uncropped window size

PixelAspectRatio ‘f’ 1 Pixel aspect ratio as given by Format

Software ‘g’ 1 Name of the rendering software: "3Delight"

Default user parameters passed to DspyImageOpen().

DspylmageData

3Delight will call this function when enough pixels are available for output. Most of the time
this will happen after each rendered bucket. However, if DspyImageOpen asks for scanline
data ordering, a call to this function will be issued when a row of buckets is rendered.

image Opaque data allocated in DspyImageOpen
xmin

xmax_plus_one

ymin_plus_one

ymax_plus_one
Screen coordinates containing provided pixels data;

entrysize Size, in bytes, of one pixel. For example, if 8 bit RGBA data was asked, entrysize
will be set to 4.

data Pointer to the actual data, organized in row major order.

DspyImageClose

Called at the end of each rendered frame. It is time to free all resources that were used and
deallocate image (which was allocated by DspyImageOpen).

DspylImageDelayClose

If this entry point is defined in the display driver, it will be called instead of
DspyImageClose() with the difference being that the call will occur in a separate process
so that 3Delight can exit without waiting for the display driver. The ‘framebuffer’
display driver uses this functionality (see Section 7.1 [framebuffer], page 67).

Chapter 8: Developer’s Corner

8.2.2 A Complete Example

/*
Copyright (c)The 3Delight Team.
A1l Rights Reserved.

*/

//

// = LIBRARY

// 3delight

// = AUTHOR(S)

// Aghiles Kheffache

// = VERSION

// $Revision: 1.4 $

// = DATE RELEASED

// $Date: 2003/06/30 19:30:17 $

// = RCSID

// $Id: zfile.cpp,v 1.4 2003/06/30 19:30:17 aghiles Exp $

//

#include <ndspy.h>
#include <uparam.h>

#include <assert.h>
#include <stdio.h>
#include <float.h>
#include <string.h>
#include <limits.h>

/* ZFile Display Driver Implementation */
const unsigned kDefaultZFileSize = 512;
/*

zfile format:
zFile format is (matrices and image are row-major):

magic # (0x2f0867ab) (4 bytes)
width (short) (2 bytes)
height (short) (2 bytes)
shadow matrices (32 floats, 16 for NP and 16 for N1) (128 bytes)
image data (floats) (width*height*4 bytes)
NOTE

Matrices are stored in row major format.
*/
class zFile

{

78 3Delight User’s Manual

public:
zFile(
const char* fileName,
const float* np, const float* nl,
unsigned short width, unsigned short height)

: m_file(0x0), m_width(width), m_height (height),
m_currentLine(0), m_pixelsLeftOnLine(width)

{
m_file = fopen(fileName, "wb");
if(m_file)
{
unsigned long magic = 0x2f0867ab;
assert(sizeof(long) == 4);
furite(&magic, 4, 1, m_file);
furite(&m_width, sizeof(m_width), 1, m_file);
furite(&m_height, sizeof(m_height), 1, m_file);
fwrite(np, sizeof(float), 16, m_file);
fwrite(nl, sizeof(float), 16, m_file);
}
}
~“zFile ()
{
if(m_file)
{
fclose(m_file);
}
}

bool Valid() const { return m_file != 0x0; }

unsigned GetWidth() const {return m_width;}
unsigned GetHeight() const {return m_height;}

bool WriteScanline(
unsigned short y, unsigned short size, const float* data)

if(y != m_currentlLine || size > m_pixelsLeftOnLine)
{

return false;

}

m_pixelsLeftOnLine -= size;

Chapter 8: Developer’s Corner

if (m_pixelsLeftOnLine == 0)

{
++m_currentLine;
m_pixelsLeftOnLine = m_width;
}
return fwrite(data, sizeof(float), size, m_file) == size;
}
private:

FILEx m_file;
unsigned short m_width;
unsigned short m_height;

unsigned short m_currentLine;
unsigned short m_pixelsLeftOnLine;

};

