Compaq StorageWorks

HSG80 ACS Solution Software Version 8.6 for Novell NetWare

Installation and Configuration Guide
© 2001 Compaq Computer Corporation.
Compaq, the Compaq logo, and StorageWorks Registered in U.S. Patent and Trademark Office.
Microsoft, MS-DOS, Windows, Windows NT, Windows 2000 are trademarks of Microsoft Corporation.
All other product names mentioned herein may be trademarks of their respective companies.
Confidential computer software. Valid license from Compaq required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The information in this document is provided "as is" without warranty of any kind and is subject to change without notice. The warranties for Compaq products are set forth in the express limited warranty statements accompanying such products. Nothing herein should be construed as constituting an additional warranty.

Compaq service tool software, including associated documentation, is the property of and contains confidential technology of Compaq Computer Corporation. Service customer is hereby licensed to use the software only for activities directly relating to the delivery of, and only during the term of, the applicable services delivered by Compaq or its authorized service provider. Customer may not modify or reverse engineer, remove, or transfer the software or make the software or any resultant diagnosis or system management data available to other parties without Compaq's or its authorized service provider's consent. Upon termination of the services, customer will, at Compaq's or its service provider's option, destroy or return the software and associated documentation in its possession.

Printed in the U.S.A.

HSG80 ACS Solution Software Version 8.6 for Novell NetWare
Installation and Configuration Guide
First Edition (June 2001)
Part Number: AA-RFB9E-TE

Contents

About this Guide
Text Conventions xiv
Symbols in Text xv
Symbols on Equipment XV
Rack Stability xvi
Installation and Setup of the CD-ROM xvi
Configuration Flowchart xvii
Getting Help XX
Compaq Technical Support Xx
Compaq Website xxi
Compaq Authorized Reseller. xxi
Chapter 1
Planning a Subsystem
Defining the Subsystems 1-2
Controller Designations A and B 1-2
Controller Designations "This Controller" and "Other Controller" 1-3
Failover Mode 1-5
Transparent Failover Mode 1-5
Selecting a Cache Mode 1-7
Read Caching 1-8
Read-Ahead Caching 1-8
Write-Back Caching 1-8
Write-Through Caching 1-8
Enabling Mirrored Caching 1-9
Connections 1-10
Naming Connections 1-10
Numbers of Connections 1-10
Assigning Unit Numbers 1-13
Matching Units to Host Connections in Transparent Failover Mode 1-13
Assigning Unit Numbers Depending on SCSI_VERSION 1-15
Assigning Host Connection Offsets and Unit Numbers in SCSI-3 Mode 1-15
Assigning Host Connection Offsets and Unit Numbers in SCSI-2 Mode 1-16
Selective Storage Presentation 1-16
Restricting Host Access in Transparent Failover Mode 1-17
Restricting Host Access by Separate Links 1-17
Restricting Host Access by Disabling Access Paths 1-18
Restricting Host Access by Offsets 1-19
Worldwide Names (Node IDs and Port IDs) 1-20
Restoring Worldwide Names (Node IDs) 1-20
Unit Worldwide Names (LUN IDs) 1-22
Chapter 2
Planning Storage
Where to Start 2-2
Configuration Rules 2-3
Device PTL Addressing Convention. 2-3
Determining Storage Requirements 2-10
Choosing a Container Type 2-11
Creating a Storageset Profile 2-12
Storageset Planning Considerations 2-14
Stripeset Planning Considerations 2-14
Mirrorset Planning Considerations 2-16
RAIDset Planning Considerations 2-18
Striped Mirrorset Planning Considerations 2-20
Storageset Expansion Considerations 2-21
Partition Planning Considerations 2-22
Defining a Partition 2-22
Changing Characteristics through Switches 2-23
Enabling Switches 2-23
Changing Switches 2-23
Storageset and Partition Switches 2-24
RAIDset Switches 2-24
Mirrorset Switches 2-24
Partition Switches 2-25
Initialization Switches 2-25
Chunk Size 2-25
Increasing the Request Rate 2-26
Increasing Sequential Data Transfer Performance 2-27
Save Configuration 2-27
Destroy/Nodestroy 2-28
Geometry 2-28
Unit Switches 2-28
Storage Maps 2-29
Creating a Storage Map 2-29
Example Storage Map - Model 4310R Disk Enclosure 2-30
Example Storage Map - Model 4350R Disk Enclosure 2-32
Example Storage Map - Model 4314R Disk Enclosure 2-33
Example Storage Map - Model 4354R Disk Enclosure 2-36
Using the LOCATE Command to Find Devices 2-38
Chapter 3
Preparing the Host System
Enterprise Storage RAID Array Storage System Installation 3-1
Making a Physical Connection 3-5
Preparing to Install the Host Bus Adapter 3-5
Installing the Host Bus Adapter 3-5
Installing the Novell NetWare Driver on the Server 3-5
Installing the Novell NetWare Driver from the Enterprise Storage RAID Array Solution Software V8.6 for Novell NetWare CD 3-6
Installing the NetWare Driver from the SmartStart CD 3-7
Logintmo Parameter 3-8
List Devices 3-8
Completing Your Configuration under Novell NetWare 3-8
Configure A NetWare Volume on the Storageset for NetWare 5.0 3-8
Chapter 4
Installing and Configuring the HS-Series Agent
Why Use StorageWorks Command Console (SWCC)? 4-1
Installation and Configuration Overview 4-2
Before Installing the Agent 4-5
Installing and Configuring the Agent 4-5
Configuring the Agent 4-6
Adding Subsystems and their Hosts to the Network 4-8
Chapter 5
Configuration Procedures
Establishing a Local Connection 5-2
Setting Up a Single Controller. 5-3
Power On and Establish Communication 5-3
Cabling a Single Controller 5-3
Configuring a Single Controller Using CLI. 5-4
Verify the Node ID and Check for Any Previous Connections 5-4
Configure Controller Settings 5-5
Restart the Controller 5-6
Set Time and Verify all Commands 5-7
Plug in the FC Cable and Verify Connections 5-8
Repeat Procedure for Each Host Adapter 5-9
Verify Installation 5-9
Setting Up a Controller Pair 5-9
Power Up and Establish Communication 5-9
Cabling a Controller Pair 5-10
Configuring a Controller Pair Using CLI 5-10
Configure Controller Settings 5-12
Restart the Controller 5-12
Set Time and Verify All Commands 5-13
Plug in the FC Cable and Verify Connections 5-14
Repeat Procedure for Each Host Adapter Connection 5-15
Verify Installation 5-15
Configuring Devices 5-15
Configuring a Stripeset 5-16
Configuring a Mirrorset 5-16
Configuring a RAIDset 5-17
Configuring a Striped Mirrorset 5-18
Configuring a Single-Disk Unit (JBOD). 5-18
Configuring a Partition 5-19
Assigning Unit Numbers and Unit Qualifiers 5-20
Assigning a Unit Number to a Storageset 5-20
Assigning a Unit Number to a Single (JBOD) Disk 5-20
Assigning a Unit Number to a Partition 5-21
Preferring Units 5-21
Configuration Options 5-21
Changing the CLI Prompt 5-21
Mirroring cache 5-22
Adding Disk Drives 5-22
Adding a Disk Drive to the Spareset 5-22
Removing a Disk Drive from the Spareset 5-23
Enabling Autospare 5-23
Deleting a Storageset 5-24
Changing Switches for a Storageset or Device 5-24
Displaying the Current Switches 5-24
Changing RAIDset and Mirrorset Switches 5-24
Changing Device Switches 5-25
Changing Initialize Switches 5-25
Changing Unit Switches 5-25
Chapter 6
Verifying Storage Configuration from the Host
Chapter 7
Configuration Example Using CLICLI Configuration Example7-4
Chapter 8
Backing Up the Subsystem, Cloning Data for Backup, and Moving Storagesets
Backing Up the Subsystem Configuration 8-1
Cloning Data for Backup 8-2
Moving Storagesets 8-6
Appendix A
Subsystem Profile Templates
Storageset Profile A-2
Storage Map Template 1 for the BA370 Enclosure A-3
Storage Map Template 2 for the second BA370 Enclosure A-4
Storage Map Template 3 for the third BA370 Enclosure A-5
Storage Map Template 4 for the Model 4214R Disk Enclosure A-6
Storage Map Template 5 for the Model 4254 Disk Enclosure A-7
Storage Map Template 6 for the Model 4310R Disk Enclosure A-9
Storage Map Template 7 for the Model 4350R Disk Enclosure A-11
Storage Map Template 8 for the Model 4314R Disk Enclosure A-12
Storage Map Template 9 for the Model 4354R Disk Enclosure A-14
Appendix B
Installing, Configuring, and Removing the Client
Why Install the Client? B-1
Before You Install the Client B-2
Installing the Client B-2
Troubleshooting the Client Installation B-3
Invalid Network Port Assignments During Installation B-3
"There is no disk in the drive" Message B-4
Adding the Storage Subsystem and its Host to the Navigation Tree B-5
Removing the Command Console Client B-7
Where to Find Additional Information B-8
About the User Guide B-8
About the Online Help B-8
Glossary
Index

Figures

Figure 1 General configuration flowchart xviii
Figure 2 Configuring storage with the CLI xix
Figure 3 Configuring storage with SWCC xx
Figure 1-1 Location of controllers and cache modules in a Model 2200 enclosure 1-2
Figure 1-2 Location of controllers and cache modules in a BA370 enclosure 1-3
Figure 1-3 "This controller" and "other controller" for the Model 2200 enclosure 1-4
Figure 1-4 "This controller" and "other controller" for the BA370 enclosure 1-4
Figure 1-5 Transparent failover-normal operation 1-6
Figure 1-6 Transparent failover-after failover from controller B to controller A 1-7
Figure 1-7 Mirrored caching 1-9
Figure 1-8 Connections in separate-link, transparent failover mode configurations 1-11
Figure 1-9 Connections in single-link, transparent failover mode configurations 1-12
Figure 1-10 LUN presentation to hosts, as determined by offset 1-14
Figure 1-11 Limiting host access in transparent failover mode 1-18
Figure 1-12 Placement of the worldwide name label on the Model 2200 enclosure 1-21
Figure 1-13 Placement of the worldwide name label on the BA370 enclosure 1-21
Figure 2-1 PTL naming convention 2-4
Figure 2-2 PTL addressing in a configuration in a BA370 enclosure. 2-4
Figure 2-3 PTL addressing in a single-bus configuration, six Model 4310R disk enclosures 2-6
Figure 2-4 PTL addressing in a dual-bus configuration, three Model 4350R disk enclosures 2-7
Figure 2-5 PTL addressing in a single-bus configuration, six Model 4314R disk enclosures 2-8
Figure 2-6 PTL addressing in a dual-bus configuration, three Model 4354R disk enclosures 2-9
Figure 2-7 Mapping a unit to physical disk drives 2-10
Figure 2-8 Container types 2-11
Figure 2-9 An example storageset profile 2-13
Figure 2-10 A 3-member RAID 0 stripeset (example 1) 2-14
Figure 2-11 A 3-member RAID 0 stripeset (example 2) 2-15
Figure 2-12 Mirrorsets maintain two copies of the same data 2-17
Figure 2-13 Mirrorset example 2 2-17
Figure 2-14 A 5-member RAIDset using parity 2-18
Figure 2-15 Striped mirrorset (example 1) 2-20
Figure 2-16 Striped mirrorset (example 2) 2-21
Figure 2-17 One example of a partitioned single-disk unit 2-22
Figure 2-18 Chunk size larger than the request size 2-26
Figure 2-19 Model 4310R disk enclosure - example storage map 2-31
Figure 2-20 Model 4350R disk enclosure - example storage map 2-33
Figure 2-21 Model 4314R disk enclosure - example storage map 2-35
Figure 2-22 Model 4354R disk enclosure - example storage map 2-37
Figure 3-1 Dual-Bus Enterprise Storage RAID Array Storage System 3-3
Figure 3-2 Single-Bus Enterprise Storage RAID Array Storage System 3-4
Figure 4-1 An example of a network connection 4-4
Figure 5-1 Maintenance port connection 5-2
Figure 5-2 Single controller cabling 5-4
Figure 5-3 Controller pair failover cabling 5-10
Figure 7-1 Example storage map for the BA370 Enclosure 7-2
Figure 7-2 Example system 7-3
Figure 7-3 Example virtual system layout from the hosts' point of view 7-4
Figure 8-1 Steps the CLONE utility follows for duplicating unit members 8-3
Figure B-1 Navigation window B-5
Figure B-2 Navigation window showing storage host system "Atlanta" B-6
Figure B-3 Navigation window showing expanded "Atlanta" host icon B-6

Tables

Table 1-1 Unit Assignments and SCSI_VERSION 1-16
Table 2-1 A Comparison of Container Types 2-12
Table 2-2 Example Chunk Sizes 2-27
Table 4-1 SWCC Features and Components 4-2
Table 4-2 Installation and Configuration Overview 4-2

About this Guide

This guide provides installation and configuration instructions and reference material for operation of the HSG80 ACS Solution Software Version 8.6 for Novell NetWare.

Thank You for selecting a Compaq StorageWorks ${ }^{\text {TM }}$ RAID Array subsystem for your growing storage needs. StorageWorks RAID subsystems are designed to support the most popular computer platforms in the industry. The solution software that accompanies this kit enables the new storage subsystem to work effectively with your chosen platform.

Please fill out and return the Registration Card included in this kit. This information is used by Compaq to provide notification services to its customers. You can also register online at:
http://www.compaq.com/products/registration
This guide describes:

- Considerations while planning a configuration
- Configuration procedures

This book does not contain information about the operating environments to which the controller may be connected; nor does it contain detailed information about subsystem enclosures or their components. See the documentation that accompanied these peripherals for information about them.

Text Conventions

This document uses the following conventions:
\(\left.$$
\begin{array}{ll}\text { Keys } & \begin{array}{l}\text { Keys appear in boldface. A plus sign (+) between two } \\
\text { keys indicates that they should be pressed } \\
\text { simultaneously. }\end{array} \\
\text { USER INPUT, COMMANDS } & \begin{array}{l}\text { * User input and commands appear in this typeface and in } \\
\text { uppercase. }\end{array} \\
\begin{array}{l}\text { Menu Options, type of user } \\
\text { input }\end{array} & \begin{array}{l}\text { Menu options and the type of user input, such as } \\
\text { device-name, appear in italics. }\end{array}
$$

FILENAMES \& * File names appear in uppercase italics.\end{array}\right\}\)	These elements appear in initial capital letters.

Symbols in Text

The symbols found in this guide have the following meanings:
\qquad

IMPORTANT: Text set off in this manner presents clarifying information or specific instructions.

Symbols on Equipment

Any surface or area of the equipment marked with these symbols indicates the presence of electrical shock hazards. Enclosed area contains no operator serviceable parts.
WARNING: To reduce the risk of injury from electrical shock hazards, do not open this enclosure.

Any RJ-45 receptacle marked with these symbols indicates a Network Interface Connection.
WARNING: To reduce the risk of electrical shock, fire, or damage to the equipment, do not plug telephone or telecommunications connectors into this receptacle.

Any surface or area of the equipment marked with these symbols indicates the presence of a hot surface or hot component. If this surface is contacted, the potential for injury exists.
WARNING: To reduce the risk of injury from a hot component, allow the surface to cool before working with it.

Power Supplies or Systems marked with these symbols indicate that the equipment is supplied by multiple sources of power. WARNING: To reduce the risk of injury from electrical shock, remove all power cords to completely disconnect power from the system.

Any product or assembly marked with these symbols indicates that the component exceeds the recommended weight for one individual to handle safely.
WARNING: To reduce the risk of personal injury or damage to the equipment, observe local occupational health and safety requirements and guidelines for manual material handling.

Rack Stability

WARNING: To reduce the risk of personal injury or damage to the equipment, be sure that:

- The leveling jacks are extended to the floor.
- The full weight of the rack rests on the leveling jacks.
- The stabilizing feet are attached to the rack if it is a single rack installation.

■ The racks are coupled together in multiple rack installations.

- A rack may become unstable if more than one component is extended for any reason. Extend only one component at a time.

Installation and Setup of the CD-ROM

Contents of CD-ROM:

■ Device Drivers

- Solution Software
- Storage Works Command Console (SWCC) Agent and Client software
- Documentation

NOTE: Refer to the platform-specific release notes for detailed solution kit contents and release-specific information.

Configuration Flowchart

A three-part flowchart is shown on the following pages. Refer to these charts while configuring a new storage subsystem:

- Figure 1 on page xviii shows the start of the configuration process.
- Figure 2 on page xix shows how to configure storage with the command line interpreter (CLI), which is the low-level interface to the controller.
- Figure 3 on page xx shows how to configure storage using StorageWorks Command Console (SWCC), which is the graphical user interface to the controller.

All references in the flowcharts pertain to pages in this guide, unless otherwise indicated.

Figure 1. General configuration flowchart

Figure 2. Configuring storage with the CLI

Figure 3. Configuring storage with SWCC

Getting Help

If you have a problem and have exhausted the information in this guide, you can receive further information and other help in the following locations.

Compaq Technical Support

A technical support specialist can help diagnose the problem or guide you to the next step in the warranty process.

In North America, call the Compaq Technical Phone Support Center at 1-800-OK-COMPAQ. This service is available 24 hours a day, 7 days a week.

NOTE: For continuous quality improvement, calls may be recorded or monitored.
Outside North America, call the nearest Compaq Technical Support Phone Center.
Telephone numbers for worldwide Technical Support Centers are listed on the Compaq website. Access the Compaq website:
http://www.compaq.com

Be sure to have the following information available before you call Compaq:
■ Technical support registration number (if applicable)

- Product serial numbers
- Product model names and numbers
- Applicable error messages
- Add-on boards or hardware
- Third-party hardware or software
- Operating system type and revision level
- Detailed, specific questions

Compaq Website

The Compaq website has latest information on this product as well as the latest drivers.
Access the Compaq website at:
http://www.compaq.com/storage

Compaq Authorized Reseller

For the name of your nearest Compaq Authorized Reseller:
In the United States, call 1-800-345-1518.
■ In Canada, call 1-800-263-5868.
■ Elsewhere, see the Compaq website for locations and telephone numbers.

Chapter 1

Planning a Subsystem

This chapter provides information that helps you plan how to configure the subsystem. Refer to Chapter 2 when planning the types of storage containers you need.

IMPORTANT: This chapter frequently references the command line interface (CLI). For the complete syntax and descriptions of the CLI commands, see the Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide.

The following information is included in this chapter:

- "Defining the Subsystems," page 1-2
- "Failover Mode," page 1-5
- "Selecting a Cache Mode," page 1-7
- "Enabling Mirrored Caching," page 1-9
- "Connections," page 1-10
- "Assigning Unit Numbers," page 1-13

■ "Worldwide Names (Node IDs and Port IDs)," page 1-20

IMPORTANT: DILX should be run for ten minutes on all units to delete the 8 MB EISA partition. Refer to Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide for details.

Defining the Subsystems

This section describes the terms this controller and other controller. It also presents graphics of the Model 2200 and BA370 enclosures.

NOTE: The HSG80 controller uses the BA370 or Model 2200 enclosure.

Controller Designations A and B

The terms A, B, "this controller," and "other controller," respectively are used to distinguish one controller from another in a two-controller (also called dual-redundant) subsystem. These terms are described more thoroughly in the following sections.

Controllers and cache modules are designated either A or B depending on their location in the enclosure, as shown in Figure 1-1 for the Model 2200 enclosure and as shown in Figure 1-2 for the BA370 enclosure.

Model 2200 Enclosure

(4) Power supplies
(5) I/O modules
(6) Controller A
(7) Controller B
(8) Cache module A
(9) Cache module B

CXO7365A

Figure 1-1. Location of controllers and cache modules in a Model 2200 enclosure

BA370 Enclosure

(1) EMU
(2) PVA
(3) Controller A
(4) Controller B
(6) Cache module A
(6) Cache module B

Figure 1-2. Location of controllers and cache modules in a BA370 enclosure

Controller Designations "This Controller" and "Other Controller"

Some CLI commands use the terms "this" and "other" to identify one controller or the other in a dual-redundant pair. These designations are a shortened form of "this controller" and "other controller." These terms are defined as follows:

■ "this controller"-the controller that is the focus of the CLI session. "This controller" is the controller to which the maintenance terminal is attached and through which the CLI commands are being entered. "This controller" can be shortened to "this" in CLI commands.

