Using PERL to Send XML scripts to an iLO Management Processor

The Remote Insight XML scripting interface allows administrators to manage virtually every
aspect of the Remote Insight Board, Integrated Lights-Out or Integrated Lights-Out 2
Management Processor in an automated fashion. HP currently provides the Lights-Out
Configuration Utility (cpglocfg.exe) to assist deployment efforts. This utility is a Windows
command-line utility that sends XML scripts to Lights-Out devices.

Administrators may also use PERL scripts to send XML scripts to the Lights-Out devices or use
PERL to perform more complex tasks than cpglocfg.exe can perform by itself.

The basic method used to send scripts to a Lights-Out device is to send the XML script to the
device over an SSL socket. To accomplish this in PERL, you must have OpenSSL
(http:/lwww.openssl.org/) installed, as well as the PERL modules Net::SSLeay and
10::Socket::SSL (both available from http://www.cpan.org/). Most Linux distributions already have
OpenSSL installed; however you will need to install the PERL modules yourself.

Example 1: Building your own CPQLOCFG with PERL:

This example shows how to create an SSL socket and send the XML script to the Lights-Out
device. It also includes special case code to update the firmware. This example provides a near-
replacement for the CPQLOCFG utility.

#!/usr/bin/perl

A A A S L PR A
i

Simplified perl version of CPQLOCFG

Copyright 2003 Hewlett Packard Development Compa ny, L.P.

#t

To use this program, you must have Net::SSLeay a nd 10::Socket::SSL
installed. You may obtain these modules from htt p://www.cpan.org/
#t

You may use and modify this program to suit your needs.

#Ht

B T R BB
use 10::Socket::SSL;
use Getopt::Long;

sub usage

{
print "Usage:\n";
print " locfg [-s server] [-] lodfile] [-f inputfil e]\n";
exit 0;

}

HHEHH AR R T b T G G e
#i

Process options

#it

HHEHHHH AR R T T G G e

my $host, $logdfile, $file, $verbose, $help;

$verbose = 0;

$r = GetOptions("server|s=s" => \$host,
"logfile|l=s" => \$logfile,
"input|f=s" => \$file,
"verbose" => \$verbose,
"help|?" =>\$help
)

if (Shelp || '$host || !$file) {
usage();

if ($lodfile) {
If a logdfile is specified, open it and select it as the default
filehandle

open(L, ">$logfile") || die "Can't open $logfile\n" ;

select(L);
}

Set the default SSL port number if no port is spe cified
$host .= ":443" unless ($host =~ m/:/);

Open the SSL connection and the input file
my $client = new 10::Socket::SSL->new(PeerAddr => $ host);
open(F, "<$file") || die "Can't open $file\n";

Send the XML header and begin processing the file
print $client '<?xml version="1.0"?>". "\r\n";

while($In=<F>) {

Chop off any EOL characters

$In =~ s/\r|\n//g;

Special case: UPDATE_RIB_FIRMWARE violates XML. S end the full
UPDATE firmware tag followed by the binary firmwa re image
if ($In =~ M/UPDATE_RIB_FIRMWARE/i) {

if ($In =~ M/IMAGE_LOCATION=\"(.*)\"/i) {

}

$firmware = $1;

open(G, "<$firmware") || die "Can't open $firmware\

$len = (stat(G))[7];

print $client "\r\n<UPDATE_RIB_FIRMWARE
IMAGE_LOCATION=\"$firmware\" IMAGE_LENGTH=\"$len\"/
print "\r\n<UPDATE_RIB_FIRMWARE IMAGE_LOCATION=\"$f
IMAGE_LENGTH=\"$len\"/>\r\n" if ($verbose);

$x = read(G, $buf, $len);

print "Read $x bytes from $firmware\n" if ($verbose

$x = $client->write($buf, $x);

print "Wrote $x bytes\n" if ($verbose);

close(G);

next;

}

Send the script to the iLO board
print $In . "\n" if ($verbose);

print $client $In . "\r\n" ;

close(F);

print "----\n" if ($verbose);

Ok, now read the responses back from iLO

while($ln=<$client>) {

last if (length($In) == 0);

This isn't really required, but it makes the outp ut look nicer
$In =~ s/<V/RIBCL>/<V/RIBCL>\n/g;

print $In;
}

All done
exit 0;

n":

>\n\n";
irmware\"