/%

A utility function to get user parameters
*/
const void* GetParameter(

const char *name,

unsigned n,

const UserParameter parms[])

{
for(unsigned i=0; i<n; i++)
{
if (0 == strcmp(name, parms[i].name))
{
return parms[i].value;
}
}
return 0x0;
}
/*
Open
*/

PtDspyError DspyImageOpen(
PtDspyImageHandle *i_phImage,
const char *i_drivername,
const char *i_filename,
int i_width, int i_height,
int i_parametercount,
const UserParameter i_parameters[],

79

80 3Delight User’s Manual

int i_numFormat,
PtDspyDevFormat i_format[],
PtFlagStuff *flagstuff)
int i;

bool zfound = false;

const float*x nl =
(float*)GetParameter("N1", i_parametercount, i_parameters);

const float* np =
(float*)GetParameter("NP", i_parametercount, i_parameters);

/* Loop through all provided data channels and only ask for the ’z’
channel. */

for(i=0; i<i_numFormat; i++)

{
if(stremp(i_format([i].name, "z") != 0)
{
i_format[i] .type = PkDspyNone;
+
else
{
i_format[i] .type = PkDspyFloat32;
zfound = true;
}
}
if ('zfound)
{
fprintf(stderr, "dspy_z : need ’z’ in order to proceed.\n");
return PkDspyErrorUnsupported;
}
if('nl || !'np)
{
fprintf (
stderr,
"dspy_z : need N1 & Np matrices in order to proceed. bug.\n");
return PkDspyErrorBadParams;
}

if (i_width > USHRT_MAX || i_height > USHRT_MAX)
{
fprintf(
stderr,

Chapter 8: Developer’s Corner

"dspy_z : image too large for zfile format" \
" (use shadowmap ddriver).\n");
return PkDspyErrorUndefined;

zFile* aZFile = new zFile(i_filename, np, nl, i_width, i_height);

if(laZFile || !aZFile->Valid())
{
fprintf (
stderr,

"dspy_z : cannot create file" \
"(permissions ? free disk space 7).\n");

delete aZFile;
return PkDspyErrorNoResource;

*i_phImage = (voidx) aZFile;

/* Ask display manager to provide data scanline by scanline
*/
flagstuff->flags |= PkDspyFlagsWantsScanLineOrder;

return PkDspyErrorNone;

}

/*

DspyImageQuery

*/

PtDspyError DspyImageQuery(
PtDspyImageHandle i_hImage,
PtDspyQueryType i_type,
size_t i_datalen,
void *i_data)

zFile *aZFile = (zFilex) i_hImage;

if(!'i_data)
{

return PkDspyErrorBadParams;

switch(i_type)
{

case PkSizeQuery:

{

81

82 3Delight User’s Manual

PtDspySizelInfo sizeQ;

if(aZFile)

{
sizeQ.width = aZFile->GetWidth();
sizeQ.height = aZFile->GetHeight();
sizeQ.aspectRatio = 1;
}
else
{
sizeQ.width = kDefaultZFileSize;
sizeQ.height = kDefaultZFileSize;
sizeQ.aspectRatio = 1;
}
memcpy (
i_data, &sizeQ,
i_datalen>sizeof(sizeQ) ? sizeof(sizeQ) : i_datalen);
break;
}
case Pk(OverwriteQuery:
{
PtDspyOverwriteInfo overwQ;
overwld.overwrite = 1;
memcpy (
i_data, &overwQ,
i_datalen>sizeof (overwQ) 7?7 sizeof(overwQ) : i_datalen);
break;
}
default:
return PkDspyErrorUnsupported;
}
return PkDspyErrorNone;
}
/*

DspyImageData

Data is expected in scanline order (as asked in DspyImageOpen()).