■ "other controller"- the controller that is not the focus of the CLI session and through which CLI commands are not being entered. "Other controller" can be shortened to "other" in CLI commands.

Figure 1-3 shows the relationship between "this controller" and "other controller" in a Model 2200 enclosure, and Figure 1-4 shows the same relationship in a BA370 enclosure.

Figure 1-3. "This controller" and "other controller" for the Model 2200 enclosure
BA370 Enclosure

Figure 1-4. "This controller" and "other controller" for the BA370 enclosure

Failover Mode

Failover is a way to keep the storage array available to the host if one of the controllers becomes unresponsive. A controller can become unresponsive because of a hardware failure, such as a controller. Failover keeps the storage array available to the hosts by allowing the surviving controller to take over total control of the subsystem.

Transparent Failover Mode

Transparent failover mode has the following characteristics:
Hosts do not know failover has taken place
Units are divided between host ports 1 and 2
A unit or storage unit is a physical or virtual device of the subsystem. It is typically assigned a logical unit number (LUN) and is managed by the HSG80 controller and presented to a server through the Fibre Channel bus and the server's host bus adapter. Disks that are set up as independent disks (JBODs) or RAIDsets are referred to as storagesets. Storagesets are units.

In transparent failover mode, host port 1 of controller A and host port 1 of controller B must be on the same Fibre Channel link. Host port 2 of controller A and host port 2 of controller B must also be on the same Fibre Channel link. Depending on operating system restrictions and requirements, the port 1 link and the port 2 link can be separate links, or they can be the same link.

At any time, host port 1 is active on only one controller, and host port 2 is active on only one controller. The other ports are in standby mode. In normal operation, both host port 1 on controller A and host port 2 on controller B are active. A representative configuration is shown in Figure 1-5. The active and standby ports share port identity, enabling the standby port to take over for the active one. If one controller fails, its companion controller (known as the surviving controller) takes control by making both its host ports active, as shown in Figure 1-6.

Units are divided between the host ports:
■ Units 0-99 are on host port 1 of both controllers (but accessible only through the active port).
■ Units 100-199 are on host port 2 of both controllers (but accessible only through the active port).

Transparent failover only compensates for a controller failure, and not for failures of either the Fibre Channel link or host Fibre Channel adapters.

Figure 1-5. Transparent failover-normal operation

Figure 1-6. Transparent failover—after failover from controller B to controller A

Selecting a Cache Mode

The cache module supports read, read-ahead, write-through, and write-back caching techniques. The cache technique is selected separately for each unit. For example, you can enable only read and write-through caching for some units while enabling only write-back caching for other units.

Read Caching

When the controller receives a read request from the host, it reads the data from the disk drives, delivers it to the host, and stores the data in its cache module. Subsequent reads for the same data will take the data from cache rather than accessing the data from the disks. This process is called read caching.

Read caching can improve response time to many of the host's read requests. By default, read caching is enabled for all units.

Read-Ahead Caching

During read-ahead caching, the controller anticipates subsequent read requests and begins to prefetch the next blocks of data from the disks as it sends the requested read data to the host. This is a parallel action. The controller notifies the host of the read completion, and subsequent sequential read requests are satisfied from the cache memory. By default, read-ahead caching is enabled for all units.

Write-Back Caching

Write-back caching improves the subsystem's response time to write requests by allowing the controller to declare the write operation complete as soon as the data reaches cache memory. The controller performs the slower operation of writing the data to the disk drives at a later time.

By default, write-back caching is enabled for all units, but only if there is a backup power source for the cache modules (either batteries or an uninterruptable power supply).

Write-Through Caching

Write-through caching is enabled when write-back caching is disabled. When the controller receives a write request from the host, it places the data in its cache module, writes the data to the disk drives, then notifies the host when the write operation is complete. This process is called write-through caching because the data actually passes through-and is stored in - the cache memory on its way to the disk drives.

Enabling Mirrored Caching

In mirrored caching, half of each controller's cache mirrors the companion controller's cache, as shown in Figure 1-7.

The total memory available for cached data is reduced by half, but the level of protection is greater.

Figure 1-7. Mirrored caching
Before enabling mirrored caching, make sure the following conditions are met:

- Both controllers support the same size cache.
- Diagnostics indicate that both caches are good.
- No unit errors are outstanding, for example, lost data or data that cannot be written to devices.
- Both controllers are started and configured in failover mode.

IMPORTANT: FOR NOVELL NETWARE USERS. The Command Console LUN (CCL) feature is not supported with this version of NetWare. The following discussion relating to CCL does not apply. It is recommended that Unit \#0 not be used to allow for the future addition of CCL with NetWare.
You need to manually create a storageset to be used as a CCL. This is a requirement for the HS-Series Agent and NetWare.

Connections

The term "connection" applies to every path between a Fibre Channel adapter in a host computer and an active host port on a controller.

NOTE: In ACS V8.6 the maximum number of supported connections is 96 .

Naming Connections

Compaq highly recommends that you assign names to connections that have meaning in the context of your particular configuration. One system that works well is to name each connection after its host, its adapter, its controller, and its controller host port, as follows:

Examples:

A connection from the first adapter in the host named RED that goes to port 1 of controller A would be called RED1A1.

A connection from the third adapter in host GREEN that goes to port 2 of controller B would be called GREEN3B2.

NOTE: Connection names can have a maximum of 9 characters.

Numbers of Connections

The number of connections resulting from cabling one adapter into a switch or hub depends on failover mode and how many links the configuration has:

- If a controller pair is in transparent failover mode and the port 1 link is separate from the port 2 link (that is, ports 1 of both controllers are on one loop or fabric, and port 2 of both controllers are on another), each adapter will have one connection, as shown in Figure 1-8.
- If a controller pair is in transparent failover mode and port 1 and port 2 are on the same link (that is, all ports are on the same loop or fabric), each adapter will have two connections, as shown in Figure 1-9.

NOTE: FCA = Fibre Channel Adapter
Figure 1-8. Connections in separate-link, transparent failover mode configurations

NOTE: FCA = Fibre Channel Adapter
CXO7079B
Figure 1-9. Connections in single-link, transparent failover mode configurations

Assigning Unit Numbers

The controller keeps track of the unit with the unit number. The unit number can be from $0-199$ prefixed by a D , which stands for disk drive. A unit can be presented as different LUNs to different connections. The interaction of a unit and a connection is determined by several factors:

- Failover mode of the controller pair

■ The ENABLE_ACCESS_PATH and PREFERRED_PATH switches in the ADD UNIT (or SET unit) commands

■ The UNIT_OFFSET switch in the ADD CONNECTIONS (or SET connections) commands

- The controller port to which the connection is attached

■ The SCSI_VERSION switch of the SET THIS_CONTROLLER/OTHER_CONTROLLER command
The considerations for assigning unit numbers are discussed in the following sections.

Matching Units to Host Connections in Transparent Failover Mode

In transparent failover mode, the ADD UNIT command creates a unit for host connection to access and assigns it to either port 1 of both controllers or to port 2 of both controllers.

Unit numbers are assigned to ports as follows:

- 0-99 are assigned to host port 1 of both controllers.

■ 100-199 are assigned to host port 2 of both controllers.
For example, unit D2 is on port 1, and unit D102 is on port 2.
The LUN number that a host connection assigns to a unit is a function of the UNIT_OFFSET switch of the ADD (or SET) CONNECTIONS command. The relationship of offset, LUN number, and unit number is shown in the following equation:

LUN number $=$ unit number - offset
Where. . .
LUN number is relative to the host (what the host sees the unit as)

- Unit number is relative to the controller (what the controller sees the unit as)

If no value is specified for offset, then connections on port 1 have a default offset of 0 and connections on port 2 have a default offset of 100 .

For example, if all host connections use the default offset values, unit D 2 will be presented to a port 1 host connection as LUN 2 (unit number of 2 minus offset of 0). Unit D102 will be presented to a port 2 host connection as LUN 2 (unit number of D102 minus offset of 100).

Figure 1-10 shows how units are presented as different LUNs, depending on the offset of the host. In this illustration, host connection 1 and host connection 2 would need to be on host port 1 ; host connection 3 would need to be on host port 2 .

Controller units	Host connection 1 Offset: 0	Host connection 2 Offset: 20	Host connection 3 Offset: 100
D0	LUN 0		
D1	LUN 1		
D2	LUN 2		
D3	LUN 3		
D20	LUN 20	LUN 0	
D21	LUN 21	LUN 1	
D100			LUN 0
D101			LUN 1
D102			LUN 2
D130			LUN 30
D131			LUN 31

Figure 1-10. LUN presentation to hosts, as determined by offset
Offsets other than the default values can be specified. For example, unit D17 would be visible to a host connection on port 1 that had an offset of 10 as LUN 7 (unit number of 17 minus offset of 10). The unit would not be visible to a host connection with a unit offset of 18 or greater, because that offset is not within the unit's range (unit number of 17 minus offset of 18 is a negative number).

Similarly, unit D127 would be visible to a host connection on port 2 that had an offset of 120 as LUN 7 (unit number of 127 minus offset of 120). The unit would not be visible to a host connection with a unit offset of 128 or greater, because that offset is not within the unit's range (unit number of 127 minus offset of 128 is a negative number).

An additional factor to consider when assigning unit numbers and offsets is SCSI version. If the SCSI_VERSION switch of the SET THIS_CONTROLLER/OTHER_CONTROLLER command is set to SCSI-3, the CCL is presented as LUN 0 to every connection, superseding any unit assignments. The interaction between SCSI version and unit numbers is explained further in the next section.

In addition, the access path to the host connection must be enabled for the connection to access the unit. See "Restricting Host Access in Transparent Failover Mode," page 1-17.

Assigning Unit Numbers Depending on SCSI_VERSION

The SCSI_VERSION switch of the SET THIS_CONTROLLER/OTHER_CONTROLLER command determines how the CCL is presented. There are two choices: SCSI-2 and SCSI-3. The choice for SCSI_VERSION affects how certain unit numbers and certain host connection offsets interact.

Assigning Host Connection Offsets and Unit Numbers in SCSI-3 Mode

If SCSI_VERSION is set to SCSI-3, the CCL is presented as LUN 0 to all connections. The CCL supersedes any other unit assignment. Therefore, in SCSI-3 mode, a unit that would normally be presented to a connection as LUN 0 is not visible to that connection at all.

The following methods are recommended for assigning host connection offsets and unit numbers in SCSI-3 mode:

- Offsets should be divisible by 10 (for consistency and simplicity).

■ Unit numbers should not be assigned at connection offsets (to avoid being masked by the CCL at LUN 0).

For example, if a host connection has an offset of 20 and SCSI-3 mode is selected, the connection will see LUNs as follows:

LUN 0 - CCL
LUN 1 - unit 21
LUN 2 - unit 22, etc.
In this example, if a unit 20 is defined, it will be superseded by the CCL and invisible to the connection.

Assigning Host Connection Offsets and Unit Numbers in SCSI-2 Mode

Some operating systems expect or require a disk unit to be at LUN 0 . In this case, it is necessary to specify SCSI-2 mode.

If SCSI_VERSION is set to SCSI-2 mode, the CCL floats, moving to the first available LUN location, depending on the configuration.

It is recommended to use the following conventions when assigning host connection offsets and unit numbers in SCSI-2 mode:

- Offsets should be divisible by 10 (for consistency and simplicity).

■ Unit numbers should be assigned at connection offsets (so that every host connection has a unit presented at LUN 0).

Table 1-1 summarizes the recommendations for unit assignments based on the SCSI_VERSION switch.

Table 1-1 Unit Assignments and SCSI_VERSION

SCSI_VERSION	Offset	Unit Assignment	What the connection sees LUN $\mathbf{0}$ as
SCSI-2	Divisible by 10	At offsets	Unit whose number matches offset
SCSI-3	Divisible by 10	Not at offsets	CCL

Selective Storage Presentation

Selective Storage presentation is a feature of the HSG80 controller that enables the user to control the allocation of storage space and shared access to storage across multiple hosts. This is also known as Restricting Host Access.

In a subsystem that is attached to more than one host or if the hosts have more than one adapter, it is possible to reserve certain units for the exclusive use of certain host connections.

For a controller pair, the method used to restrict host access depends on whether the controllers are in transparent or multiple-bus failover mode. For a single controller, the methods are the same as for a controller pair in transparent failover.

NOTE: The default condition is ENABLE_ACCESS_PATH=ALL. This specifies that access paths to ALL hosts are enabled. It is recommended that the user restrict host access and that the access path be carefully specified to avoid providing undesired host connections access to the unit.

Restricting Host Access in Transparent Failover Mode

Three methods can be used to restrict host access to storage units in transparent failover mode:

■ Using separate Fibre Channel links (either loop or fabric)
■ Enabling the access path of selected host connections on a shared loop or fabric

- Setting offsets

NOTE: These techniques also work for a single controller.

Restricting Host Access by Separate Links

In transparent failover mode, host port 1 of controller A and host port 1 of controller B share a common Fibre Channel link. Host port 2 of controller A and host port 2 of controller B also share a common Fibre Channel link. If the host 1 link is separate from the host 2 link, the simplest way to limit host access is to have one host or set of hosts on the port 1 link, and another host or set of hosts on the port 2 link. Each host can then see only units assigned to its respective controller port. This separation of host buses is shown in Figure $1-11$. This method applies only if the host 1 link and host 2 link are separate links.

NOTE: Compaq highly recommends that you provide access to only specific connections. This way, if new connections are added, they will not have automatic access to all units. See the following section Restricting Host Access by Disabling Access Paths.

NOTE: FCA = Fibre Channel Adapter
Figure 1-11. Limiting host access in transparent failover mode

Restricting Host Access by Disabling Access Paths

If more than one host is on a link (that is, attached to the same port), host access can be limited by enabling the access of certain host connections and disabling the access of others. This is done through the ENABLE_ACCESS_PATH and DISABLE_ACCESS_PATH switches of the commands. The access path is a unit switch, meaning it must be specified for each unit. Default access enables the unit to be accessible to all hosts.

For example:

In Figure 1-11, restricting the access of unit D101 to host 3, the host named BROWN can be done by enabling only the connection to host 3 . Enter the following commands:

```
SET D101 DISABLE_ACCESS_PATH=ALL
SET D101 ENABLE_ACCESS_PATH=BROWN1B2
```

If the storage subsystem has more than one host connection, carefully specify the access path to avoid providing undesired host connections access to the unit. The default condition for a unit is that access paths to all host connections are enabled. To restrict host access to a set of host connections, specify DISABLE_ACCESS_PATH=ALL for the unit, then specify the set of host connections that are to have access to the unit.

Enabling the access path to a particular host connection does not override previously enabled access paths. All access paths previously enabled are still valid; the new host connection is simply added to the list of connections that can access the unit.

IMPORTANT: The procedure of restricting access by enabling all access paths then disabling selected paths is not recommended because of the potential data/security breach that occurs when a new host connection is added.

Restricting Host Access by Offsets

Offsets establish the start of the range of units that a host connection can access.
For example:
In Figure 1-11, assume both host connections on port 2 (connections BLACK1B2 and BROWN1B2) initially have the default port 2 offset of 100 . Setting the offset of connection BROWN1B2 to 120 will present unit D120 to host BROWN as LUN 0.

SET BROWN1B2 UNIT_OFFSET=120
Host BROWN cannot see units lower than its offset, so it cannot access units D100 and D101. However, host BLACK can still access D120 as LUN 20 if the operating system permits. To restrict access of D120 to only host BROWN, enable only host BROWN's access, as follows:

SET D120 DISABLE_ACCESS_PATH=ALL
SET D120 ENABLE_ACCESS_PATH=BROWN1B2

NOTE: Compaq recommends that you provide access to only specific connections, even if there is just one connection on the link. This way, if new connections are added, they will not have automatic access to all units.

Worldwide Names (Node IDs and Port IDs)

A worldwide name-also called a node ID-is a unique, 64-bit number assigned to a subsystem prior to shipping. The node ID belongs to the subsystem itself and never changes.

Each subsystem's node ID ends in zero, for example 5000-1FE1-FF0C-EE00. The controller port IDs are derived from the node ID.

In a subsystem with two controllers in transparent failover mode, the controller port IDs are incremented as follows:

- Controller A and controller B, port 1-worldwide name +1 , for example 5000-1FE1-FF0C-EE01
- Controller A and controller B, port 2-worldwide name +2 , for example 5000-1FE1-FF0C-EE02

Use the CLI command, SHOW THIS_CONTROLLER/OTHER_CONTROLLER to display the subsystem's worldwide name.

Restoring Worldwide Names (Node IDs)

If a situation occurs that requires you to restore the worldwide name, you can restore it using the worldwide name and checksum printed on the sticker on the frame into which the controller is inserted.

Figure 1-12 shows the placement of the worldwide name label for the Model 2200 enclosure, and Figure 1-13 for the BA370 enclosure.

Figure 1-12. Placement of the worldwide name label on the Model 2200 enclosure

Figure 1-13. Placement of the worldwide name label on the BA370 enclosure

CAUTION: Each subsystem has its own unique worldwide name (node ID). If you attempt to set the subsystem worldwide name to a name other than the one that came with the subsystem, the data on the subsystem will not be accessible. Never set two subsystems to the same worldwide name, or data corruption will occur.

Unit Worldwide Names (LUN IDs)

In addition, each unit has its own worldwide name, or LUN ID. This is a unique, 128 -bit value that the controller assigns at the time of unit initialization. It cannot be altered by the user but does change when the unit is reinitialized. Use the SHOW command to list the LUN ID.

Chapter 2

Planning Storage

This chapter provides information to help you plan the storage configuration of your subsystem. Use the guidelines found in this section to plan the various types of storage containers needed.

The following information is included in this chapter:
■ "Where to Start," page 2-2
■ "Configuration Rules," page 2-3
■ "Device PTL Addressing Convention," page 2-3

- "Determining Storage Requirements," page 2-10
- "Choosing a Container Type," page 2-11

■ "Creating a Storageset Profile," page 2-12
■ "Storageset Planning Considerations," page 2-14
■ "Storageset Expansion Considerations," page 2-21

- "Partition Planning Considerations," page 2-22

■ "Changing Characteristics through Switches," page 2-23
■ "Storageset and Partition Switches," page 2-24
■ "Initialization Switches," page 2-25
■ "Unit Switches," page 2-28
■ "Storage Maps," page 2-29

Where to Start

The following procedure outlines the steps to follow when planning your storage configuration. Containers are individual disk drives (JBOD), storageset types (mirrorsets, stripesets, and so on), and/or partitioned drives. See Appendix A to locate the blank templates for keeping track of the containers being configured.

1. Review configuration rules. See "Configuration Rules," page 2-3.
2. Familiarize yourself with the current physical layout of the devices and their addressing scheme. See "Device PTL Addressing Convention," page 2-3.
3. Determine your storage requirements. Use the questions in "Determining Storage Requirements," page 2-10, to help you.
4. Choose the type of storage containers you need to use in your subsystem. See "Choosing a Container Type," page 2-11, for a comparison and description of each type of storageset.
5. Create a storageset profile (described in "Creating a Storageset Profile," page 2-12). Fill out the storageset profile while you read the sections that pertain to your chosen storage type:

- "Storageset Planning Considerations," page 2-14
- "Mirrorset Planning Considerations," page 2-16
- "RAIDset Planning Considerations," on page 18
- "Partition Planning Considerations," page 2-22
- "Striped Mirrorset Planning Considerations," page 2-20

6. Decide which switches you need for your subsystem. General information on switches is detailed in "Storageset and Partition Switches," page 2-24.

- Determine the unit switches you want for your units ("Unit Switches," page 2-28).
- Determine the initialization switches you want for your planned storage containers ("Initialization Switches," page 2-25).

7. Create a storage map ("Storage Maps," page 2-29).
8. Configure the storage you have now planned using one of the following methods:

- Use SWCC. See the SWCC documentation for details.
- Use the Command Line Interpreter (CLI) commands. This method allows you flexibility in defining and naming your storage containers. See the Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide.