*/

Chapter 8: Developer’s Corner

PtDspyError DspyImageData(

/*

*/

PtDspyImageHandle i_hImage,

int i_xmin, int i_xmax_plusone,
int i_ymin, int i_ymax_plusone,
int i_entrySize,

const unsigned char* i_data)

zFile* aZFile = (zFilex*) i_hImage;
const float* fdata = (const float*) i_data;

if('aZFile || !'fdata)
{

return PkDspyErrorBadParams;

/* Perform some sanity checks but everything should be fine really ...

> %/

if (i_ymax_plusone - i_ymin > 1 ||

i_xmin !'= 0 ||
i_xmax_plusone != aZFile->GetWidth() ||
i_entrySize !'= sizeof (float))
{
return PkDspyErrorBadParams;
}

if(!aZFile->WriteScanline(i_ymin, i_xmax_plusone - i_xmin, fdata))
{

return PkDspyErrorNoResource;

return PkDspyErrorNone;

DspyImageDelayClose

Not used by 3Delight yet.

PtDspyError DspylImageDelayClose(PtDspyImageHandle i_hImage)

{

}

/*

return DspyImageClose(i_hImage);

DspyImageClose

83

84 3Delight User’s Manual

delete our object.

*/
PtDspyError DspylImageClose(PtDspylImageHandle i_hImage)

{

#i
#i

/%

zFilex aZFile = (zFile*) i_hImage;

if (laZFile)
{
return PkDspyErrorUndefined;

delete aZFile;

return PkDspyErrorNone;

8.2.3 Compilation Directives

Here is the compilation command line for the given example (‘zfile.cpp’):

Linux ‘g++ —-shared -o zfile.so -I$DELIGHT/include zfile.cpp’

IRIX ‘CC -shared -o zfile.so -I$DELIGHT/include zfile.cpp’

MacOS X ‘g++ -0 zfile.so ~I$DELIGHT/include -arch "ppc" -bundle zfile.cpp’
Windows ‘cl -I%DELIGHTY%/include -LD zfile.cpp’

8.3 DSO Shadeops

It is possible to extend the capabilities of the shading language by calling C or C++ functions
from inside shaders. When compiling a shader, if the compiler encounters a function it
doesn’t now, it will automatically search all the directories specfied by the ‘-1’ command
line option! looking for a DSO containing a definition of the unknown function.

A DSO must contain a data table for each shadeop it implements. One such table simply
describes the possible return values of the shadeops and its init and cleanup functions.

All this is better explained by an example:

nclude "shadeop.h"
nclude <stdio.h>

A simple DSO shadeops.

LAl compiler’s command line options are specified in Section 3.2 [Using the shader compiler|, page 11.

Chapter 8: Developer’s Corner

Notes that ’extern "C"’ is not necessary for ’.c’ files.
Only c++ files need that.
*/

extern "C" {
SHADEOP_TABLE(sqr) =

{
{"float sqr(float)", "sqr_init", "sqr_cleanup"},
{"point sqr_p(point)", "sqr_init", "sqr_cleanup"},
{II ll}
¥
}
extern "C" SHADEOP_INIT(sqr_init)
{
return 0x0; /* No init data */
}
/*
returns the given float, squared.
NOTES
- argv[0] contains a pointer to the result, in this case a float.
*/
extern "C" SHADEOP(sqr)
{
float *result = (float *)argv[0];
float f = *((float*)argv[1]);
*result = £ * f;
return O;
}
/*
returns the given point, squared.
*/
extern "C" SHADEOP (sqr_p)
{

float *result = (float *)argv[0];
float *f = ((float*)argv[1]);

result[0] = £[0] * f[0];
result[1] = f[1] * f[1];
result[2] = f[2] * f[2];

85

}

86 3Delight User’s Manual

return O;

extern "C" SHADEOP_CLEANUP(sqr_cleanup)

{

}

/* Nothing to do */

Here is how to compile a DSO under differnt environments:
Linux g++ -shared -o sqr.dso $DELIGHT /include sqr.cpp
IRIX CC -shared -o sqr.dso $DELIGHT /include sqr.cpp
Windows ¢l -I%DELIGHT%/include -LD sqr.cpp