Configuration Rules

Review the following requirements and conditions to ensure that the storage configuration you are planning is adequate:

- Maximum of 128 LUNs: if Command Console LUN (CCL) is enabled, the result is 127 visible LUNs and one CCL
- Maximum 1.024 TB LUN capacity

■ Maximum 84 physical drives with 2 optional expansion enclosures per storage system
■ Maximum 84 physical devices

- Maximum 20 RAID-5 storagesets

■ Maximum 8 partitions per storageset or individual disk
■ Maximum 6 physical devices per RAID 1 (mirrorset)

- Maximum 14 physical devices per RAID-5 storageset

■ Maximum 24 physical devices per RAID 0 (stripeset)

- Maximum 24 physical devices per striped mirrorset

Device PTL Addressing Convention

The HSG80 controller has six SCSI device ports, each of which connects to a SCSI bus. In dual-controller subsystems, these device buses are shared between the two controllers. (The StorageWorks Command Console GUI calls the device ports "channels.") The standard BA370 enclosure provides a maximum of four SCSI target identifications (ID) for each device port. If more target IDs are needed, expansion enclosures can be added to the subsystem.

The HSG80 controller identifies devices based on a Port-Target-LUN (PTL) numbering scheme, shown in Figure 2-1. The physical location of a device in its enclosure determines its PTL.

- P—Designates the controller's SCSI device port number (1 through 6).

■ T-Designates the target ID number of the device. Valid target ID numbers for a single-controller configuration and dual-redundant controller configuration are 0-3 and $8-15$, respectively.

■ L-Designates the logical unit (LUN) of the device. For disk devices the LUN is always 0 .

Figure 2-1. PTL naming convention
The controller can either operate with a BA370 enclosure or with a Model 2200 controller enclosure combined with Model 4214R, Model 4254, Model 4310R, Model 4350R, Model 4314R, or Model 4354R disk enclosures.

The controller operates with BA370 enclosures that are assigned ID numbers 0,2, and 3 . These ID numbers are set through the PVA module. Enclosure ID number 1, which assigns devices to targets 4 through 7, is not supported. Figure 2-2 shows the addresses for each device in an extended configuration.

CXO5851B
Figure 2-2. PTL addressing in a configuration in a BA370 enclosure

The Model 2200 controller enclosure can be combined with the following:
■ Model 4214R disk enclosure - Ultra2 SCSI with 14 drive bays, single-bus I/O module.

■ Model 4254 disk enclosure - Ultra2 SCSI with 14 drive bays, dual-bus I/O module.
NOTE: The Model 4214R uses the same storage maps as the Model 4314R, and the Model 4254 uses the same storage maps as the Model 4354R disk enclosures.

■ Model 4310R disk enclosure - Ultra3 SCSI with 10 drive bays, single-bus I/O module. Figure 2-3 shows the addresses for each device in a six-shelf, single-bus configuration. A maximum of six Model 4310R disk enclosures can be used with each Model 2200 controller enclosure.

NOTE: The storage map for the Model 4310R reflects the disk enclosure's physical location in the rack. Disk enclosures 6,5 , and 4 are stacked above the controller enclosure, and disk enclosures 1,2 , and 3 are stacked below the controller enclosure.

■ Model 4350R disk enclosure - Ultra3 SCSI with 10 drive bays, dual-bus I/O module. Figure 2-4 shows the addresses for each device in a three-shelf, dual-bus configuration. A maximum of three Model 4350R disk enclosures can be used with each Model 2200 controller enclosure.

■ Model 4314R disk enclosure - Ultra3 SCSI with 14 drive bays, single-bus I/O module. Figure 2-5 shows the addresses for each device in a six-shelf, single-bus configuration. A maximum of six Model 4314R disk enclosures can be used with each Model 2200 controller enclosure.

NOTE: The storage map for the Model 4314R reflects the disk enclosure's physical location in the rack. Disk enclosures 6,5 , and 4 are stacked above the controller enclosure, and disk enclosures 1,2 , and 3 are stacked below the controller enclosure.

Model 4354R disk enclosure - Ultra3 SCSI with 14 drive bays, dual-bus I/O module. Figure 2-6 shows the addresses for each device in a three-shelf, dual-bus configuration. A maximum of three Model 4354R disk enclosures can be used with each Model 2200 controller enclosure.

NOTE: Appendix A contains storageset profiles you can copy and use to create your own system profiles. It also contains an enclosure template you can use to help you keep track of the location of devices and storagesets in your shelves.

Model 4310R Disk Enclosure Shelf 6 （single－bus）

Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
DISK ID	8 8 0 0 0 0							응 $\stackrel{0}{6}$ $\stackrel{0}{0}$ 0		

Model 4310R Disk Enclosure Shelf 5 （single－bus）

Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
DISK ID				응 0 0 0 0 0	8 0 0 0 0 0					

Model 4310R Disk Enclosure Shelf 4 （single－bus）

Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
DISK ID		$\begin{aligned} & \text { ob } \\ & \stackrel{\rightharpoonup}{O} \\ & \stackrel{t}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { ờ } \\ & \text { oे } \\ & \text { 旁 } \end{aligned}$	융 喜 $\stackrel{0}{0}$		$\begin{aligned} & \text { 8 } \\ & \text { 年 } \\ & \text { 旁 } \end{aligned}$				

Model 4310R Disk Enclosure Shelf 1 （single－bus）

Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
DISK ID			$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { O} \\ & \stackrel{y}{0} \end{aligned}$					$\begin{aligned} & \stackrel{8}{8} \\ & \frac{0}{5} \\ & \frac{5}{5} \end{aligned}$	$\begin{aligned} & \frac{\circ}{\square} \\ & \frac{1}{5} \\ & \frac{0}{\square} \end{aligned}$	

Model 4310R Disk Enclosure Shelf 2 （single－bus）

Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
DISK ID				$\stackrel{\circ}{0}$ N Non 0						$\begin{aligned} & \text { ò } \\ & \text { N } \\ & \text { No } \end{aligned}$

Model 4310R Disk Enclosure Shelf 3 （single－bus）

Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
DISK ID		$\begin{aligned} & \text { 음 } \\ & \text { 윻 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$							$\begin{aligned} & \text { o } \\ & \text { 을 } \\ & \text { 答 } \end{aligned}$	

Figure 2－3．PTL addressing in a single－bus configuration，six Model 4310R disk enclosures

Model 4350R Disk Enclosure Shelf 1 (dual-bus)

	SCSI Bus A					SCSI Bus B				
Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	00	01	02	03	04
DISK ID		$\left\lvert\, \begin{aligned} & \frac{9}{0} \\ & \frac{0}{0} \\ & \frac{5}{6} \\ & \hline 0 \end{aligned}\right.$					$\begin{aligned} & \text { O} \\ & \stackrel{0}{2} \\ & \text { y } \\ & \frac{\omega}{0} \end{aligned}$	(\%)		

Model 4350R Disk Enclosure Shelf 2 (dual-bus)

	SCSI Bus A					SCSI Bus B				
Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	00	01	02	03	04
DISK ID										¢

Model 4350R Disk Enclosure Shelf 3 (dual-bus)

	SCSI Bus A					SCSI Bus B				
Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	00	01	02	03	04
DISK ID										

Figure 2-4. PTL addressing in a dual-bus configuration, three Model 4350R disk enclosures

Model 4314R Disk Enclosure Shelf 6 (single-bus)

Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID		$\begin{aligned} & \text { 음 } \\ & \text {. } \\ & \text { op } \\ & 0.0 \end{aligned}$			앙 $\stackrel{y}{\circ}$ $\stackrel{0}{0}$ \vdots		응 O 응 0				$\begin{aligned} & \hline \stackrel{\rightharpoonup}{N} \\ & \stackrel{1}{9} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \hline 0 \end{aligned}$	-	-

Model 4314R Disk Enclosure Shelf 5 (single-bus)

Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID						8 8 0 0 0 0	8 0. 0 0 0 0 0		응 응 M 0	$\begin{aligned} & \text { 은 } \\ & \stackrel{y}{2} \\ & \stackrel{y}{0} \end{aligned}$		$\begin{aligned} & \text { oे } \\ & \frac{0}{2} \\ & \frac{0}{0} \\ & \stackrel{0}{0} \end{aligned}$		8 0 0 0 0 0 0 0

Model 4314R Disk Enclosure Shelf 4 (single-bus)

Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID									$\begin{aligned} & \stackrel{8}{0} \\ & \frac{0}{\square} \\ & \stackrel{y}{b} \end{aligned}$	$\begin{aligned} & \frac{8}{0} \\ & \stackrel{\rightharpoonup}{7} \\ & \stackrel{y}{\square} \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { N. } \\ & \text { 旁 } \end{aligned}$			

Model 4314R Disk Enclosure Shelf 1 (single-bus)

Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID		$\begin{aligned} & \hline \frac{8}{0} \\ & \text { ㅇ } \\ & \text { 듬 } \end{aligned}$	응 응 응	응 응 등		$\begin{aligned} & \text { 융 } \\ & \frac{0}{6} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$			8 8 $\frac{0}{5}$ $\frac{5}{0}$					

Model 4314R Disk Enclosure Shelf 2 (single-bus)

Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID			$\begin{aligned} & \text { O} \\ & \text { N} \\ & \text { N} \\ & \text { y } \end{aligned}$	응 N 끙	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { N} \\ & \stackrel{y}{0} \end{aligned}$		$\begin{aligned} & \text { OQ } \\ & \text { O} \\ & \text { N} \\ & \text { Nom } \end{aligned}$		$\begin{aligned} & \hline \stackrel{O}{0} \\ & \stackrel{O}{N} \\ & \stackrel{y}{0} \end{aligned}$					

Model 4314R Disk Enclosure Shelf 3 (single-bus)

Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSIID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID				응 O O 0						$\begin{aligned} & \text { oㅇ } \\ & \stackrel{\rightharpoonup}{M} \\ & \stackrel{0}{0} \\ & \ddot{0} \end{aligned}$	$\begin{aligned} & \text { O-D} \\ & \text { N } \\ & \text { N } \\ & \stackrel{y}{0} \end{aligned}$		¢	

Figure 2-5. PTL addressing in a single-bus configuration, six Model 4314R disk enclosures

Model 4354R Disk Enclosure Shelf 1 (dual-bus)

	SCSI Bus A							SCSI Bus B						
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSIID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
DISK ID			$\begin{aligned} & \hline \stackrel{\rightharpoonup}{2} \\ & \frac{0}{0} \\ & \frac{1}{y} \\ & \frac{0}{0} \end{aligned}$				$\begin{array}{\|l} \hline \stackrel{8}{\circ} \\ \frac{0}{2} \\ \frac{2}{9} \end{array}$						-	-

Model 4354R Disk Enclosure Shelf 2 (dual-bus)

	SCSI Bus A							SCSI Bus B						
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
DISK ID													8 0.0 \vdots \vdots \vdots 0	

Model 4354R Disk Enclosure Shelf 3 (dual-bus)

	SCSI Bus A							SCSI Bus B						
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
DISK ID	蒿								$\begin{aligned} & \hline \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{\hat{W}} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{\rightharpoonup}{\mathrm{D}} \end{aligned}$				-

Figure 2-6. PTL addressing in a dual-bus configuration, three Model 4354R disk enclosures

Figure 2-7. Mapping a unit to physical disk drives

Determining Storage Requirements

It is important to determine your storage requirements. Here are a few of the questions you should ask yourself regarding the subsystem usage:
■ What applications or user groups will access the subsystem? How much capacity do they need?
■ What are the I/O requirements? If an application is data transfer-intensive, what is the required transfer rate? If it is I/O request-intensive, what is the required response time? What is the read/write ratio for a typical request?

- Are most I/O requests directed to a small percentage of the disk drives? Do you want to keep it that way or balance the I/O load?
- Do you store mission-critical data? Is availability the highest priority or would standard backup procedures suffice?

Choosing a Container Type

Different applications may have different storage requirements. You probably want to configure more than one kind of container within your subsystem.

In choosing a container, you choose between independent disks (JBODs) or one of several storageset types, as shown in Figure 2-8. The independent disks and the selected storageset may also be partitioned.

The storagesets implement RAID (Redundant Array of Independent Disks) technology. Consequently, they all share one important feature: each storageset, whether it contains two disk drives or ten, looks like one large, virtual disk drive to the host.

Figure 2-8. Container types

Table 2-1 compares the different kinds of containers to help you determine which ones satisfy your requirements.

Table 2-1 A Comparison of Container Types				
Container Name	Relative Availability	Request Rate (Read/Write) I/O per second	Transfer Rate (Read/Write) MB per second	Applications
Independent disk drives (JBOD)	Equal to number of JBOD disk drives	Comparable to single disk drive	Comparable to single disk drive	-
$\begin{aligned} & \hline \text { Stripeset } \\ & \text { (RAID 0) } \end{aligned}$	Proportionate to number of disk drives; worse than single disk drive	Excellent if used with large chunk size	Excellent if used with small chunk size	High performance for non-critical data
$\begin{aligned} & \hline \text { Mirrorset } \\ & \text { (RAID1) } \end{aligned}$	Excellent	Good/Fair	Good/Fair	System drives; critical files
$\begin{aligned} & \hline \text { RAIDset } \\ & \text { (RAID 3/5) } \end{aligned}$	Excellent	Excellent/good	Read: excellent (if used with small chunk sizes) Write: good (if used with small chunk sizes)	High request rates, read-intensive, data lookup
Striped Mirrorset (RAID 0+1)	Excellent	Excellent if used with large chunk size	Excellent if used with small chunk size	Any critical response-time application

For a comprehensive discussion of RAID, refer to The RAIDBOOK-A Source Book for Disk Array Technology.

Creating a Storageset Profile

Creating a profile for your storagesets, partitions, and devices can simplify the configuration process. Filling out a storageset profile helps you choose the storagesets that best suit your needs and to make informed decisions about the switches you can enable for each storageset or storage device that you configure in your subsystem.

See the example storageset profile shown in Figure 2-9. Appendix A contains blank profiles that you can copy and use to record the details for your storagesets. Use the information in this chapter to help you make decisions when creating storageset profiles.

Type of Storageset:

\ldots Mirrorset $\quad \underline{X}$ RAIDset $\quad \ldots \quad$ Stripeset $\quad \ldots$ Striped Mirrorset ___ JBOD

Storageset Name R1
Disk Drives D10300, D20300, D10400, D20400
Unit Number D101

Partitions:

| Unit \# |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| $\%$ | $\%$ | $\%$ | $\%$ | $\%$ | $\%$ | $\%$ | $\%$ |

RAIDset Switches:

Reconstruction Policy $\times \quad$ Normal (default)	$\begin{aligned} & \text { Reduced Membership } \\ & X \quad \text { No (default) } \end{aligned}$	Replacement Policy X Best performance (default)
Fast	Yes, missing:	Best fit
		None

Mirrorset Switches:

Replacement Policy Best performance (default)	Copy Policy Normal (default)	Read Source Least busy (default)
Best fit	Fast	___Round robin
__None		___Disk drive:

Initialize Switches:

Chunk size	Save Configuration	Metadata
64 blocks	_ X Yes	Retain
128 blocks		
_ 256 blocks		
Other:		

Unit Switches:

Caching	Access by following hosts enabled
Read caching__X	ALL
Read-ahead caching	
Write-back caching__X	
Write-through caching_	

Figure 2-9. An example storageset profile

Storageset Planning Considerations

This section contains the guidelines for choosing the storageset type needed for your subsystem:
■ "Stripeset Planning Considerations," page 2-14
■ "Mirrorset Planning Considerations," page 2-16
■ "RAIDset Planning Considerations," page 2-18
■ "Striped Mirrorset Planning Considerations," page 2-20

- "Storageset Planning Considerations," page 2-14

■ "Partition Planning Considerations," page 2-22

Stripeset Planning Considerations

Stripesets (RAID 0) enhance I/O performance by spreading the data across multiple disk drives. Each I/O request is broken into small segments called "chunks." These chunks are then simultaneously "striped" across the disk drives in the storageset, thereby enabling several disk drives to participate in one I/O request.

For example, in a three-member stripeset that contains disk drives Disk 10000, Disk 20000, and Disk 10100, the first chunk of an I/O request is written to Disk 10000, the second to Disk 20000, the third to Disk 10100, the fourth to Disk 10000, and so forth until all of the data has been written to the drives (Figure 2-10).

Figure 2-10. A 3-member RAID 0 stripeset (example 1)

The relationship between the chunk size and the average request size determines if striping maximizes the request rate or the data-transfer rate. You can set the chunk size or use the default setting (see "Chunk Size," page 2-25, for information about setting the chunk size). Figure 2-11 shows another example of a three-member RAID 0 stripeset.

A major benefit of striping is that it balances the I/O load across all of the disk drives in the storageset. This can increase the subsystem performance by eliminating the hot spots (high localities of reference) that occur when frequently accessed data becomes concentrated on a single disk drive.

Figure 2-11. A 3-member RAID 0 stripeset (example 2)
Keep the following points in mind as you plan your stripesets:

- Reporting methods and size limitations prevent certain operating systems from working with large stripesets.
- A storageset should only contain disk drives of the same capacity. The controller limits the effective capacity of each member to the capacity of the smallest member in the storageset (base member size) when the storageset is initialized. Thus, if you combine 9 GB disk drives with 4 GB disk drives in the same storageset, you waste 5 GB of capacity on each 9 GB member.

If you need high performance and high availability, consider using a RAIDset, striped-mirrorset, or a host-based shadow of a stripeset.

- Striping does not protect against data loss. In fact, because the failure of one member is equivalent to the failure of the entire stripeset, the likelihood of losing data is higher for a stripeset than for a single disk drive.

For example, if the mean time between failures (MTBF) for a single disk is 1 hour, then the MTBF for a stripeset that comprises N such disks is $1 / \mathrm{N}$ hours. As another example, if the MTBF of a a single disk is 150,000 hours (about 17 years), a stripeset comprising four of these disks would only have an MTBF of slightly more than 4 years.

For this reason, you should avoid using a stripeset to store critical data. Stripesets are more suitable for storing data that can be reproduced easily or whose loss does not prevent the system from supporting its critical mission.

- Evenly distribute the members across the device ports to balance the load and provide multiple paths.
- Stripesets may contain between two and 24 members.

■ If you plan to use mirror members to replace failing drives, then create the original stripeset as a stripeset of 1-member mirrorsets.

- Stripesets are well-suited for the following applications:
- Storing program image libraries or run-time libraries for rapid loading.
- Storing large tables or other structures of read-only data for rapid application access.
- Collecting data from external sources at very high data transfer rates.
- Stripesets are not well-suited for the following applications:
- A storage solution for data that cannot be easily reproduced or for data that must be available for system operation.
- Applications that make requests for small amounts of sequentially located data.
- Applications that make synchronous random requests for small amounts of data.

Spread the member drives as evenly as possible across the six I/O device ports.

Mirrorset Planning Considerations

Mirrorsets (RAID 1) use redundancy to ensure availability, as illustrated in Figure 2-12. For each primary disk drive, there is at least one mirror disk drive. Thus, if a primary disk drive fails, its mirror drive immediately provides an exact copy of the data. Figure 2-13 shows a second example of a Mirrorset.

CXO7288A
Figure 2-12. Mirrorsets maintain two copies of the same data

Figure 2-13. Mirrorset example 2
Keep these points in mind when planning mirrorsets:

- Data availability with a mirrorset is excellent but comes with a higher cost-you need twice as many disk drives to satisfy a given capacity requirement. If availability is your top priority, consider using dual-redundant controllers and redundant power supplies.
- You can configure up to 20 mirrorsets per controller or pair of dual-redundant controllers. Each mirrorset may contain up to 6 members.
- Both write-back cache modules must be the same size.

■ A mirrorset should only contain disk drives of the same capacity.
■ Spread mirrorset members across different device ports (drive bays).
■ Mirrorsets are well-suited for the following:

- Any data for which reliability requirements are extremely high
- Data to which high-performance access is required
- Applications for which cost is a secondary issue

■ Mirrorsets are not well-suited for the following applications:

- Write-intensive applications (a performance hit of 10 percent will occur)
- Applications for which cost is a primary issue

RAIDset Planning Considerations

RAIDsets (RAID 3/5) are enhanced stripesets-they use striping to increase I/O performance and distributed-parity data to ensure data availability. Figure 2-14 shows an example of a RAIDset that uses five members.

Figure 2-14. A 5-member RAIDset using parity

RAIDsets are similar to stripesets in that the I/O requests are broken into smaller "chunks" and striped across the disk drives. RAIDsets also create chunks of parity data and stripe them across all the members of the RAIDset. Parity data is derived mathematically from the I/O data and enables the controller to reconstruct the I/O data if a single disk drive fails. Thus, it becomes possible to lose a disk drive without losing access to the data it contained. Data could be lost if a second disk drive fails before the controller replaces the first failed disk drive and reconstructs the data.

The relationship between the chunk size and the average request size determines if striping maximizes the request rate or the data-transfer rates. You can set the chunk size or use the default setting. See "Chunk Size," page 2-25, for information about setting the chunk size.

Keep these points in mind when planning RAIDsets:

- Reporting methods and size limitations prevent certain operating systems from working with large RAIDsets.
- Both cache modules must be the same size.
- A RAIDset must include at least 3 disk drives, but no more than 14.
- A storageset should only contain disk drives of the same capacity. The controller limits the capacity of each member to the capacity of the smallest member in the storageset. Thus, if you combine 9 GB disk drives with 4 GB disk drives in the same storageset, you waste 5 GB of capacity on each 9 GB member.
- RAIDsets are particularly well-suited for the following:
- Small to medium I/O requests
- Applications requiring high availability
- High read request rates
- Inquiry-type transaction processing

RAIDsets are not particularly well-suited for the following:

- Write-intensive applications

D Database applications in which fields are continually updated

- Transaction processing

Striped Mirrorset Planning Considerations

Striped mirrorsets (RAID $0+1$) are a configuration of stripesets whose members are also mirrorsets (Figure 2-15). Consequently, this kind of storageset combines the performance of striping with the reliability of mirroring. The result is a storageset with very high I/O performance and high data availability. Figure $2-16$ shows a second example of a striped mirrorset using six members.

Figure 2-15. Striped mirrorset (example 1)
The failure of a single disk drive has no effect on the ability of the storageset to deliver data to the host. Under normal circumstances, a single disk drive failure has very little effect on performance. Because striped mirrorsets do not require any more disk drives than mirrorsets, this storageset is an excellent choice for data that warrants mirroring.

Figure 2-16. Striped mirrorset (example 2)
Plan the mirrorset members, and plan the stripeset that will contain them. Review the recommendations in "Storageset Planning Considerations," page 2-14, and "Mirrorset Planning Considerations," page 2-16.

Storageset Expansion Considerations

Storageset Expansion allows for the joining of two of the same kind of storage containers by concatenating RAIDsets, Stripesets, or individual disks, thereby forming a larger virtual disk which is presented as a single unit. The Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide describes the CLI command: ADD CONCATSETS which is used to perform concatenation.

> CAUTION: The ADD CONCATSETS command should only be executed with host operating systems that support dynamic volume expansion. If the operating system cannot handle one of its disks increasing in size, use of this command could make data inaccessible.

Partition Planning Considerations

Use partitions to divide a container (storageset or individual disk drive) into smaller pieces, each of which can be presented to the host as its own storage unit. Figure 2-17 shows the conceptual effects of partitioning a single-disk container.

Figure 2-17. One example of a partitioned single-disk unit
You can create up to eight partitions per storageset (disk drive, RAIDset, mirrorset, stripeset, or striped mirrorset). Each partition has its own unit number so that the host can send I/O requests to the partition just as it would to any unpartitioned storageset or device. Partitions are separately addressable storage units; therefore, you can partition a single storageset to service more than one user group or application.

Defining a Partition

Partitions are expressed as a percentage of the storageset or single disk unit that contains them:

■ Mirrorsets and single disk units-the controller allocates the largest whole number of blocks that are equal to or less than the percentage you specify.

- RAIDsets and stripesets-the controller allocates the largest whole number of stripes that are less than or equal to the percentage you specify.
- Stripesets-the stripe size $=$ chunk size \times number of members.
- RAIDsets-the stripe size $=$ chunk size \times (number of members minus 1$)$

An unpartitioned storage unit has more capacity than a partition that uses the whole unit because each partition requires a small amount of disk space for metadata.

Changing Characteristics through Switches

CLI command switches allow the user another level of command options. There are three types of switches that modify the storageset and unit characteristics:

- Storageset switches
- Initialization switches

■ Unit switches
The following sections describe how to enable/modify switches. They also contain a description of the major CLI command switches.

Enabling Switches

If you use SWCC to configure the device or storageset, you can set switches from the SWCC screens during the configuration process, and SWCC automatically applies them to the storageset or device. See the SWCC online help for information about using SWCC.

If you use CLI commands to configure the storageset or device manually, the configuration procedure found in Chapter 5 of this guide indicates when and how to enable each switch. The Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide contains the details of the CLI commands and their switches.

Changing Switches

You can change the RAIDset, mirrorset, device, and unit switches at any time. You cannot change the initialize switches without destroying data on the storageset or device. These switches are integral to the formatting and can only be changed by re-initializing the storageset.

CAUTION: Initializing a storageset is similar to formatting a disk drive; all data is destroyed during this procedure.

Storageset and Partition Switches

The characteristics of a particular storageset can be set by specifying switches when the storageset is added to the controllers' configuration. Once a storageset has been added, the switches can be changed by using a SET command. Switches can be set for partitions and the following types of storagesets:

- RAIDset
- Mirrorset

Stripesets have no specific switches associated with their ADD and SET commands.

RAIDset Switches

Use the following types of switches to control how a RAIDset ensures data availability:

- Replacement policy

■ Reconstruction policy

- Remove/replace policy

For details on the use of these switches refer to SET RAIDSET and SET RAIDset-name commands in the Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide.

Mirrorset Switches

Use the following switches to control how a mirrorset behaves to ensure data availability:

- Replacement policy
- Copy speed

■ Read source

- Membership

For details on the use of these switches refer to ADD MIRRORSET and SET mirrorset-name commands in the Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide.

Partition Switches

The following partition switches are available when creating a partition:

- Size
- Geometry

For details on the use of these switches refer to CREATE_PARTITION command in the Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide.

Initialization Switches

Initialization switches set characteristics for established storagesets before they are made into units. The following kinds of switches effect the format of a disk drive or storageset:
■ Chunk Size (for stripesets and RAIDsets only)

- Save Configuration

■ Destroy/Nodestroy

- Geometry

Each of these switches is described in the following sections.
NOTE: After initializing the storageset or disk drive, you cannot change these switches without reinitializing the storageset or disk drive.

Chunk Size

Specify the chunk size of the data to be stored to control the stripesize used in RAIDsets and stripesets:
■ CHUNKSIZE = DEFAULT lets the controller set the chunk size based on the number of disk drives (d) in a stripeset or RAIDset. If $d \leq 9$ then chunk size $=256$. If $d>9$ then chunk size $=128$.

■ CHUNKSIZE= n lets you specify a chunk size in blocks. The relationship between chunk size and request size determines whether striping increases the request rate or the data-transfer rate.

Increasing the Request Rate

A large chunk size (relative to the average request size) increases the request rate by enabling multiple disk drives to respond to multiple requests. If one disk drive contains all of the data for one request, then the other disk drives in the storageset are available to handle other requests. Thus, in principle, separate I/O requests can be handled in parallel, thereby increasing the request rate. This concept is shown in Figure 2-18.

CXO-5135A-MC
Figure 2-18. Chunk size larger than the request size
Large chunk sizes also tend to increase the performance of random reads and writes. It is recommended that you use a chunk size of 10 to 20 times the average request size, rounded to the closest prime number.

To calculate the chunk size that should be used for your subsystem, you must first analyze the types of requests that are being made to the subsystem:
■ Many parallel I/Os that use a small area of disk should use a chunk size of 10 times the average transfer request rate.

- Random I/Os that are scattered over all the areas of the disks should use a chunk size of 20 times the average transfer request rate.

■ If you do not know, then you should use a chunk size of 15 times the average transfer request rate.

■ If you have mostly sequential reads or writes (like those needed to work with large graphic files), make the chunk size for RAID 0 and RAID $0+1$ a small number (for example: 67 sectors). For RAID 5, make the chunk size a relatively large number (for example: 253 sectors).

Table 2-2 shows a few examples of chunk size selection.

	Table 2-2		
	Example Chunk Sizes		
Transfer Size (KB)	Small Area of I/0 Transfers	Unknown	Random Areas of I/O Transfers
2	41	59	79
4	79	113	163
8	157	239	317

Increasing Sequential Data Transfer Performance

RAID 0 and RAID $0+1$ sets intended for high data transfer rates should use a relatively low chunk size (for example: 67 sectors). RAID 5 sets intended for high data rate performance should use a relatively large number (for example: 253 sectors).

Save Configuration

The SAVE CONFIGURATION switch is for a single-controller configuration only. This switch reserves an area on each of the disks that constitutes the container being initialized. The controller can write subsystem configuration data on this area. If the controller is replaced, the new controller can read the subsystem configuration from the reserved areas of disks.

If you specify SAVE_CONFIGURATION for a multi-device storageset, such as a stripeset, the complete subsystem configuration is periodically written on each disk in the storageset.

The SHOW DEVICES FULL command shows which disks are used to backup configuration information.

Destroy/Nodestroy

Specify whether to destroy or retain the user data and metadata when a disk is initialized after it has been used in a mirrorset or as a single-disk unit.

NOTE: The DESTROY and NODESTROY switches are only valid for mirrorsets and striped mirrorsets.

- DESTROY (default) overwrites the user data and forced-error metadata when a disk drive is initialized.

■ NODESTROY preserves the user data and forced-error metadata when a disk drive is initialized. Use $N O D E S T R O Y$ to create a single-disk unit from any disk drive that has been used as a member of a mirrorset. See the REDUCED command in the Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide for information on removing disk drives from a mirrorset.

NODESTROY is ignored for members of a RAIDset.

Geometry

The geometry parameters of a storageset can be specified. The geometry switches are:
■ CAPACITY-the number of logical blocks. The range is from 1 to the maximum container size.
■ CYLINDERS—the number of cylinders used. The range is from 1 to 16777215.
■ HEADS - the number of disk heads used. The range is from 1 to 255.

- SECTORS_PER_TRACK—the number of sectors per track used. The range is from 1 to 255 .

Unit Switches

Several switches control the characteristics of units. The unit switches are described under the SET unit-number command in the Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide.

One unit switch, ENABLE/DISABLE_ACCESS_PATH, determines which host connections can access the unit, and is part of the larger topic of matching units to specific hosts. This complex topic is covered in Chapter 1 under the following headings:

■ "Assigning Unit Numbers," page 1-13
■ "Selective Storage Presentation," page 1-16

Storage Maps

Configuring a subsystem will be easier if you know how the storagesets, partitions, and JBODs correspond to the disk drives in your subsystem. You can more easily see this relationship by creating a hardcopy representation (a storage map).

Creating a Storage Map

To make a storage map, fill out the templates provided in Appendix A as you add storagesets, partitions, and JBOD disks to the configuration and assign them unit numbers. Label each disk drive in the map with the higher levels it is associated with, up to the unit level.

Example Storage Map - Model 4310R Disk Enclosure

Figure 2-19 shows an example of four Model 4310R disk enclosures (single-bus I/O).

- Unit D100 is a 4-member RAID 3/5 storageset named R1. R1 consists of Disk10000, Disk20000, Disk30000, and Disk40000.
■ Unit D101 is a 2-member striped mirrorset named S1. S1 consists of M1 and M2:
M1 is a 2-member mirrorset consisting of Disk10100 and Disk20100.
- M2 is a 2-member mirrorset consisting of Disk30100 and Disk40100.

■ Unit D102 is a 2-member mirrorset named M3. M3 consists of Disk10200 and Disk20200.

■ Unit D103 is a 2-member mirrorset named M4. M4 consists of Disk30200 and Disk40200.
■ Unit D104 is 3-member stripeset named S2. S2 consists of Disk10300, Disk20300, and Disk30300.

■ Unit D105 is a single (JBOD) disk named Disk40300.
■ Unit D106 is a 3-member RAID 3/5 storageset named R2. R2 consists of Disk10400, Disk20400, and Disk30400.

■ Unit D107 is a single (JBOD) disk named Disk40400.
■ Unit D108 is a 4-member stripeset named S3. S3 consists of Disk10500, Disk20500, Disk30500, and Disk40500.
■ Unit D1 is a 2-member striped mirrorset named S4. S4 consists of M4 and M5:

- M5 is a 2-member mirrorset consisting of Disk10800 and Disk20800.
- M6 is a 2-member mirrorset consisting of Disk30800 and Disk40800.
- Unit D2 is a 4-member RAID 3/5 storageset named R3. R3 consists of Disk11000, Disk21000, Disk31000, and Disk41000.

■ Unit D3 is a 4-member stripeset named S5. S5 consists of Disk11100, Disk21100, Disk31100, and Disk41100.
■ Unit D4 is a 2-member mirrorset named M7. M7 consists of Disk11200 and Disk21200.

- Disk31200 and Disk41200 are spareset members.

Model 4310R Disk Enclosure Shelf 4 （single－bus）

Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \hline \text { D101 } \\ \text { S1 } \\ \text { M2 } \end{gathered}$	$\begin{gathered} \text { D103 } \\ \text { M4 } \end{gathered}$	D105	D107	$\begin{gathered} \text { D108 } \\ \text { S3 } \end{gathered}$	$\begin{aligned} & \text { D1 } \\ & \text { S4 } \\ & \text { M6 } \end{aligned}$	$\begin{aligned} & \text { D2 } \\ & \text { R3 } \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & \text { S5 } \end{aligned}$	spare
DISK ID	$\begin{aligned} & \text { O} \\ & \stackrel{O}{O} \\ & \stackrel{y}{9} \\ & \stackrel{y}{0} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { O} \\ & \text { Nom } \end{aligned}$		$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { O } \\ & \text { Dig } \end{aligned}$	$\begin{aligned} & \text { oin } \\ & \text { 喜 } \\ & \vdots \stackrel{0}{0} \end{aligned}$	O	8 0 $\frac{0}{7}$ $\frac{0}{0}$ 0	은 $\frac{\square}{4}$ $\frac{0}{0}$	

Model 4310R Disk Enclosure Shelf 1 （single－bus）

Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \text { D101 } \\ \text { S1 } \\ \text { M1 } \end{gathered}$	$\begin{gathered} \text { D102 } \\ \text { M3 } \end{gathered}$	$\begin{gathered} \text { D104 } \\ \text { S2 } \end{gathered}$	$\begin{gathered} \text { D106 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \text { D108 } \\ \text { S3 } \end{gathered}$	D1 S4 M5	$\begin{aligned} & \text { D2 } \\ & \text { R3 } \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & \text { S5 } \end{aligned}$	$\begin{aligned} & \text { D4 } \\ & \text { M7 } \end{aligned}$
DISK ID	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \frac{\bar{y}}{\underline{y}} \end{aligned}$	$\begin{aligned} & \text { 음 } \\ & \frac{0}{7} \\ & \frac{1}{0} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { D } \\ & \text { 旁 } \end{aligned}$			\circ 8 0 0 $\frac{2}{0}$ 0	$\begin{aligned} & \text { O} \\ & \text { ob } \\ & \text { 膏 } \end{aligned}$	O $\frac{0}{5}$ $\frac{0}{5}$ 0	$\frac{\text { 응 }}{\text { ¢ }}$	

Model 4310R Disk Enclosure Shelf 2 （single－bus）

Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \hline \text { D101 } \\ \text { S1 } \\ \text { M1 } \end{gathered}$	$\begin{aligned} & \text { D102 } \\ & \text { M3 } \end{aligned}$	$\begin{gathered} \text { D104 } \\ \text { S2 } \end{gathered}$	$\begin{gathered} \text { D106 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \text { D108 } \\ \text { S3 } \end{gathered}$	$\begin{aligned} & \text { D1 } \\ & \text { S4 } \\ & \text { M5 } \end{aligned}$	D2 R3	D3 S5	$\begin{aligned} & \text { D4 } \\ & \text { M7 } \end{aligned}$
DISK ID		$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{N}{N} \\ & \stackrel{y}{\circ} \end{aligned}$				$\begin{aligned} & \text { O} \\ & \text { ర్ర } \\ & \text { N} \\ & \text { 高 } \end{aligned}$	응 N N 흠	$\begin{aligned} & \frac{8}{0} \\ & \stackrel{0}{N} \\ & \frac{D}{D} \end{aligned}$	음 $\stackrel{y}{ㅁ}$ 흠	

Model 4310R Disk Enclosure Shelf 3 （single－bus）

Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \hline \text { D101 } \\ \text { S1 } \\ \text { M2 } \end{gathered}$	$\begin{gathered} \text { D103 } \\ \text { M4 } \end{gathered}$	$\begin{gathered} \text { D104 } \\ \text { S2 } \end{gathered}$	$\begin{gathered} \text { D106 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \text { D108 } \\ \text { S3 } \end{gathered}$	$\begin{aligned} & \text { D1 } \\ & \text { S4 } \\ & \text { M6 } \end{aligned}$	$\begin{aligned} & \text { D2 } \\ & \text { R3 } \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & \text { S5 } \end{aligned}$	spare
DISK ID	8 8 0 0 \vdots 0									$\begin{aligned} & \text { O} \\ & \text { N} \\ & \text { N} \\ & \text { Non } \end{aligned}$

Figure 2－19．Model 4310R disk enclosure－example storage map

Example Storage Map - Model 4350R Disk Enclosure

Figure 2-20 shows an example of three Model 4350R disk enclosures (dual-bus).
■ Unit D100 is a 6-member RAID 3/5 storageset named R1. R1 consists of Disk10000, Disk20000, Disk30000, Disk 40000, Disk50000, and Disk60000.
■ Unit D101is a 6-member RAID 3/5 storageset named R2. R2 consists of Disk10100, Disk20100, Disk30100, Disk40100, Disk50100, and Disk60100.

■ Unit D102 is a 2-member striped mirrorset named S1. S1 consists of M1 and M2:

- M1 is a 2-member mirrorset consisting of Disk10200 and Disk20200.
- M2 is a 2-member mirrorset consisting of Disk30200 and Disk40200.

■ Unit D103 is a 2-member mirrorset named M3. M3 consists of Disk50200 and Disk60200.

■ Unit D1 is 4-member stripeset named S2. S2 consists of Disk 10300, Disk20300, Disk30300, and Disk40300.
■ Unit D2 is a 2-member mirrorset named M4. M4 consists of Disk50300 and Disk60300.

- Unit D3 is a 2-member striped mirrorset named S3. S3 consists of M5 and M6:
- M5 is a 2-member mirrorset consisting of Disk10400 and Disk20400.
- M6 is a 2-member mirrorset consisting of Disk30400 and Disk40400.
- Unit D4 is a single (JBOD) disk named Disk50400.

■ Disk60400 is a spareset member.