To avoid memory leaks, use the macro ASSIGN_STRING (declared in ‘shadeop.h’ code to
copy strings. This macro will delete (if needed) the old string before assigning the new one.
Here is an example that illustrates how to use the macro:

SHADEOP_TABLE(test) =

{
{"string teststring(string)", "", ""},
{nu}

};

extern "C" SHADEOP(teststring)

{
const char **res = (const char *x) (argv[0]);
const char *xargl = (const char *x*) (argv[1]);

ASSIGN_STRING (*res, "Hello");
ASSIGN_STRING(*argl, "World");

Chapter 9: Acknowledgement 87

9 Acknowledgement

We would like to thank Moritz Moeller, Graeme Nattress, Jason Belec, Frederick Gustafsson,
Yu Umebayashi, Daniel Moreno, Goran Kocov, Brian Perry and John McDonald for their
very helpfull suggestions and bug reports. Also, thanks to Robert Coldwell, the creator of
the wonderfull 3Delighter and Ming Mah for the MacOS X framebuffer. And last, but not
least, Jean-Jacques Maine, always in the front line when it comes to 3Delight testing.

88

3Delight User’s Manual

Chapter 10: Copyrights and Trademarks 89

10 Copyrights and Trademarks

3Delight is RenderMan compliant in that it reads RenderMan RIB files and implements the
RenderMan API.

The RenderMan (R) Interface Procedures and Protocol are:
Copyright @copyright{} 1988, 1989, Pixar. All Rights Reserved.
RenderMan (R) is a registered trademark of Pixar.

3Delight uses the libtiff library to read and write TIFF files. The libtiff license requires
the following statements to appear in the documentation of the software:

The 1libtiff library is:
Copyright @copyright{} 1988-1997 Sam Leffler
Copyright @copyright{} 1991-1997 Silicon Graphics, Inc.

Permission to use, copy, modify, distribute, and sell the libtiff library
and its documentation for any purpose is hereby granted without fee,
provided that (i) the above copyright notices and this permission notice
appear in all copies of the software and related documentation, and (ii)
the names of Sam Leffler and Silicon Graphics may not be used in any
advertising or publicity relating to the software without the specific,
prior written permission of Sam Leffler and Silicon Graphics.

The Windows version of 3Delight uses the regex library. The regex license requires the
following statements to appear in the documentation of the software:

The regex library is:

Copyright @copyright{} 1992 Henry Spencer.

Copyright @copyright{} 1992, 1993 The Regents of the University of California.
All rights reserved.

The regex library code is derived from software contributed to Berkeley by
Henry Spencer of the University of Toronto. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

90 3Delight User’s Manual

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THE REGEX LIBRARY IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ¢‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

3Delights uses ILM’s OpenEXR library to read OpenEXR files. The license requires the
following to appear in the software:

Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
Digital Ltd. LLC

All rights reserved.
Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Industrial Light & Magic nor the names of
its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

Chapter 10: Copyrights and Trademarks

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

91

92

3Delight User’s Manual

Concept Index

Concept Index

3

3Delight features................ 4
3Delight, installing................... 5
3Delighter....... ... 21

A

aknowledgement ool 87
atmosphere shaders 59
attributes 30
attributes, displacementbound 31
attributes, global illumination 31
attributes, identifier, name 30
attributes, light, shadows..................... 31
attributes, other............................. 32
attributes, ray tracing........................ 31
attributes, trimcurve, sense................... 32
attributes, visibility o oL 31
automatic shadows........................ ... 31
avoiding shadow bias......................... 24

B

binary RIBfiles 9
blobbies....... ... 36
bucket order, optiono L 26
bucketorder 26
bug reports........ 3