Model 4350R Disk Enclosure Shelf 1 （dual－bus）

	SCSI Bus A					SCSI Bus B				
Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	00	01	02	03	04
	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \text { D101 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \hline \text { D102 } \\ \text { S1 } \\ \text { M1 } \end{gathered}$	$\begin{aligned} & \text { D1 } \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & \text { S3 } \\ & \text { M5 } \end{aligned}$	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \text { D101 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \hline \text { D102 } \\ \text { S1 } \\ \text { M1 } \end{gathered}$	$\begin{aligned} & \text { D1 } \\ & \text { S2 } \end{aligned}$	D3 S3 M5
DISK ID		$\begin{aligned} & \text { 음 } \\ & \text { 음 } \\ & \text { 흠 } \end{aligned}$		응 응 흥						O ¢ N $\stackrel{\rightharpoonup}{\circ}$

Model 4350R Disk Enclosure Shelf 2 （dual－bus）

	SCSI Bus A					SCSI Bus B				
Bay	1	2	3	4	5	6	7	8	9	10
SCSIID	00	01	02	03	04	00	01	02	03	04
	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \text { D101 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \hline \text { D102 } \\ \text { S1 } \\ \text { M2 } \end{gathered}$	$\begin{aligned} & \text { D1 } \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & \hline \text { D3 } \\ & \text { S3 } \\ & \text { M6 } \end{aligned}$	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \text { D101 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \hline \text { D102 } \\ \text { S1 } \\ \text { M2 } \end{gathered}$	$\begin{aligned} & \text { D1 } \\ & \text { S2 } \end{aligned}$	D3 S3 M6
DISK ID		$\begin{aligned} & \text { 음 } \\ & \text { (ep } \\ & \text { 旁 } \end{aligned}$						O ¢ ¢ ¢ \cdots		

Model 4350R Disk Enclosure Shelf 3 （dual－bus）

	SCSI Bus A					SCSI Bus B				
Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	00	01	02	03	04
	$\begin{gathered} \hline \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \hline \text { D101 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \hline \text { D103 } \\ \text { M3 } \end{gathered}$	$\begin{aligned} & \hline \text { D2 } \\ & \text { M4 } \end{aligned}$	D4	$\begin{gathered} \hline \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \hline \text { D101 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \text { D103 } \\ \text { M3 } \end{gathered}$	$\begin{aligned} & \text { D2 } \\ & \text { M4 } \end{aligned}$	spare
DISK ID	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { 耪 } \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & \stackrel{y}{n} \\ & \text { 亳 } \end{aligned}$				$\begin{aligned} & \text { O} \\ & \text { ob } \\ & \text { 袌 } \end{aligned}$				

Figure 2－20．Model 4350R disk enclosure－example storage map

Example Storage Map－Model 4314R Disk Enclosure

Figure 2－21 shows an example of four Model 4314R disk enclosures（single－bus I／O）．
－Unit D100 is a 4－member RAID 3／5 storageset named R1．R1 consists of Disk10000， Disk20000，Disk30000，and Disk40000．

- Unit D101 is a 2-member striped mirrorset named S1. S1 consists of M1 and M2:
- M1 is a 2-member mirrorset consisting of Disk10100 and Disk20100.
- M2 is a 2-member mirrorset consisting of Disk30100 and Disk40100.

■ Unit D102 is a 2-member mirrorset named M3. M3 consists of Disk10200 and Disk20200.

■ Unit D103 is a 2-member mirrorset named M4. M4 consists of Disk30200 and Disk40200.

■ Unit D104 is 3-member stripeset named S2. S2 consists of Disk10300, Disk20300, and Disk30300.

■ Unit D105 is a single (JBOD) disk named Disk40300.
■ Unit D106 is a 3-member RAID 3/5 storageset named R2. R2 consists of Disk10400, Disk20400, and Disk30400.

■ Unit D107 is a single (JBOD) disk named Disk40400.
■ Unit D108 is a 4-member stripeset named S3. S3 consists of Disk10500, Disk20500, Disk30500, and Disk40500.

- Unit D1 is a 2-member striped mirrorset named S4. S4 consists of M5 and M6:
- M5 is a 2-member mirrorset consisting of Disk10800 and Disk20800.
- M6 is a 2-member mirrorset consisting of Disk30800 and Disk40800.

■ Unit D2 is a 4-member RAID 3/5 storageset named R3. R3 consists of Disk10900, Disk20900, Disk30900, and Disk40900.

■ Unit D3 is a 4-member stripeset named S5. S5 consists of Disk11000, Disk21000, Disk31000, and Disk41000.

■ Unit D4 is a 2-member mirrorset named M7. M7 consists of Disk11100 and Disk21100.

■ Unit D5 is a 2-member stripeset named S6. S6 consists of Disk31100 and Disk41100.
■ Unit D6 is a 4-member RAID 3/5 storageset named R4. R4 consists of Disk11200, Disk21200, Disk31200, and Disk41200.

■ Unit D7 is a 2-member mirrorset named M8. M8 consists of Disk11300 and Disk21300.

■ Unit D8 is a 2-member stripeset named S7. S7 consists of Disk31300 and Disk41300.
■ Unit D9 is a 4-member Raidset named R5. R5 consists of Disk41400, Disk11400, Disk21400 and Disk31400.

■ Disk11500, Disk21500, Disk31500, and Disk41500 are spareset members.

Model 4314R Disk Enclosure Shelf 4 （single－bus）

Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \hline \text { D101 } \\ \text { S1 } \\ \text { M2 } \\ \hline \end{gathered}$	$\begin{gathered} \text { D103 } \\ \text { M4 } \end{gathered}$	D105	D107	$\begin{gathered} \text { D108 } \\ \text { S3 } \end{gathered}$	$\begin{aligned} & \text { D1 } \\ & \text { S4 } \\ & \text { M6 } \end{aligned}$	$\begin{aligned} & \text { D2 } \\ & \text { R3 } \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & \text { S5 } \end{aligned}$	$\begin{aligned} & \text { D5 } \\ & \text { S6 } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { R4 } \end{aligned}$	$\begin{aligned} & \text { D8 } \\ & \text { S7 } \end{aligned}$	$\begin{aligned} & \text { D9 } \\ & \text { R5 } \end{aligned}$	spare
DISK ID			$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { O} \\ & \text { Nom } \end{aligned}$		8 8 \vdots \vdots \vdots 0	$\begin{aligned} & \text { 융 } \\ & \text { 喜 } \\ & \text { in } \end{aligned}$	－	－	\％					O 0 0 膏

Model 4314R Disk Enclosure Shelf 1 （single－bus）

Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSIID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \hline \text { D101 } \\ \text { S1 } \\ \text { M1 } \end{gathered}$	$\begin{gathered} \text { D102 } \\ \text { M3 } \end{gathered}$	$\begin{gathered} \text { D104 } \\ \text { S2 } \end{gathered}$	$\begin{gathered} \text { D106 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \text { D108 } \\ \text { S3 } \end{gathered}$	$\begin{aligned} & \text { D1 } \\ & \text { S4 } \\ & \text { M5 } \end{aligned}$	$\begin{aligned} & \text { D2 } \\ & \text { R3 } \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & \text { S5 } \end{aligned}$	$\begin{aligned} & \text { D4 } \\ & \text { M7 } \end{aligned}$	D6 R4	$\begin{aligned} & \text { D7 } \\ & \text { M8 } \end{aligned}$	D9 R5	spare
DISK ID						$\begin{aligned} & \text { 융 } \\ & \text { 咅 } \\ & \text { in } \end{aligned}$			¢	¢				

Model 4314R Disk Enclosure Shelf 2 （single－bus）

Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSIID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \hline \text { D101 } \\ \text { S1 } \\ \text { M1 } \end{gathered}$	$\begin{gathered} \text { D102 } \\ \text { M3 } \end{gathered}$	$\begin{gathered} \text { D104 } \\ \text { S2 } \end{gathered}$	$\begin{gathered} \text { D106 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \text { D108 } \\ \text { S3 } \end{gathered}$	$\begin{aligned} & \text { D1 } \\ & \text { S4 } \\ & \text { M5 } \end{aligned}$	$\begin{aligned} & \text { D2 } \\ & \text { R3 } \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & \text { S5 } \end{aligned}$	D4	D6 R4	D7 M8	D9 R5	spare
DISK ID						O 0 0 N ¢ \％	응 N N 믕	응 N 흥						8 0 0 0 0 0

Model 4314R Disk Enclosure Shelf 3 （single－bus）

Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSIID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \hline \text { D101 } \\ \text { S1 } \\ \text { M2 } \\ \hline \end{gathered}$	$\begin{gathered} \text { D103 } \\ \text { M4 } \end{gathered}$	$\begin{gathered} \text { D104 } \\ \text { S2 } \end{gathered}$	$\begin{gathered} \text { D106 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \text { D108 } \\ \text { S3 } \end{gathered}$	$\begin{aligned} & \hline \text { D1 } \\ & \text { S4 } \\ & \text { M6 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { D2 } \\ & \text { R3 } \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & \text { S5 } \end{aligned}$	$\begin{aligned} & \text { D5 } \\ & \text { S6 } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { R4 } \end{aligned}$	$\begin{aligned} & \text { D8 } \\ & \text { S7 } \end{aligned}$	$\begin{aligned} & \text { D9 } \\ & \text { R5 } \end{aligned}$	spare
DISK ID										응 $\stackrel{0}{0}$ $\stackrel{0}{0}$		응 $\stackrel{m}{0}$ $\stackrel{0}{0}$ 0		

Figure 2－21．Model 4314R disk enclosure－example storage map

Example Storage Map - Model 4354R Disk Enclosure

Figure 2-22 shows an example of three Model 4354R disk enclosures (dual-bus).

- Unit D100 is a 6-member RAID 3/5 storageset named R1. R1 consists of Disk10000, Disk20000, Disk30000, Disk40000, Disk50000, and Disk60000.
■ Unit D101is a 6-member RAID $3 / 5$ storageset named R2. R2 consists of Disk10100, Disk20100, Disk30100, Disk40100, Disk50100, and Disk60100.

■ Unit D102 is a 2-member striped mirrorset named S1. S1 consists of M1 and M2:

- M1 is a 2-member mirrorset consisting of Disk10200 and Disk20200.
- M2 is a 2-member mirrorset consisting of Disk30200 and Disk40200.

■ Unit D103 is a 2-member mirrorset named M3. M3 consists of Disk50200 and Disk60200.

- Unit D104 is a 2-member striped mirrorset named S2. S2 consists of M3 and M4:
- M3 is a 2-member mirrorset consisting of Disk10300 and Disk20300.
- M4 is a 2-member mirrorset consisting of Disk30300 and Disk40300.

■ Unit D105 is a 2-member stripeset named S3. S3 consists of Disk50300 and Disk60300.

■ Unit D1 is 4-member stripeset named S4. S4 consists of Disk 10400, Disk20400, Disk30400, and Disk40400.
■ Unit D2 is a 2-member mirrorset named M5. M5 consists of Disk50400 and Disk60400.

- Unit D3 is a 2-member striped mirrorset named S5. S5 consists of M6 and M7:
- M6 is a 3-member mirrorset consisting of Disk10500, Disk20500, and Disk30500.
- M7 is a 2-member mirrorset consisting of Disk40500 and Disk50500.
- Unit D4 is a single (JBOD) disk named Disk60500.

■ Unit D5 is a 4-member RAID 3/5 storageset named R3. R3 consists of Disk10800, Disk20800, Disk30800, and Disk40800.

■ Disk50800 and Disk60800 are spareset members.

Model 4354R Disk Enclosure Shelf 1 (dual-bus)

	SCSI Bus A							SCSI Bus B						
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \text { D101 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \text { D102 } \\ \text { S1 } \\ \text { M1 } \end{gathered}$	$\begin{gathered} \hline \text { D104 } \\ \text { S2 } \\ \text { M3 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { D1 } \\ & \text { S4 } \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & \text { S5 } \\ & \text { M6 } \end{aligned}$	$\begin{aligned} & \text { D5 } \\ & \text { R3 } \end{aligned}$	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \text { D101 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \text { D102 } \\ \text { S1 } \\ \text { M1 } \end{gathered}$	$\begin{gathered} \hline \text { D104 } \\ \text { S2 } \\ \text { M3 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { D1 } \\ & \text { S4 } \end{aligned}$	D3 S5 M6	$\begin{aligned} & \text { D5 } \\ & \text { R3 } \end{aligned}$
DISK ID	$\begin{aligned} & \text { ob } \\ & \text { ob } \\ & \text { 咅 } \end{aligned}$	$\begin{aligned} & \text { 음 } \\ & \text { 흠 } \\ & \text { 흥 } \end{aligned}$				(-					O ¢ N ¢ 0		

Model 4354R Disk Enclosure Shelf 2 (dual-bus)

	SCSI Bus A							SCSI Bus B						
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \text { D101 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \text { D102 } \\ \text { S1 } \\ \text { M2 } \end{gathered}$	$\begin{gathered} \text { D104 } \\ \text { S2 } \\ \text { M4 } \end{gathered}$	$\begin{aligned} & \text { D1 } \\ & \text { S4 } \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & \text { S5 } \\ & \text { M6 } \end{aligned}$	$\begin{aligned} & \text { D5 } \\ & \text { R3 } \end{aligned}$	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \text { D101 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \text { D102 } \\ \text { S1 } \\ \text { M2 } \end{gathered}$	$\begin{gathered} \hline \text { D104 } \\ \text { S2 } \\ \text { M4 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { D1 } \\ & \text { S4 } \end{aligned}$	D3 S5 M7	D5
DISK ID								$\begin{aligned} & \text { ob } \\ & \text { O} \\ & \text { 总 } \end{aligned}$		-			-	-

Model 4354R Disk Enclosure Shelf 3 (dual-bus)

	SCSI Bus A							SCSI Bus B						
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \text { D101 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \text { D103 } \\ \text { M3 } \end{gathered}$	$\begin{gathered} \text { D105 } \\ \text { S3 } \end{gathered}$	$\begin{aligned} & \text { D2 } \\ & \text { M5 } \end{aligned}$	$\begin{aligned} & \hline \text { D3 } \\ & \text { S5 } \\ & \text { M7 } \end{aligned}$	spare	$\begin{gathered} \text { D100 } \\ \text { R1 } \end{gathered}$	$\begin{gathered} \text { D112 } \\ \text { R2 } \end{gathered}$	$\begin{gathered} \text { D103 } \\ \text { M3 } \end{gathered}$	$\begin{gathered} \text { D105 } \\ \text { S3 } \end{gathered}$	$\begin{aligned} & \text { D2 } \\ & \text { M5 } \end{aligned}$	D4	spare
DISK ID				$\begin{aligned} & \text { oి } \\ & \text { O} \\ & \text { Non } \\ & \stackrel{0}{0} \end{aligned}$	8 8 0 0 0	8 0. 0 0 0 0	$\begin{aligned} & \text { O} \\ & 0 . \\ & 0 . \\ & \text { On } \\ & 0.0 \end{aligned}$						O 0 0 0 0 0 0	O 0 0 0 0 0 0

Figure 2-22. Model 4354R disk enclosure - example storage map

Using the LOCATE Command to Find Devices

If you want to complete a storage map at a later time but do not remember where all disk drives, partitions, etc. are located, use the CLI command LOCATE. The LOCATE command flashes the (fault) LED on the drives associated with the specific storageset or unit. To turn off the flashing LEDs, enter the CLI command LOCATE CANCEL.

The following procedure is an example of the commands to locate all the disk drives that make up unit D104:

1. Enter the following command:

LOCATE D104
The LEDs on the disk drives that make up unit D104 will flash.
2. Note the position of all the drives contained within D104.
3. Enter the following command to turn off the flashing LEDs:

LOCATE CANCEL
The following procedure is an example command to locate all the drives that make up RAIDset R1:

1. Enter the following command:

LOCATE R1
2. Note the position of all the drives contained within R1.
3. Enter the following command to turn off the flashing LEDs:

LOCATE CANCEL

Chapter 3

Preparing the Host System

This chapter describes how to prepare your Novell NetWare host computer to accommodate the HSG80 controller storage subsystem.

The following information is included in this chapter:
■ "Enterprise Storage RAID Array Storage System Installation," page 3-1

- "Making a Physical Connection," page 3-5

■ "Installing the Novell NetWare Driver on the Server," page 3-5
■ "Completing Your Configuration under Novell NetWare," page 3-8

Enterprise Storage RAID Array Storage System Installation

> WARNING: A shock hazard exists at the backplane when the controller enclosure bays or cache module bays are empty.
> Be sure the enclosures are empty, then mount the enclosures into the rack. DO NOT use the disk enclosure handles to lift the enclosure. The handles cannot support the weight of the enclosure. Only use these handles to position the enclosure in the mounting brackets.
> Use two people to lift, align, and install any enclosure into a rack. Failure to use two people might cause personal injury and/or equipment damage.

CAUTION: Controller and disk enclosures have no power switches. Make sure the controller enclosures and disk enclosures are physically configured before turning the PDU on and connecting the power cords. Failure to do so can cause equipment damage.

1. Be sure the enclosures are empty before mounting them into the rack. If necessary, remove the following elements from the controller enclosure:

- Environmental Monitoring Unit (EMU)
- Power Supplies
- External Cache Batteries (ECBs)
- Fans

If necessary, remove the following elements from the disk enclosure:

- Power Supply/Blower Assemblies
- Environmental Monitoring Unit (EMU)
- Disk Drives
- I/O Modules

Refer to the Compaq StorageWorks Model 2100 and 2200 UltraSCSI Controller User Guide, Compaq StorageWorks Enclosure 4200 Family LVD Disk Enclosure User Guide, and Compaq StorageWorks Enclosure 4300 Family LVD Disk Enclosure User Guide the for further information.
2. Install brackets onto the controller enclosure and disk enclosures. Using two people, mount the enclosures into the rack. Refer to the mounting kit documentation for further information.
3. Install the elements. Install the disk drives. Make sure you install blank panels in any unused bays.

NOTE: Fibre channel cabling information is shown to illustrate supported configurations. In a dual-bus disk enclosure configuration, disk enclosures 1,2 , and 3 are stacked below the controller enclosure-two SCSI Buses per enclosure (see Figure 3-1). In a single-bus disk enclosure configuration, disk enclosures 6,5 , and 4 are stacked above the controller enclosure and disk enclosures 1, 2, and 3 are stacked below the controller enclosure-one SCSI Bus per enclosure(see Figure 3-2).
4. Connect the six VHDCI UltraSCSI bus cables between the controller and disk enclosures as shown in Figure 3-1 for a dual bus system and Figure 3-2 for a single bus system. Note that the supported cable lengths are $1,2,3,5$, and 10 meters.

Figure 3-1. Dual-Bus Enterprise Storage RAID Array Storage System

Figure 3-2. Single-Bus Enterprise Storage RAID Array Storage System
5. Connect the AC power cords from the appropriate rack AC outlets to the controller and disk enclosures.

Making a Physical Connection

To attach a host computer to the storage subsystem, install one or more host bus adapters into the computer. A Fibre Channel (FC) cable goes from the host bus adapter to a FC switch .

Preparing to Install the Host Bus Adapter

Before installing the host bus adapter, perform the following steps:

1. Perform a complete backup of the entire system.
2. Shut down the computer system.

Installing the Host Bus Adapter

The first step in making a physical connection is the installation of a host bus adapter.

\triangle
CAUTION: Protect the host bus adapter board from electrostatic discharge by wearing an ESD wriststrap. DO NOT remove the board from the antistatic cover until you are ready to install it.

You need the following items to begin:
■ Host bus adapter board

- The computer hardware manual
- Appropriate tools to service your computer

The host bus adapter board plugs into a standard PCI slot in the host computer. Refer to the system manual for instructions on installing PCI devices.

NOTE: Do not power on anything yet. For the FC switches to autoconfigure, power on equipment in a certain sequence. Also, the controllers in the subsystem are not yet configured for compatibility with Novell NetWare.

Installing the Novell NetWare Driver on the Server

There are two methods to install the Novell NetWare driver on a server:

■ From the Enterprise Storage RAID Array Solution Software V8.6 for Novell NetWare CD (This is the preferred method.)

■ From the SmartStart CD

Installing the Novell NetWare Driver from the Enterprise Storage RAID Array Solution Software V8.6 for Novell NetWare CD

To install the Novell NetWare driver on a server, using the preferred method, from the Enterprise Storage RAID Array Solution Software V8.6 for Novell NetWare, perform the following procedure.

1. Mount the Enterprise Storage RAID Array_V86_NW CD as a NetWare volume.
2. Type Load Install from the NetWare 4.x console or type Load NWCONFIG from the NetWare 5.0 console.
3. Select Driver Options from the menu and press the Enter key.
4. Select Configure Disk and Storage Device Drivers from the menu and press the Enter key.
5. Select Additional Drivers from the menu and press Enter.
6. Press the Insert key to install an unlisted driver.
7. Press the $\mathbf{F 3}$ key to specify an additional path.
8. Type the following path to the driver:

Enterprise Storage RAID Array_V86_NW:CPQFCl.
9. Select CPQFC.HAM and select Yes to copy the driver to the default server boot path C:INWSERVER.
10. Select Save the parameters and load the driver.
11. Select Load additional driver.
12. Select CPQSHD.CDM and select Yes to copy the driver to the default server boot path C:INWSERVER.
13. Restart the server.
14. Select Save the parameter and load the driver.

NOTE: The STARTUP.NCF file will automatically be updated with the appropriate driver loaded statements.

Installing the NetWare Driver from the SmartStart CD

To install the NetWare Driver on the server from the SmartStart CD, perform the following procedure.

1. Be certain that you have the latest release of the SmartStart software.
2. From the NetWare 4.x console, type Load Install or from the NetWare 5.x console, type Load NWconfig.
3. Select Product Options from the menu and press Enter.
4. Select Install a Product Not Listed and press Enter.
5. Press F3 to specify a different path.
6. Insert the Compaq SmartStart and Support Software CD-ROM V4.30 or later into the server's CD-ROM drive.
7. Perform one of the following procedures:
a. Mount the CD-ROM as a NetWare volume.
b. Type the path CPQSMST430:ICPQSUPSWNSSD
c. Press Enter. Volume name will vary pending SmartStart version.

- Or, if the DOS CD-ROM driver support is loaded, then
a. Enter the path $<C D-R O M$ drive letter $>:$ ICPQSUPSWNNSSD
b. Press Enter.

8. Press Enter to proceed past the Welcome screen.
9. Scroll to Compaq NWPA Storage Support in the menu.
10. Press the $\mathbf{F 5}$ key to select Compaq NWPA Storage Support.
11. To access the main menu, press the Tab key.
12. To select Install Selected Files, press the Enter key.
13. After reviewing the Install Results, press the Enter key.
14. Select To Reboot Server and follow the instructions displayed on the screen to install the upgraded and/or new device drivers loaded on the server.

NOTE: The STARTUP.NCF file will automatically be updated with the appropriate driver load statements.

Logintmo Parameter

load cpqfc.ham logintmo = Number of seconds that the driver waits for the Enterprise Storage RAID Array to \log back in with the initiator after a loop/link reset

In some cases, Enterprise Storage RAID Array configurations using large caches took longer during transparent failovers than the driver's default login timeout of 15 seconds allowed. The command line parameter "LOGINTMO=n" where " n " is in seconds and will override the 15 second timeout on HSG80 array controller.

Recommended values are from 15 to 30 seconds.

List Devices

1850B1:list devices
0x0001: [V500-A0-D0:0] Compaq 53C876 Slot 0 Port 1 ID 0 COMPAQ BD009122
0x0009: [V502-A2-D0:4] Compaq RA8000 ID 0 LUN 4 (5000-1FE1-0000-3420)
0x000A: [V502-A2-D3:0] Compaq RA8000 ID 3 LUN 0 (5000-1FE1-0000-3420)
0x000B: [V502-A2-D3:11] Compaq RA8000 ID 3 LUN 17 (5000-1FE1-0000-3420)
0x0017: [V025-A4-D1:0] COMPAQ CD-224E rev:9.0B
The "list devices" command show the Enterprise Storage RAID Array storagesets and the Worldwide ID on the HSG80 controller that the storageset is created on. This is useful when configuring multiple arrays. To see the worldwide ID of the HSG80 controller in the Enterprise Storage RAID Array, use the command line interface to the HSG80 array controller and type "show this" and look at the NODE_ID.

Completing Your Configuration under Novell NetWare

Novell NetWare will recognize new Enterprise Storage RAID Array Fibre Channel Storage subsystem devices or changes to existing configurations. You do not need to restart the NetWare server.

Configure A NetWare Volume on the Storageset for NetWare 5.0

1. From the NetWare 5.x console, type load NWconfig.
2. Select Disk Options.
3. Select Modify disk partitions and Hot Fix.
4. When the Available Disk Drives screen is displayed, select Compaq StorageWorks FC Array Disk x Lun y.

NOTE: X is a number that is created by the driver to signify the HSG80 port and Y represents the Storageset LUN number.
5. Select Create NetWare disk partition and press the F10 key.
6. To create the NetWare partition, select Yes.
7. To continue to the Available Installation Disk Options screen, press the Esc key two times.
8. Select NetWare Volume Options from the Available Disk Options menu.
9. To add NetWare Volume, press Insert.
10. Select the newly created NetWare partition and press the Enter key.
11. Select Make this segment a new volume or Add this segment to an existing volume.
12. Provide a NetWare volume name in the text box and press the Enter key.
13. To save the volume name, press the F10 key.
14. To exit the Volume creation menu, press the F10 key, then the Esc key.
15. To save volume changes, select Yes.
16. Enter your administrator password.
17. Select Mount all volumes and press the Esc key.
18. To exit NWconfig, select Yes.

To delete NetWare volumes and partitions prior to deleting or reconfiguring Compaq StorageWorks virtual disks, type NWCONFIG.

NOTE: Prior to deleting or reconfiguring Compaq StorageWorks virtual disks, you must delete NetWare volumes and partitions residing on them using INSTALL.NLM or NWCONFIG.NLM.

Chapter 4

Installing and Configuring the HS-Series Agent

The following information is included in this chapter:
■ "Why Use StorageWorks Command Console (SWCC)?," page 4-1
■ "Installation and Configuration Overview," page 4-2
■ "Installing and Configuring the Agent," page 4-5
■ "Configuring the Agent," page 4-6
■ "Adding Subsystems and their Hosts to the Network," page 4-8

Why Use StorageWorks Command Console (SWCC)?

StorageWorks Command Console (SWCC) enables you to monitor and configure the storage connected to the HSG80 controller. SWCC consists of Client and Agent.

■ Client provides pager notification and lets you manage your virtual disks. Client runs on Windows 2000 with Service Pack 1 and Windows NT 4.0 (Intel) with Service Pack 6A.

- Agent obtains the status of the storage connected to the controller. It also passes the status of the devices connected to the controller to other computers .

To receive information about the devices connected to your HSG80 controller over a TCP/IP network, you must install the Agent on a computer that is connected to a controller.

The Agent can also be used as a standalone application without Client. In this mode, which is referred to as Agent only, Agent monitors the status of the subsystem and provides local and remote notification in the event of a failure. A subsystem includes the HSG80 controller and its devices. Remote and local notification can be made by SNMP messages to an SNMP monitoring program.

Table 4-1 SWCC Features and Components

Features	Agent Required?	Client Required?
Able to create the following:	Yes	Yes
- Striped device group (RAID 0)		
- Mirrored device group (RAID 1)		
- Striped mirrored device group (RAID $0+1$)		
- Striped parity device group (RAID $3 / 5$)		
- Individual device (JBOD)		
Able to monitor many subsystems at once	Yes	Yes
Event logging	Yes	No
Pager notification	Yes	Yes

NOTE: For serial and SCSI connections, the Agent is not required for creating virtual disks.

Installation and Configuration Overview

Table 4-2 provides an overview of the installation.

	Table 4-2
Installation and Configuration Overview	
Step	Procedure
1	Verify that your hardware has been set up correctly. See the previous chapters in this guide.
2	Verify that you have a network connection for the Client and Agent systems.

	Table 4-2 Installation and Configuration Overview
Step	Procedure
3	Verify that there is a LUN to communicate through. This can be either the CCL or a LUN that was created with the CLI.
4	Install the Agent (TCP/IP network connections) on a system connected to the HSG80 controller. See "Installing and Configuring the Agent," page 4-5.
5	Add the name of the Client system to the Agent's list of Client system entries (TCP/IP network connections). This can be done during installation or when reconfiguring the Agent.
6	Install the Client software on Windows 2000 with Service Pack 1 or Windows NT 4.0 (Intel) with Service Pack 6A. See Appendix B.
7	Add the name of the agent system to the Navigation Tree of each Client system that is on the Agent's list of Client system entries (TCP/P network connections). See Appendix B.
8	Set up pager notification (TCP/IP network connections). Refer to "Setting Up Pager Notification" in the Compaq StorageWorks Command Console Version 2.4 User Guide.
9	Open the host files for both the server and the client to ensure TCP/IP number and name are entered correctly. You can also verify the TCP/IP number and name accuracy by pinging from Server to Client and Client to Server using Names instead of TCP/IP numers. This action also ensures you have a good TCP/IP connection.

CXO7240A
Figure 4-1. An example of a network connection
(1) Agent system (has the Agent software)
6 Hub or switch
(2) TCP/IP Network
(3) Client system (has the Client software)
(7) Servers
(4) Fibre Channel cable

Before Installing the Agent

NOTE: Before installing the Netware SWCC Agent, make sure that the Netware server and the client can communicate over TCP/IP. You can test this by pinging the server from the client. You can also ping a client from a Novell server by typing at the server console:
SERVER: Load ping
If the server and client cannot ping each other by name, resolve this problem before you attempt to use the SWCC Agent.
The following message on the console usually indicates that the steam.nlm cannot communicate to the client. Make sure your client.ini file has the correct name and that you ping the client by name.
Logfile=D2FD8CD4, msg len=115
WARNING: Socket error - connecting to colossus - Can't assign requested address (SP_SOCKET: socketConnectByService).

Installing and Configuring the Agent

1. Attach to the server you wish to install the agent to, with administrative rights.
2. From the (source location), start SETUP.EXE.
3. Click the Next button to continue.
4. Enter the name of the server you are installing to in the Server box.
5. If you wish to change the install directory for the agent, change the location now in the path. This path is on the SYS: volume only. The default will create the directory SYS:OPTISTEAM.
6. If you are not attached to the server or you do not have administrator privileges, you will see the following message:
ENTER MESSAGE-SCREEN PRINT
7. The installer will place the software files in the proper locations.
8. The following directories and files will be installed to the server.

SYS:OPTISTEAM
SYS:OPT\STEAM\ETC\BIN\DATA
9. The installation program adds the following two lines to the

SYS:ETCISErVICES file:
SPAGENT 4999/TCP
SPGUI 4998/TCP

1. Attach to the server you wish to install the agent to, with administrative rights.
2. From the (source location), start SETUP.EXE.
3. Click the Next button to continue.
4. Enter the name of the server you are installing to in the Server box.
5. If you wish to change the install directory for the agent, change the location now in the path. This path is on the SYS: volume only. The default will create the directory SYS:OPTISTEAM.
6. If you are not attached to the server or you do not have administrator privileges, you will see the following message:
ENTER MESSAGE-SCREEN PRINT
7. The installer will place the software files in the proper locations.
8. The following directories and files will be installed to the server.

SYS:OPT\STEAM
SYS:OPT\STEAM\ETC\BIN\DATA
9. The installation program adds the following two lines to the SYS:ETCISErVICES file:
SPAGENT 4999/TCP
SPGUI 4998/TCP

Configuring the Agent

1. On the NetWare Console, enter:
load HSGCFG
at the menu screen.
NOTE: Ensure the information displayed matches the installed configuration if it does not.
2. Select Edit Client List.

The list of clients will appear. If there are no defined clients, the list will be empty
3. Press the INS key to create a new client or highlight the client you wish to edit and then press Enter.
4. Insert to add a new client entry.
5. Enter the client Host name in Client Name.

The server must be able to communicate with the client over TCP/IP. One way to do this is to edit the servers host file in SYS:ETC.
6. Select appropriate client privileges (Modify, Overview, or Read Only) and press Enter.
7. The Monitor Mode will be TCP/IP only.
a. Press the Esc key to save and go back to the client menu.
b. Press the Esc key again to return to the Main Menu.
8. At the Main Menu, select Edit Storage List and then press Enter.

The Subsystem Name should appear.
9. Select and then press Enter to edit the storage system.

The only value that can be changed in the Modify Storage Subsystem Entry screen is the Monitor Interval (in seconds).
10. To change password for client access, select Change Password and then press Enter.
11. Enter the new password and then press Enter. You are prompted to verify the new password by typing it a second time and then pressing Enter.

Items that have been changed and not saved will be indicated by an * on the menu selection line.

NOTE: This password is independent of the Netware operating system passwords and security.
12. Select Save and Exit and then press Enter.
13. To load the NetWare SWCC Agents, enter the following command at the Server Console
load RAIDCDM
and
load STEAM
You are now ready to connect to the Array Using the SWCC Management Console. See the supplied SWCC documentation for information on how to use it.

Adding Subsystems and their Hosts to the Network

Subsystems and their host systems are added to the network using Command Console Client. Command Console Client can be installed locally in the subsystem host system or in a remotely located PC connected to the network. Client installs and runs only on Windows 2000 or Windows NT PCs. To complete the network link, perform the following procedure:

1. Install Command Console Client (See Appendix B in this guide). In the system you will use to configure and monitor your RAID Array.
2. Make sure that you have properly installed and configured an Agent on the subsystem host.
3. Select StorageWorks Command Console from the Command Console Start menu. After a short wait, Client will display the Navigation Window. The Navigation Window lets you monitor and manage subsystems over the network.
4. From the Navigation Window's File Menu, select Add System to display the Add System Dialog box.
5. Enter the host platform name, as defined in Agent, then click the Apply button. Command Console Client searches for, finds; then displays the subsystem host as an icon in the Navigation Window.
6. Click on the plus sign (+) to expand the host computer icon. When expanded, the Navigation Window displays an icon for the subsystem. In this example, the subsystem is named subsys1. To access the subsys1's Storage System, double-click on the Storage Window icon.
Double-click on the Storage Window icon to open a Storage Window to monitor and manage your RAID Array 8000 .
NOTE: For more information, use the online HELP in the SWCC Storage and CLI Windows.

Chapter 5

Configuration Procedures

This chapter describes procedures to configure a subsystem that uses Fibre Channel fabric topology. In fabric topology, the controller connects to its hosts through switches.

The following information is included in this chapter:

- "Establishing a Local Connection," page 5-2
- "Setting Up a Single Controller," page 5-3
- "Setting Up a Controller Pair," page 5-9
- "Configuring Devices," page 5-15
- "Configuring a Stripeset," page 5-16
- "Configuring a Mirrorset," page 5-16
- "Configuring a RAIDset," page 5-17
- "Configuring a Striped Mirrorset," page 5-18
- "Configuring a Single-Disk Unit (JBOD)," page 5-18
- "Configuring a Partition," page 5-19

■ "Assigning Unit Numbers and Unit Qualifiers," page 5-20

- "Configuration Options," page 5-21

Use the command line interpreter (CLI) or StorageWorks Command Console (SWCC) to configure the subsystem. This chapter uses CLI, which is the low-level interface to the controller. To use SWCC for configuration, see the SWCC online help for assistance.

IMPORTANT: These configuration procedures assume that controllers and cache modules are installed in a fully functional and populated enclosure and that the PCMCIA cards are installed.

To install a controller or cache module and the PCMCIA card, see the Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 Maintenance and Service Guide.

Establishing a Local Connection

A local connection is required to configure the controller until a command console LUN (CCL) is established using the CLI. Communication with the controller can be through the CLI or SWCC.

The maintenance port, shown in Figure 5-1, provides a way to connect a maintenance terminal. The maintenance terminal can be an EIA-423 compatible terminal or a computer running a terminal emulator program. The maintenance port accepts a standard RS-232 jack. The maintenance port cable shown in Figure 5-1 has a 9-pin connector molded onto the end for a PC connection. If you need a terminal connection or a 25 -pin connection, you can order optional cabling.

Figure 5-1. Maintenance port connection

Setting Up a Single Controller

Power On and Establish Communication

1. Connect the computer or terminal to the controller as shown in Figure 5-1. The connection to the computer is through the COM1 or COM2 port.
2. Turn on the computer or terminal.
3. Apply power to the storage subsystem.
4. Verify that the computer or terminal is configured as follows:

- 9600 baud
- 8 data bits
- 1 stop bit
- no parity

5. Press Enter. A copyright notice and the CLI prompt appear, indicating that you established a local connection with the controller.

Cabling a Single Controller

The cabling for a single controller is shown in Figure 5-2.
NOTE: It is a good idea to plug only the controller cables into the switch. The host cables are plugged into the switch as part of the configuration procedure ("Configuring a Single Controller Using CLI," page 5-4).

CXO6881B
(1) Controller
(4) Cable from the switch to the host Fibre Channel adapter
(2) Host port 1
(5) FC switch
(3) Host port 2

Figure 5-2. Single controller cabling

Configuring a Single Controller Using CLI

To configure a single controller using CLI involves the following processes:

- Verify the Node ID and Check for Any Previous Connections.

■ Configure Controller Settings.

- Restart the Controller.
- Set Time and Verify all Commands.
- Plug in the FC Cable and Verify Connections.

■ Repeat Procedure for Each Host Adapter.
■ Verify Installation.

Verify the Node ID and Check for Any Previous Connections

1. Enter a SHOW THIS command to verify the node ID:

SHOW THIS

See "Worldwide Names (Node IDs and Port IDs)," page 1-20, for the location of the sticker.

The node ID is located in the third line of the SHOW THIS result:
HSG80> SHOW THIS
Controller:
HSG80 ZG80900583 Software V8.6F-1, Hardware E11
NODE_ID = 5000-1FE1-0001-3F00
ALLOCATION_CLASS $=0$
If the node ID is present, go to step 5 .
If the node ID is all zeroes, enter the node ID and checksum, which are located on a sticker on the controller enclosure. Use the following syntax to enter the node ID:

SET THIS NODE_ID=NNNN-NNNN-NNNN-NNNN nn
Where: $N N N N-N N N N-N N N N-N N N N$ is the node ID, and $n n$ is the checksum.
2. When using a controller that is not new from the factory, enter the following command to take it out of any failover mode that may have been configured previously:
SET NOFAILOVER
If the controller did have a failover mode previously set, the CLI may report an error.
Clear the error with this command:
CLEAR_ERRORS CLI
3. Enter the following command to remove any previously configured connections:

SHOW CONNECTIONS
A list of named connections, if any, is displayed.
4. Delete these connections by entering the following command:

DELETE !NEWCON01
Repeat the Delete command for each of the listed connections. When completed, no connections will be displayed.

Configure Controller Settings

5. Set the SCSI version to SCSI-3 using the following command:

SET THIS SCSI_VERSION=SCSI-3
NOTE: Setting the SCSI version to SCSI-3 does not make the controller fully compliant with the SCSI-3 standards.

SET THIS SCSI_VERSION=SCSI-3

NOTE: Setting the SCSI version to SCSI-3 does not make the controller fully compliant with all SCSI-3 standards.
6. Assign an identifier for the communication LUN (also called the command console LUN, or CCL). The CCL must have a unique identifier that is a decimal number in the range 1 to 32767 , and which is different from the identifiers of all units. Use the following syntax:

SET THIS IDENTIFIER=N
Identifier must be unique among all the controllers attached to the fabric within the specified allocation class.
7. Set the topology for the controller. If both ports are used, set topology for both ports:

SET THIS PORT_1_TOPOLOGY=FABRIC
SET THIS PORT_2_TOPOLOGY=FABRIC
If the controller is not factory-new, it may have another topology set, in which case these commands will result in an error message. If this happens, take both ports offline first, then reset the topology:

SET THIS PORT_1_TOPOLOGY=OFFLINE
SET THIS PORT_2_TOPOLOGY=OFFLINE
SET THIS PORT_1_TOPOLOGY=FABRIC
SET THIS PORT_2_TOPOLOGY=FABRIC
8. Set Allocation class to a decimal number between 0 and 999 . The number must be unique across the fabric. Set allocation class using the following syntax:

SET THIS ALLOCATION_CLASS=N

Restart the Controller

9. Restart the controller, using the following command:

RESTART THIS
10. Assign an identifier for the communication LUN (also called the command console LUN, or CCL). The CCL must have a unique identifier that is a decimal number in the range 1 to 32767 , and which is different from the identifiers of all units. Use the following syntax:

SET THIS IDENTIFIER=N
Identifier must be unique among all the controllers attached to the fabric within the specified allocation class.

Set Time and Verify all Commands

11. Set the time on the controller by entering the following syntax:

SET THIS TIME=DD-MMM-YYYY:HH:MM:SS
12. Use the FRUTIL utility to set up the battery discharge timer. Enter the following command to start FRUTIL:

RUN FRUTIL
When FRUTIL asks if you intend to replace the battery, answer " \mathbf{Y} ":
Do you intend to replace this controller's cache battery? Y/N [N] Y
FRUTIL will print out a procedure, but will not give you a prompt. Ignore the procedure and press the Enter key.
13. Set up any additional optional controller settings, such as changing the CLI prompt. See the SET THIS CONTROLLER/OTHER CONTROLLER command in the Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide for the format of optional settings.
14. Verify that all commands have taken effect. Use the following command: SHOW THIS

Verify node ID, allocation class, SCSI version, failover mode, identifier, and port topology.