C

caveats........ i 65
cineon display driver............. 70
command line options, dsm2tif 18
command line options, hdri2tif.............. 20
command line options, renderdl.............. 10
command line options, shaderdl.............. 12
command line options, tdlmake 14
compilation customization (shader) 13
compilation process........... 12
compiled shaders name....................... 11
compiling shaders......................... ... 11
compressing deep shadow maps............... 69
compressing shadow maps.................... 69
configuring shader compilation................ 13
corner, subdivision surface tag................ 34
cppdl ..o 12
crease, subdivision surface tag 34
CUTVES & ottt ettt et e e e et i 35

93
D
deep shadow maps........................... 54
deep shadow maps, advantages................ 54
deep shadow maps, compressing 69
deep shadow maps, drawbacks 54
default user parameters passed to
DspyImageOpen(). 76
DELIGHT environment variable.................. 6
depth filter............ 24
displacement shaders......................... 59
display driver, example....................... 7
display drivers, cineon........................ 70
display drivers, DSM..............ccooiiin. .. 69
display drivers, EPS ..o 70
display drivers, framebuffer................... 67
display drivers, shadowmap................... 69
display drivers, TIFF 67
display drivers, zfile.......................... 69
DL_ARCHIVES_PATH environment variable........ 6
DL_DISPLAYS_PATH environment variable........ 6
DL_RESOURCE_PATH environment variable........ 6
DL_RIB_OUTPUT environment variable........... 6
DL_SHADERS_PATH environment variable......... 6
DL_TEXTURES_PATH environment variable........ 6
dodging-and-burning 19
DSM . 54
dsm display driver 69
dsm2tif 18
DSO shadeops ..., 84
dso, search path 27
DspyImageClose()coouuoo.... 76
DspyImageData()ooooiii.... 76
DspyImageOpenovinin... 74
DspyImageQuery 74
E
encapsulated postscript display driver 70
environment variables......................... 6
environment variables, DELIGHT 6
environment variables, DL_ARCHIVES_PATH 6
environment variables, DL_DISPLAYS_PATH 6
environment variables, DL_RESOURCE_PATH 6
environment variables, DL_RIB_QUTPUT.......... 6
environment variables, DL_SHADERS_PATH........ 6
environment variables, DL_TEXTURES_PATH 6
environment variables, INFOPATH............... 7
environment variables, LD_LIBRARY_PATH........ 7
environment variables, LD_LIBRARYN32_PATH.... 7
environment variables, PATH 7
environment(), optional parameters 46
environment, configuring (general) 6
eps display driver............................ 70

examples, attributes 34

94

eye plane splitting 26

F

facevertex, variable type...................... 34
features, 3Delight L. 4
framebuffer display driver 67
framing shadow maps 54
function index L 97

G

geometric primitives oL 34
geometry, CUIVES . .. oottt 35
geometry, implicit surfaces.................... 36
geometry, parametric patches................. 35
geometry, points and particles 35
geometry, polygons 35
geometry, quadrics............... 36
geometry, subdivision surfaces 34
getting information about shaders............. 21
getting latest version.......................... 3
graphic state propagation 9

HDRI ... 43, 55
HDRI, range compression 19
hdri2tif....... 19
hdri2tif, options......... 20
hole, subdivision surface tag.................. 34

I

imager shaders, 59
implementation specific attributes, table. 33
implementation specific options 26
implicit surfaces 36
INFOPATH environment variable 7
installing 3Delight 5
installing on MacOS X 5
installing on UNIX.............. 5
installing on Windows......................... 6
interpolateboundary, subdivision surface tag ... 34
interrogating shaders 21, 60

J

jpeg support in tdlmake 17

L

latest version.............l 3
LD_LIBRARY_PATH environment variable (Linux)

3Delight User’s Manual

light shaders 59
lighting functions 41
listing shader parameters..................... 21
logarithmic color encoding.................... 70

M

MacOS X, GUI. .o 21
MacOS X, installingon 5
message passing and information.............. 48
midpoint filtering L. 24
motion blur, in shadows...................... 54

N

network cache 55
network cache, activating..................... 56
network cache, cache directory permissions 57
network cache, purging............ 57
network cache, safety 57