The following sample is a result of a SHOW THIS command, with the areas of interest in bold.

Controller:
HSG80 (C) DEC ZG09030200 Software V8.6F, Hardware 0000
NODE_ID = 5000-1FE1-0000-0000
ALLOCATION_CLASS = 1
SCSI_VERSION = SCSI-3
Not configured for dual-redundancy
Device Port SCSI address 7
Time: 10-Mar-1999:12:30:34
Command Console LUN is Iun 0 (IDENTIFIER $=88$)
Host PORT_1:
Reported PORT_ID = 5000-1FE1-0000-0001
PORT_1_TOPOLOGY = FABRIC (fabric up)
Address $=210313$
Host PORT_2:
Reported PORT_ID = 5000-1FE1-0000-0002
PORT_2_TOPOLOGY = FABRIC (fabric up)
Address $=210513$
NOREMOTE_COPY
15. Turn on the switches, if not done previously.

If you want to communicate with the Fibre Channel switches through Telnet, set an IP address for each switch. See the manuals that came with the switches for details.

Plug in the FC Cable and Verify Connections

16. Plug the Fibre Channel cable from the first host bus adapter into the switch. Enter the SHOW CONNECTIONS command to view the connection table:

SHOW CONNECTIONS
17. Rename the connections to something meaningful to the system and easy to remember. For example, to assign the name ANGEL1A1 to connection !NEWCON01, enter: RENAME !NEWCON01 ANGEL1A1

For a recommended naming convention, see "Naming Connections," page 1-10.
18. Specify the operating system for the connection:

SET ANGEL1A1 OPERATING_SYSTEM=NETWARE
19. Verify the changes:

SHOW CONNECTIONS
Mark or tag all Fibre Channel cables at both ends for ease of maintenance.

Repeat Procedure for Each Host Adapter

20. Repeat step 17, 18, and 19 for each of that adapter's host connections, or delete the unused connections from the table.
21. For each host adapter, repeat steps 16 through 20.

Verify Installation

To verify installation for your Novell Netware host, enter the following command: SHOW DEVICES

Setting Up a Controller Pair

Power Up and Establish Communication

1. Connect the computer or terminal to the controller as shown in Figure 5-1. The connection to the computer is through the COM1 or COM2 ports.
2. Turn on the computer or terminal.
3. Apply power to the storage subsystem.
4. Configure the computer or terminal as follows:

- 9600 baud
- 8 data bits
- 1 stop bit
- no parity

5. Press Enter. A copyright notice and the CLI prompt appear, indicating that you established a local connection with the controller.

Cabling a Controller Pair

The cabling for a controller pair is shown in Figure 5-3.
NOTE: It is a good idea to plug only the controller cables into the switch. The host cables are plugged into the switch as part of the configuration procedure ("Configuring a Controller Pair Using CLI," page 5-10).

The following figure shows a controller pair with failover cabling showing one HBA per server with HSG80 controller in transparent failover mode.

(1) Controller A
(4) Host port 2
(2) Controller B
(6) Cable from the switch to the host FC adapter
(3) Host port 1
(6) FC switch

Figure 5-3. Controller pair failover cabling

Configuring a Controller Pair Using CLI

To configure a single controller using CLI involves the following processes:
■ Configure Controller Settings.

- Restart the Controller.
- Set Time and Verify All Commands.
- Plug in the FC Cable and Verify Connections.
- Repeat Procedure for Each Host Adapter.

Verify Installation.

1. Enter a SHOW THIS command to verify the node ID:

SHOW THIS
See "Worldwide Names (Node IDs and Port IDs)," page 1-20, for the location of the sticker.

The node ID is located in the third line of the SHOW THIS result:
HSG80> show this
Controller:
HSG80 ZG80900583 Software V8.6F-1, Hardware E11
NODE_ID = 5000-1FE1-0001-3F00
ALLOCATION_CLASS $=0$
If the node ID is present, go to step 5.
If the node ID is all zeroes, enter the node ID and checksum, which are located on a sticker on the controller enclosure. Use the following syntax to enter the node ID:
SET THIS NODE_ID=NNNN-NNNN-NNNN-NNNN nn
Where: $N N N N-N N N N-N N N N-N N N N$ is the node ID and $n n$ is the checksum.
2. If the controller is not new from the factory, enter the following command to take it out of any failover mode that may have been previously configured:

SET NOFAILOVER

If the controller did have a failover mode previously set, the CLI may report an error. Clear the error with this command:
CLEAR_ERRORS CLI
3. Enter the following command to remove any previously configured connections:

SHOW CONNECTIONS
A list of named connections, if any, is displayed.
4. Delete these connections by entering the following command:

DELETE !NEWCON01
Repeat the Delete command for each of the listed connections. When completed, no connections will be displayed.

Configure Controller Settings

5. Set the SCSI version to SCSI-3 using the following command:

SET THIS SCSI_VERSION=SCSI-3
NOTE: Setting the SCSI version to SCSI-3 does not make the controller fully compliant with the SCSI-3 standards.
6. Assign an identifier for the communication LUN (also called the command console LUN, or CCL). The CCL must have a unique identifier that is a decimal number in the range 1 to 32767, and which is different from the identifiers of all units. Use the following syntax:

SET THIS IDENTIFIER=N
Identifier must be unique among all the controllers attached to the fabric within the specified allocation class.
7. Set the topology for the controller. If both ports are used, set topology for both ports:

SET THIS PORT_1_TOPOLOGY=FABRIC
SET THIS PORT_2_TOPOLOGY=FABRIC
If the controller is not factory-new, it may have another topology set, in which case these commands will result in an error message. If this happens, first take both ports offline, then reset the topology:
SET THIS PORT_1_TOPOLOGY=OFFLINE
SET THIS PORT_2_TOPOLOGY=OFFLINE
SET THIS PORT_1_TOPOLOGY=FABRIC
SET THIS PORT_2_TOPOLOGY=FABRIC
8. Set Allocation class to a decimal number between 0 and 999 . The number must be unique across the fabric. Set allocation class using the following syntax:
SET THIS ALLOCATION_CLASS=N

Restart the Controller

9. Restart the controller, using the following command:

RESTART THIS
It takes about a minute for the CLI prompt to come back after a RESTART command.

Set Time and Verify All Commands

10. Set the time on the controller by entering the following syntax:

SET THIS TIME=DD-MMM-YYYY:HH:MM:SS
11. Use the FRUTIL utility to set up the battery discharge timer. Enter the following command to start FRUTIL:

RUN FRUTIL
When FRUTIL asks if you intend to replace the battery, answer "Y":
Do you intend to replace this controller's cache battery? Y/N $[\mathrm{N}] \mathbf{Y}$
FRUTIL will print out a procedure, but will not give you a prompt. Ignore the procedure and press Enter.
12. Set up any additional optional controller settings, such as changing the CLI prompt. See the SET THIS CONTROLLER/OTHER CONTROLLER command in the Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide for the format of optional settings. Perform this step on both controllers.
13. Verify that all commands have taken effect by entering the following command: SHOW THIS
14. Verify node ID, allocation class, SCSI version, failover mode, identifier, and port topology. The following display is a sample result of a SHOW THIS command, with the areas of interest in bold.

Controller:
HSG80 (C) DEC ZG09030200 Software V8.6F-1, Hardware E11
NODE_ID = 5000-1FE1-0000-0000
ALLOCATION_CLASS = 1
SCSI_VERSION = SCSI-3
Configured for dual-redundancy with 2GOP030245
Device Port SCSI address 7
Time: 10-Mar-2001:12:30:34
Command Console LUN is lun 0 (IDENTIFIER = 88)
Host PORT_1:
Reported PORT_ID = 5000-1FE1-0000-0001
PORT_1_TOPOLOGY = FABRIC (standby)
Address $=210313$
Host PORT_2:
Reported PORT_ID = 5000-1FE1-0000-0002
PORT_2_TOPOLOGY = FABRIC (fabric up)
Address = 210513
NOREMOTE_COPY
15. Turn on the switches if not done previously.

If you want to communicate with the FC switches through Telnet, set an IP address for each switch. See the manuals that came with the switches for details.

Plug in the FC Cable and Verify Connections

16. Plug the FC cable from the first host adapter into the switch. Enter a SHOW CONNECTIONS command to view the connection table:

SHOW CONNECTIONS

The first connection will have one or more entries in the connection table. Each connection will have a default name of the form !NEWCONxx, where xx is a number representing the order in which the connection was added to the connection table.

For a description of why plugging in one adapter can result in multiple connections, see "Numbers of Connections," page 1-10.
17. Rename the connections to something meaningful to the system and easy to remember. For example, to assign the name ANGEL1A1 to connection !NEWCON01, enter:
RENAME !NEWCON01 ANGEL1A1
Compaq recommends using a naming convention, see "Naming Connections," page 1-10.
18. Specify the operating system for the connection:

SET ANGEL1A1 OPERATING_SYSTEM=NETWARE
19. Verify the changes:

SHOW CONNECTIONS
Mark or tag all Fibre Channel cables at both ends for ease of maintenance.

Repeat Procedure for Each Host Adapter Connection

20. Repeat steps 17,18 , and 19 for each of that adapter's host connections or delete the unwanted connections from the table.
21. For each host adapter, repeat steps 16 through 20.

Verify Installation

To verify installation for your Novell Netware host, enter the following command: SHOW DEVICES

Configuring Devices

The disks on the device bus of the HSG80 can be configured manually or with the CONFIG utility. The CONFIG utility is easier. Invoke CONFIG with the following command:

RUN CONFIG
CONFIG takes about two minutes to discover and to map the configuration of a completely populated storage system.

Configuring a Stripeset

1. Create the stripeset by adding its name to the controller's list of storagesets and by specifying the disk drives it contains. Use the following syntax:
ADD STRIPESET STRIPESET-NAME DISKNNNNN DISKNNNNN.......
2. Initialize the stripeset, specifying any desired switches:

INITIALIZE STRIPESET-NAME SWITCHES
See "Initialization Switches" on page 2-25 for a description of the initialization switches.
3. Verify the stripeset configuration:

SHOW STRIPESET-NAME
4. Assign the stripeset a unit number to make it accessible by the hosts. See "Assigning Unit Numbers and Unit Qualifiers" on page 5-20.

For example:
The commands to create Stripe 1, a stripeset consisting of three disks (DISK10000, DISK20000, and DISK 10100) and having a chunksize of 128:

ADD STRIPESET STRIPE1 DISK10000 DISK20000 DISK10100
INITIALIZE STRIPE1 CHUNKSIZE=128
SHOW STRIPE1

Configuring a Mirrorset

1. Create the mirrorset by adding its name to the controller's list of storagesets and by specifying the disk drives it contains. Optionally, you can append mirrorset switch values:

ADD MIRRORSET MIRRORSET-NAME DISKNNNNN DISKNNNNN SWITCHES
NOTE: See the ADD MIRRORSET command in the Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide for a description of the mirrorset switches.
2. Initialize the mirrorset, specifying any desired switches:

INITIALIZE MIRRORSET-NAME SWITCHES
See "Initialization Switches" on page 2-25 for a description of the initialization switches.
3. Verify the mirrorset configuration:

SHOW MIRRORSET-NAME
4. Assign the mirrorset a unit number to make it accessible by the hosts. See "Assigning Unit Numbers and Unit Qualifiers" on page 5-20.

For example:
The commands to create Mirr1, a mirrorset with two members (DISK10000 and DISK20000), and to initialize it using default switch settings:

ADD MIRRORSET MIRR1 DISK10000 DISK20000
INITIALIZE MIRR1
SHOW MIRR1

Configuring a RAIDset

1. Create the RAIDset by adding its name to the controller's list of storagesets and by specifying the disk drives it contains. Optionally, you can specify RAIDset switch values:

ADD RAIDSET RAIDSET-NAME DISKNNNNN DISKNNNNN DISKNNNNN SWITCHES
NOTE: See the ADD RAIDSET command in the Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide for a description of the RAIDset switches.
2. Initialize the RAIDset, specifying any desired switches:

INITIALIZE RAIDSET-NAME SWITCH
NOTE: Compaq recommends that you allow initial reconstruct to complete before allowing I/0 to the RAIDset. Not doing so may generate forced errors at the host level. To determine whether initial reconstruct has completed, enter SHOW RAIDSET FULL.

See "Initialization Switches" on page 2-25 for a description of the initialization switches.
3. Verify the RAIDset configuration:

SHOW RAIDSET-NAME
4. Assign the RAIDset a unit number to make it accessible by the hosts. See "Assigning Unit Numbers and Unit Qualifiers" on page 5-20.

For example:
The commands to create RAID1, a RAIDset with three members (DISK10000, DISK20000, and DISK10100) and to initialize it with default values:

ADD RAIDSET RAID1 DISK10000 DISK20000 DISK10100
INITIALIZE RAID1
SHOW RAID1

Configuring a Striped Mirrorset

1. Create, but do not initialize, at least two mirrorsets.

See "Configuring a Mirrorset" on page 5-16.
2. Create a stripeset and specify the mirrorsets it contains:

ADD STRIPESET STRIPESET-NAME MIRRORSET-1 MIRRORSET-2....MIRRORSET-N
3. Initialize the striped mirrorset, specifying any desired switches:

INITIALIZE STRIPESET-NAME SWITCH
See "Initialization Switches" on page 2-25 for a description of the initialization switches.
4. Verify the striped mirrorset configuration:

SHOW STRIPESET-NAME
5. Assign the stripeset mirrorset a unit number to make it accessible by the hosts. See "Assigning Unit Numbers and Unit Qualifiers" on page 5-20.

For example:
The commands to create Stripe1, a striped mirrorset that comprises Mirr1, Mirr2, and Mirr3, each of which is a two-member mirrorset:

ADD MIRRORSET MIRR1 DISK10000 DISK20000
ADD MIRRORSET MIRR2 DISK20100 DISK10100
ADD MIRRORSET MIRR3 DISK10200 DISK20200
ADD STRIPESET STRIPE1 MIRR1 MIRR2 MIRR3
INITIALIZE STRIPE1
SHOW STRIPE1

Configuring a Single-Disk Unit (JBOD)

1. Initialize the disk drive, specifying any desired switches:

INITIALIZE DISK-NAME SWITCHES
See "Initialization Switches" on page 2-25 for a description of the initialization switches.
2. Verify the configuration by entering the following command:

SHOW DISK-NAME
3. Assign the disk a unit number to make it accessible by the hosts. See "Assigning Unit Numbers and Unit Qualifiers" on page 5-20.

Configuring a Partition

1. Initialize the storageset or disk drive, specifying any desired switches:

IIITIALIZE STORAGESET-NAME SWITCHES
or
INITIALIZE DISK-NAME SWITCHES
See "Initialization Switches" on page 2-25 for a description of the initialization switches.
2. Create each partition in the storageset or disk drive by indicating the partition's size. Also specify any desired switch settings:

CREATE_PARTITION STORAGESET-NAME SIZE=N SWITCHES
or
CREATE_PARTITION DISK-NAME SIZE=N SWITCHES
where N is the percentage of the disk drive or storageset that will be assigned to the partition. Enter SIZE=LARGEST to let the controller assign the largest free space available to the partition.

NOTE: See the CREATE_PARTITION command in the Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide for a description of the partition switches.
3. Verify the partitions:

SHOW STORAGESET-NAME
or
SHOW DISK-NAME
The partition number appears in the first column, followed by the size and starting block of each partition.
4. Assign the partition a unit number to make it accessible by the hosts. See "Assigning Unit Numbers and Unit Qualifiers" on page 5-20.

For example:
The commands to create RAID1, a three-member RAIDset, then partition it into two storage units are shown below.

ADD RAIDSET RAID1 DISK10000 DISK20000 DISK10100
INITIALIZE RAID1
CREATE_PARTITION RAID1 SIZE=25
CREATE_PARTITION RAID1 SIZE=LARGEST
SHOW RAID1

Assigning Unit Numbers and Unit Qualifiers

Each storageset, partition, or single (JBOD) disk must be assigned a unit number for the host to access. As the units are added, their properties can be specified through the use of command qualifiers, which are discussed in detail under the ADD UNIT command in the Compaq StorageWorks HSG80 Array Controller ACS Version 8.6 CLI Reference Guide.

Because of different SCSI versions, refer to the section "Assigning Unit Numbers Depending on SCSI_VERSION," page 1-15. The choice for SCSI_VERSION effects how certain unit numbers and host connection offsets interact.

Each unit can be reserved for the exclusive use of a host or group of hosts. See "Restricting Host Access in Transparent Failover Mode," page 1-17 and "Worldwide Names (Node IDs and Port IDs)," page 1-20..

Assigning a Unit Number to a Storageset

To assign a unit number to a storageset, use the following syntax:
ADD UNIT UNIT-NUMBER STORAGESET-NAME
For example:
To assign unit D102 to RAIDset R1, use the following command:
ADD UNIT D102 R1

Assigning a Unit Number to a Single (JBOD) Disk

To assign a unit number to a single (JBOD) disk, use the following syntax: ADD UNIT UNIT-NUMBER DISK-NAME

For example:
To assign unit D4 to DISK20300, use the following command:
ADD UNIT D4 DISK20300

Assigning a Unit Number to a Partition

To assign a unit number to a partition, use the following syntax:
ADD UNIT UNIT-NUMBER STORAGESET-NAME PARTITION=PARTITION-NUMBER
For example:
To assign unit D100 to partition 3 of mirrorset mirr 1, use the following command:
ADD UNIT D100 MIRR1 PARTITION=3

Preferring Units

In multiple-bus failover mode, individual units can be preferred to a specific controller.
For example, to prefer unit D102 to "this controller," use the following command:
SET D102 PREFERRED_PATH=THIS
RESTART commands must be issued to both controllers for this command to take effect:
RESTART OTHER_CONTROLLER
RESTART THIS_CONTROLLER
NOTE: The controllers need to restart together for the preferred settings to take effect. The RESTART this_controller command must be entered immediately after the RESTART other_controller command.

Configuration Options

Changing the CLI Prompt

To change the CLI prompt, enter a 1 - to 16 - character string as the new prompt, according to the following syntax:

SET THIS_CONTROLLER PROMPT $=$ "NEW PROMPT"

If you are configuring dual-redundant controllers, also change the CLI prompt on the "other controller." Use the following syntax:

SET OTHER_CONTROLLER PROMPT = "NEW PROMPT"
NOTE: It is suggested that the prompt name reflect some information about the controllers. For example, if the subsystem is the third one in a lab, name the top controller prompt, LAB3A and the bottom controller, LAB3B.

Mirroring cache

To specify mirrored cache, use the following syntax:
SET THIS MIRRORED_CACHE

Adding Disk Drives

If you add new disk drives to the subsystem, the disk drives must be added to the controllers' list of known devices:

■ To add one new disk drive to the list of known devices, use the following syntax: ADD DISK DISKNNNNN P TL

- To add several new disk drives to the list of known devices, enter the following command:

RUN CONFIG

Adding a Disk Drive to the Spareset

The spareset is a collection of spare disk drives that are available to the controller should it need to replace a failed member of a RAIDset or mirrorset.

NOTE: This procedure assumes that the disks that you are adding to the spareset have already been added to the controller's list of known devices.

To add the disk drive to the controller's spareset list, use the following syntax:

ADD SPARESET DISKNNNNN

Repeat this step for each disk drive you want to add to the spareset:

For example:

The following example shows the syntax for adding DISK11300 and DISK21300 to the spareset.

ADD SPARESET DISK11300
ADD SPARESET DISK21300

Removing a Disk Drive from the Spareset

You can delete disks in the spareset if you need to use them elsewhere in your subsystem.

1. Show the contents of the spareset entering the following command:

SHOW SPARESET
2. Delete the desired disk drive entering the following command:

DELETE SPARESET DISKNNNNN

NOTE: The RUN CONFIG command does not delete disks from the controllers' device table if a disk has been physically removed or replaced. In this case, you must use the command: DELETE DISKNNNN.
3. Verify the contents of the spareset by entering the following command:

SHOW SPARESET

Enabling Autospare

With AUTOSPARE enabled on the failedset, any new disk drive that is inserted into the PTL location of a failed disk drive is automatically initialized and placed into the spareset. If initialization fails, the disk drive remains in the failedset until you manually delete it from the failedset.