@)

option for shadow sampling................... 27
OptioNS . ..o 23
options todsm2tif............. L. 18
options to hdri2tif.......................... 20
options to renderdl.............. 10
options to shaderdl.......................... 12
options to tdlmake............. 14
options, implementation specific 26
options, limits, bucketsize 26
options, limits, eyesplits...................... 26
options, limits, gridsize....................... 26
options, limits, texturememory................ 27
options, limits, texturesample................. 27
options, searchpath 27
options, shadow, bias 26
options, shadow, sample...................... 27
options, standard 23

P

parametric patches............ 35
particles L 35
PATH environment variable..................... 7
POINES. .ot 35
polygons 35
preprocessor, shader 12

Q

Quadrics 36

Concept Index

R

range CoOmMpPressionuuveuunn... 19
ray tracing 55
ray tracing, maximum ray depth.............. 27
ray-traced shadows 55
renderdl......... 9
rendering RIB files............. 9
rendering shadow maps 53
rendering shadows 53
reporting, bugs 3
RIB files, rendering 9

S

search paths............. 27
self shadowing problem....................... 53
shadeops, geometry 39
shadeops, lighting. 41
shadeops, mathematics....................... 38
shadeops, message passing and information 48
shadeops, noise and random 39
shadeops, string 47
shadeops, texture mapping 45
shader compilation........................ ... 11
shader compilation customization (shader)... .. 13
shader preprocessor 12
shaderdl........ 11
shaderdl, options............................ 12
shaderinfo 21
shaderinfo, source code 62
shaders 59
shaders, atmosphere 59
shaders, displacement 59
shaders, imager............... 59
shaders, interrogating 60
shaders, light 59
shaders, locating...................... 60
shaders, surface.............................. 59
shaders, volume 59
shading Language description................. 59
shading language, DSO....................... 84
shading language, limitations 51
shadow bias problem......................... 53
shadow bias, avoiding 24
shadow maps................... 53
shadow maps, advantages 53
shadow maps, compressing 69
shadow maps, drawbacks 53
shadow maps, framing 54
shadow(), optional parameters................ 47
shadowmap display driver 69
shadows, automatic.......................... 31
shadows, bias............ 26
shadows, ray-tracing 55
shadows, rendering. 53
shadows, sampling option 27

95
shadows, translucent 54
specifying shaders location 60
standard attributes and their default values, table
.. 30
standard options................ 23
string functions.............. 47
subdivision surfaces.......................... 34
surface shaders 59
T
table, data fields known to attribute() 50
table, data fields known to option() 50
table, data fields known to rendererinfo().... 51
table, implementation specific attributes....... 33
table, implementation specific options 29
table, occlusion() and indirectdiffuse()
parameters.................. ... 44
table, shadow() optional parameters 47
table, standard attributes and their default values
.. 30
table, standard options and their default values
.. 25
table, tdlmake filters......................... 16
table, texture() and environment () optional
parameters.................... ... 46
table, textureinfo() possible field names 49
tAdImake . ..o 14
tdlmake filters............ ..., 16
tdlmake, examples................ 18
tdlmake, supported formats 17
texture mapping functions.................... 45
texture maps, creating 14
texture maps, optimizing 14
texture(), optional parameters................ 46
tiff display driver 67
trim curves, trim sense............ 32
U
UNIX, installing on........................... 5

Vv

volume shaders................... 59
‘volumeinterpretation’, DSM display driver ... 70

A%

Windows, installing on........................ 6
writing shaders 59

Z

zfiltero 24
zfile display driver 69

96

3Delight User’s Manual

Function Index

Function Index

*

atomosphere
attribute Lo

C

DspyImageClosecouiu....
DspyImageData
DspyImageDelayClose........................
DspyImageOpen......................ooo...

97
1
indirectdiffuse........... 43
inversesqrt i 38
isindirectray, 51
isshadowray 51
L
length. 40
lightsource 49
LOg e e 38
M
match.o 48
TAK . v et et et e e e e e e e e e 38
1 T o 38
DA Lttt 38
MO . ottt e 38
N
NOISE ..ttt 39
normalize i 40
ntransform 40
occlusion i 43
option.......... 50
Phong 42
PROISE . ..o 39
POW ottt e 38
printf. ... 48
ptlined........ 40
YadianS . ..o o 38
=1 o 1) 11 39
raylevel......... i 51
reflect.. 40
refract. ...t 41
rendererinfo 51
rotate 40, 41
TOUNA . . vt ottt et e e e e 38

98

SCale ... 41
SELCOMP. .. v i 40
SELXCOMP . . oottt 39
SELYCOMP. ..ottt 39
SELZCOMP. . oottt 39
shadow.............. ... i 47
Sign 38
Sin. ... 38
Slo_DetailtoStr............................ 61
Slo_EndShaderoiuiiiuininii.. 61
Slo_GetArgById.............. 61
Slo_GetArgByName........................... 61
Slo_GetNamecoiiiiiiiinnnnnnnn. 61
Slo_GetNATrgs ...t 61
Slo_GetType ... 61
Slo_SetPathiiio... 60
Slo_SetShader 61
Slo_StortoStr ...t 61
Slo_TypetoStr, 61
smoothstep 38
Specular. 41
specularbrdf 41
specularstdl 41
SATL . 38
Step .o 38
surface...........o. 49

3Delight User’s Manual

T

T o 38
texXtUre. 45
textureinfo 48
BraCE . oot 42
transform 40
translate ...t 41
transmission 42
vtransform 40
XCOMP .+ v e vtete ettt et et 39
FCOMP .« oottt et e e e e e 39

	
	Welcome to 3Delight!
	What Is In This Manual ?
	Features

	Installation
	MacOS X
	UNIX
	Windows
	Environment Variables

	Using 3Delight
	Using the RIB Renderer - renderdl
	Command Line Options
	The .renderdl File

	Using the Shader Compiler - shaderdl
	Compilation Process
	Command Line Options
	Customizing the Compilation Script

	Using the Texture Optimizer - tdlmake
	Command Line Options
	Supported Input Formats
	Quality and Performance
	Examples

	Using dsm2tif to Visualize DSMs
	Using hdri2tif on High Dynamic Range Images
	Using shaderinfo to Interrogate Shaders
	Using the 3Delight GUI (Mac only)

	3Delight and RenderMan
	Options
	Image and Camera Options
	Implementation Specific Options

	Attributes
	Geometric Primitives
	Subdivision Surfaces
	Parametric Patches
	Curves
	Polygons
	Points
	Implicit Surfaces (Blobbies)
	Quadrics

	Optional Capabilities and Extensions
	Shading Language
	Mathematics
	Noise and Random
	Geometry, Matrices and Colors
	Lighting and Ray Tracing
	Texture Mapping
	String Manipulation
	Message Passing and Information
	Limitations

	Rendering Guidelines
	Shadows
	Standard Shadow Maps
	Deep Shadow Maps
	Raytraced Shadows

	Ray Tracing
	Ray Tracing
	Network Cache
	Activating the Network Cache
	Purging the Network Cache
	Safety

	Using Shaders
	Writing Shaders
	Installing Shaders
	Interrogating Shaders
	Using lib3delight to Interrogate Shaders
	Caveats

	Display Driver System
	The framebuffer display driver
	The TIFF display driver
	The zfile display driver
	The shadowmap display driver
	The DSM display driver
	Encapsulated Postsript display driver
	Kodak Cineon display driver
	Radiance display driver
	OpenEXR display driver

	Developer's Corner
	Linking with 3Delight
	Writing Display Drivers
	Required Entry Points
	DspyImageQuery
	DspyImageOpen
	DspyImageData
	DspyImageClose
	DspyImageDelayClose

	A Complete Example
	Compilation Directives

	DSO Shadeops

	Acknowledgement
	Copyrights and Trademarks
	Concept Index
	Function Index