To enable autospare, use the following command:
SET FAILEDSET AUTOSPARE
To disable autospare, use the following command:
SET FAILEDSET NOAUTOSPARE
During initialization, AUTOSPARE checks to see if the new disk drive contains metadata. Metadata is information the controller writes on the disk drive when the disk drive is configured into a storageset. Therefore, the presence of metadata indicates that the disk drive belongs to, or has been used by, a storageset. If the disk drive contains metadata,
initialization stops. (A new disk drive will not contain metadata but a repaired or reused disk drive might. To erase metadata from a disk drive, add it to the controller's list of devices, then set it to be notransportable and initialize it.)

Deleting a Storageset

NOTE: If the storageset you are deleting is partitioned, you must delete each partitioned unit before you can delete the storageset.

1. Show the storageset's configuration:

SHOW STORAGESET-NAME
2. Delete the unit number that uses the storageset. Use the following command:

DELETE UNIT-NUMBER
3. Delete the storageset. Use the following command:

DELETE STORAGESET-NAME
4. Verify the configuration:

SHOW STORAGESET-NAME

Changing Switches for a Storageset or Device

You can optimize a storageset or device at any time by changing the switches that are associated with it. Remember to update the storageset profile when changing its switches.

Displaying the Current Switches

To display the current switches for a storageset or single-disk unit, enter a SHOW command, specifying the FULL switch:

SHOW STORAGESET-NAME
or
SHOW DEVICE-NAMEFULL

Changing RAIDset and Mirrorset Switches

Use the SET storageset-name command to change the RAIDset and Mirrorset switches associated with an existing storageset.

For example, the following command changes the replacement policy for RAIDset RAID1 to BEST_FIT:

SET RAID1 POLICY=BEST_FIT

Changing Device Switches

Use the SET device-name command to change the device switches.
For example, to request a data transfer rate of 20 MHz for DISK10000:
SET DISK10000 TRANSFER_RATE_REQUESTED=20MHZ

Changing Initialize Switches

The initialization switches cannot be changed without destroying the data on the storageset or device. These switches are integral to the formatting and can only be changed by reinitializing the storageset. Initializing a storageset is similar to formatting a disk drive; all data is destroyed during this procedure.

Changing Unit Switches

Use the SET unit-name command to change the characteristics of a unit.
For example, the following command enables write protection for unit D100:
SET D100 WRITE_PROTECT

Chapter 6

Verifying Storage Configuration from the Host

This chapter briefly describes how to verify that multiple paths exist to virtual disk units.
After configuring units (virtual disks) through either the CLI or SWCC reboot the host to enable access to the new storage. After the host restarts, verify that the disk is correctly presented to the host. The command to use consists of the following syntax:

\$ SHOW DEVICE/FULL <NAME OF VIRTUAL DISK>

Use the following command to verify the configuration:

\$ SHOW DEVICE/FULL \$1\$DGA1

The disk information returned is shown in the following table:

```
Disk $1$DGA1: (NOCORD), device type DEC HSG80, is online, file-oriented
device, shareable, device has multiple I/O paths, served to cluster via
MSCP Server, error logging is enabled.
Error count 0 Operations completed 0
Owner process "" Owner UIC [SYSTEM]
Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:R,W
Reference count 0 Default buffer size 512
Allocation class 1
I/O paths to device 2
Path PGA0.5000-1FE1-0000-0173 (NOCORD), primary path, current path.
Error count 0 Operations completed 0
Path PGB0.5000-1FE1-0000-0171 (NOCORD).
Error count 0 Operations completed 0
```


Chapter
 7

Configuration Example Using CLI

This chapter presents an example of how to configure a storage subsystem using the Command Line Interpreter (CLI). The CLI configuration example shown assumes:

- A normal, new controller pair, meaning:
- NODE ID set
- No previous failover mode
- No previous topology set

Full array with no expansion cabinet

- PCMCIA cards installed in both controllers

A storage subsystem example is shown in Figure 7-1. The example system contains three non-clustered Netware hosts, as shown in Figure 7-2. From the hosts' point of view, each host will have four paths to its own virtual disks. The resulting virtual system, from the host's point of view, is shown in Figure 7-3.

Figure 7-1 shows an example storage system map for the BA370 enclosure. Details on building your own map are described in Chapter 2. Templates to help you build your storage map are supplied in Appendix A.

Figure 7-1. Example storage map for the BA370 Enclosure
The example system, shown in Figure 7-2, contains three non-clustered Netware hosts. Port 1 link is separate from port 2 link (that is, ports 1 of both controllers are on one loop or fabric, and port 2 of both controllers are on another) therefore, each adapter has two connections.

NOTE: FCA = Fibre Channel Adapter
CXO7547A
Figure 7-2. Example system
The following figure represents units that are logical or virtual disks comprised of storagesets configured from physical disks.

CXO7110B
Figure 7-3. Example virtual system layout from the hosts' point of view

CLI Configuration Example

The series of commands and information presented in this section provides a CLI configuration example. Text conventions used in this section are listed below:
■ Text in italics indicates an action you take.

- Text in THIS FORMAT, indicates a command you type. Be certain to press Enter after each command.
- Text enclosed within a box, indicates information that is displayed by the CLI interpreter.

■ NOTE text provides additional helpful information.
NOTE: "This" controller is top controller (A).
Plug serial cable from maintenance terminal into top controller.

CLEAR CLI

SET MULTIBUS COPY=THIS
CLEAR CLI
SET THIS SCSI_VERSION=SCSI-3
SET THIS PORT_1_TOPOLOGY=FABRIC
SET THIS PORT_2_TOPOLOGY=FABRIC
SET OTHER PORT_1_TOPOLOGY=FABRIC
SET OTHER PORT_2_TOPOLOGY=FABRIC
SET THIS ALLOCATION_CLASS=1
RESTART OTHER
RESTART THIS
SET THIS TIME=10-Mar-2001:12:30:34
RUN FRUTIL
Do you intend to replace this controller's cache battery? Y/N [Y]
Y
Plug serial cable from maintenance terminal into bottom controller.
NOTE: Bottom controller (B) becomes "this" controller.
RUN FRUTIL
Do you intend to replace this controller's cache battery? Y/N [Y]
Y
SET THIS MIRRORED_CACHE
NOTE: This command causes the controllers to restart.
SET THIS PROMPT="BTVS BOTTOM"
SET OTHER PROMPT="BTVS TOP"
SHOW THIS
SHOW OTHER
Plug in the Fibre Channel cable from the first adapter in host "RED."
SHOW CONNECTIONS
RENAME !NEWCON00 RED1B1
SET RED1B1 OPERATING_SYSTEM=NETWARE
RENAME !NEWCON01 RED1A1
SET RED1A1 OPERATING_SYSTEM=NETWARE
SHOW CONNECTIONS
NOTE: Connection table sorts alphabetically.

Connection	Operating					
Name	System	Controller	Port	Address	Status	Offset
RED1A1	NETWARE	OTHER	1	XXXXXX	OL other	0
H0ST_ID=XXXX-XXXX-XXXX-XXXX		ADAPTER_ID=XXXX-XXXX-XXXX-XXXX				

Mark or tag both ends of Fibre Channel cables.
Plug in the Fibre Channel cable from the second adapter in host "RED."
SHOW CONNECTIONS

Connection Operating Name System		Controller	Port	Address	Status	Unit Offset
! $\mathrm{NEWCON02}$	NETWARE	THIS	2	XXXXXX	OL this	0
HOST_ID=XXXX-XXXX-XXXX-XXXX			ADAPTER_ID=XXXX-XXXX-XXXX-XXXX			
!NEWCON03	NETWARE	OTHER	2	XXXXXX	OL other	0
HOST_ID=XXXX-XXXX-XXXX-XXXX			ADAPTER_ID=XXXX-XxXX-XXXX-XXXX			
RED1A1	NETWARE	OTHER	1	XXXXXX	OL other	0
	...					

RENAME !NEWCON02 RED2B2
SET RED2B2 OPERATING_SYSTEM=NETWARE
RENAME !NEWCON02 RED2A2
SET RED2A2 OPERATING_SYSTEM=NETWARE
SHOW CONNECTIONS

Connection Name	Operating System	Controller	Port	Address	Status	Unit Offset
RED1A1	NETWARE	OTHER	1	XXXXXX	OL other	0
HOST_ID=XXXX-XXXX-XXXX-XXXX			ADAPTER_ID=XXXX-XXXX-XXXX-XXXX			
RED1B1	NETWARE	THIS	1	Xxxxxx	OL this	0
HOST_ID=XXXX-XXXX-XXXX-XXXX			ADAPTER_ID=XXXX-XXXX-XXXX-XXXX			
RED2A2	NETWARE	OTHER	2	Xxxxxx	OL other	0
HOST_ID=XXXX-XXXX-XXXX-XXXX			ADAPTER_ID=XxxX-XxXX-XXXX-XXXX			
RED2B2	NETWARE	THIS	2	Xxxxxx	OL this	0
HOST_ID=XXXX-XXXX-XXXX-XXXX			ADAPTER_ID=XxXX-XxXX-XXXX-XxXx			

Mark or tag both ends of Fibre Channel cables
Repeat this process to add connections from the other two hosts. The resulting connection table should appear similar to the following:

Connection Name	Operating System	Controller	Port	Address	Status	Unit Offset
GREY1A1	NETWARE	OTHER	1	xxxxxx	OL other	0
HOST_ID=XXXX-XXXX-XXXX-XXXX			ADAPTER_ID=XXXX-XxXx-xxxx-xxxx			
GREY1B1	NETWARE	THIS	1	Xxxxxx	OL this	0
HOST_ID=XXXX-XXXX-XXXX-XXXX			ADAPTER_ID=XXXX-XXXX-XXXX-Xxxx			
GREY2A2	NETWARE	OTHER	2	Xxxxxx	OL other	0
HOST_ID=XXXX-XXXX-XXXX-XXXX			ADAPTER_ID=XXXX-XXXX-XXXX-XXXX			
GREY2B2	NETWARE	THIS	2	Xxxxxx	OL this	0
HOST_ID=XXXX-XXXX-XXXX-XXXX			ADAPTER_ID=XXXX-XxXX-XXXX-XXXX			
BLUE1A1	NETWARE	OTHER	1	xxxxxx	OL other	0
HOST_ID=XXXX-XXXX-XXXX-XXXX			ADAPTER_ID=XxXX-xxxx-xxxx-xxxx			
BLUE1B1	NETWARE	THIS	1	xxxxxx	OL this	0
HOST_ID=XXXX-XXXX-XXXX-XXXX			ADAPTER_ID=XXXX-XxXX-XXXX-XXXX			
BLUE2A2	NETWARE	OTHER	2	Xxxxxx	OL other	0
HOST_ID=XXXX-XXXX-XXXX-XXXX			ADAPTER_ID=XXXX-XXXX-XXXX-XXXX			

BLUE2B2	NETWARE	THIS	2	XXXXXX	OL this

SET CONNECTION BLUE1A1 UNIT_OFFSET=100
SET CONNECTION BLUE1B1 UNIT_OFFSET=100
SET CONNECTION BLUE2A2 UNIT_OFFSET=100
SET CONNECTION BLUE2B2 UNIT_OFFSET=100
RUN CONFIG
ADD RAIDSET R1 DISK10000 DISK20000 DISK30000 DISK40000 DISK50000 DISK60000
INITIALIZE R1
ADD UNIT D102 R1 DISABLE_ACCESS_PATH=ALL
SET D102 ENABLE_ACCESS_PATH=(RED1A1, RED1B1, RED2A2, RED2B2)
ADD RAIDSET R2 DISK10100 DISK20100 DISK30100 DISK40100 DISK50100 DISK60100
INITIALIZE R2
ADD UNIT D120 R2 DISABLE_ACCESS_PATH=ALL
SET D120 ENABLE_ACCESS_PATH=(BLUE1A1, BLUE1B1, BLUE2A2, BLUE2B2)
ADD MIRRORSET MI DISK10200 DISK20200
ADD MIRRORSET M2 DISK30200 DISK40200
ADD STRIPESET S1 M1 M2
INITIALIZE S1
ADD UNIT D0 S1 DISABLE_ACCESS_PATH=ALL
SET D0 ENABLE_ACCESS_PATH=(GREY1A1, GREY1B1, GREY2A2, GREY2B2)
ADD MIRRORSET M3 DISK50200 DISK60200
INITIALIZE M3
ADD UNIT D1 M3 DISABLE_ACCESS_PATH=ALL
SET D1 ENABLE_ACCESS_PATH=(BLUE1A1, BLUE1B1, BLUE2A2, BLUE2B2)
ADD STRIPESET S2 DISK10300 DISK20300 DISK30300 DISK40300
INITIALIZE S2
ADD UNIT D2 S2 DISABLE_ACCESS_PATH=ALL
SET D2 ENABLE_ACCESS_PATH=(GREY1A1, GREY1B1, GREY2A2, GREY2B2)
INITIALIZE DISK50300
ADD UNIT D101 DISK50300 DISABLE_ACCESS_PATH=ALL
SET D101 ENABLE_ACCESS_PATH=(BLUE1A1, BLUE1B1, BLUE2A2, BLUE2B2)
ADD SPARESET DISK60300
SHOW UNITS ALL

Chapter 8

Backing Up the Subsystem, Cloning Data for Backup, and Moving Storagesets

This chapter describes some common procedures that are not mentioned previously in this guide. The following information is included in this chapter:

■ "Backing Up the Subsystem Configuration," page 8-1
■ "Cloning Data for Backup," page 8-2
■ "Moving Storagesets," page 8-6

Backing Up the Subsystem Configuration

The controller stores information about the subsystem configuration in its nonvolatile memory. This information could be lost if the controller fails or when you replace a module in the subsystem.

Use the following command to produce a display that shows if the save configuration feature is active and which devices are being used to store the configuration.

SHOW THIS_CONTROLLER FULL

The resulting display includes a line that indicates status and how many devices have copies of the configuration. The last line shows on how many devices the configuration is backed up.

The SHOW DEVICESFULL command shows which disk drive are set up to back up the configuration. The syntax for this command is shown below:

SHOW DEVICES FULL

Cloning Data for Backup

Use the CLONE utility to duplicate the data on any unpartitioned single-disk unit, stripeset, mirrorset, or striped mirrorset in preparation for backup. When the cloning operation is complete, you can back up the clones rather than the storageset or single-disk unit, which can continue to service its I/O load. When you are cloning a mirrorset, CLONE does not need to create a temporary mirrorset. Instead, it adds a temporary member to the mirrorset and copies the data onto this new member.

The CLONE utility creates a temporary, two-member mirrorset for each member in a single-disk unit or stripeset. Each temporary mirrorset contains one disk drive from the unit you are cloning and one disk drive onto which CLONE copies the data. During the copy operation, the unit remains online and active so that the clones contain the most up-to-date data.

After the CLONE utility copies the data from the members to the clones, it restores the unit to its original configuration and creates a clone unit you can back up. The CLONE utility uses steps shown in Figure 8-1 to duplicate each member of a unit.

CXO5510A
Figure 8-1. Steps the CLONE utility follows for duplicating unit members
Use the following steps to clone a single-disk unit, stripeset, or mirrorset:

1. Establish a connection to the controller that accesses the unit you want to clone.
2. Start CLONE using the following command:

RUN CLONE
3. When prompted, enter the unit number of the unit you want to clone.
4. When prompted, enter a unit number for the clone unit that CLONE will create.
5. When prompted, indicate how you would like the clone unit to be brought online: either automatically or only after your approval.
6. When prompted, enter the disk drives you want to use for the clone units.
7. Back up the clone unit.

The following example shows the commands you would use to clone storage unit D98. The clone command terminates after it creates storage unit D99, a clone or copy of D98.

HSG80 >run clone
Clone Local Program Invoked
NOTE: The number of existing storagesets plus the storagesets added for the
cloned unit is limited. CLONE will fail if these limits are
exceeded. Refer to the User's Guide for further information.
Units available for cloning:
7
8
9
6
Enter unit to clone ?6
Clone will create a new unit which is a copy of unit 6 .
Enter the unit number which you want assigned to the new unit ?33
The new unit may be added using one of the following methods:

1. Clone will pause after all members have been copied. The user must then press RETURN to cause the new unit to be added.
2. After all members have been copied, the unit will be added automatically.

Under which above method should the new unit be added \square ? 1
Devices available for clone targets:
LOCAL DISK60200 (size=17773524)
LOCAL DISK30100 (size=17773524)
LOCAL DISK20400 (size=142264000)
Use available device DISK60200(size=17773524) for
member DISK30400(size=17769177) (y,n) [y] ?y
set M2 nopolicy
set M2 members=5
set M2 replace=DISK60200
Copy in progress for each new member. Please be patient... copy from DISK30400 to DISK60200 is 2% complete copy from DISK30400 to DISK60200 is 6\% complete
copy from DISK30400 to DISK60200 is 99\% complete copy from DISK30400 to DISK60200 is 100\% complete

Press RETURN when you want the new unit to be created
reduce DISK60200
set M2 policy=BEST_PERFORMANCE
add mirrorset C_M2 DISK60200
init C_M2 nodestroy
add unit D33 C_M2
D33 has been created. It is a clone of D6.
Clone - Normal Termination
HSG80 >

Moving Storagesets

You can move a storageset from one subsystem to another without destroying its data. You also can follow the steps in this section to move a storageset to a new location within the same subsystem.

CAUTION: Move only normal storagesets. Do not move storagesets that are reconstructing or reduced, or data corruption will result.

See the release notes for the version of your controller software for information on which drives can be supported.

Use the following procedure to move a storageset, while maintaining the data the storageset contains:

1. Show the details for the storageset you want to move. Use the following command: SHOW STORAGESET-NAME
2. Label each member with its name and PTL location.

If you do not have a storageset map for your subsystem, you can enter the LOCATE command for each member to find its PTL location. Use the following command:

LOCATE DISK-NAME
To cancel the locate command, enter the following:
LOCATE CANCEL
3. Delete the unit number shown in the "Used by" column of the SHOW storageset-name command. Use the following syntax:
DELETE UNIT-NUMBER
4. Delete the storageset shown in the "Name" column of the SHOW storageset-name command. Use the following syntax:
DELETE STORAGESET-NAME
5. Delete each disk drive, one at a time, that the storageset contained. Use the following syntax:

DELETE DISK-NAME
DELETE DISK-NAME
DELETE DISK-NAME
6. Remove the disk drives and move them to their new PTL locations.
7. Again add each disk drive to the controller's list of valid devices. Use the following syntax:

ADD DISK DISK-NAME PTL-LOCATION
ADD DISK DISK-NAME PTL-LOCATION
ADD DISK DISK-NAME PTL-LOCATION
8. Recreate the storageset by adding its name to the controller's list of valid storagesets and by specifying the disk drives it contains. (Although you have to recreate the storageset from its original disks, you do not have to add the storagesets in their original order.) Use the following syntax to recreate the storageset:
ADD STORAGESET-NAME DISK-NAME DISK-NAME
9. Represent the storageset to the host by giving it a unit number the host can recognize. You can use the original unit number or create a new one. Use the following syntax:
ADD UNIT UNIT-NUMBER STORAGESET-NAME
The following example moves unit D100 to another cabinet. D100 is the RAIDset RAID99 that consists of members DISK10000, DISK20000, and DISK10100.

DELETE D100

DELETE RAID99
DELETE DISK10000
DELETE DISK10100
DELETE DISK20000
DELETE DISK20100
ADD DISK DISK10000
ADD DISK DISK10100
ADD DISK DISK20000
ADD DISK DISK20100
ADD RAIDSET RAID99 DISK10000 DISK10100 DISK20000 DISK20100
ADD UNIT D100 RAID99

Appendix \boldsymbol{A}

Subsystem Profile Templates

This appendix contains storageset profiles to copy and use to create your system profiles. It also contains an enclosure template to use to help keep track of the location of devices and storagesets in your shelves. Four (4) templates will be needed for the subsystem.

NOTE: The storage map templates for the Model 4310R and Model 4214R or 4314R reflect the disk enclosures physical location in the rack. Disk enclosures 6,5 , and 4 are stacked above the controller enclosure and disk enclosures 1,2, and 3 are stacked below the controller enclosure.

■ "Storageset Profile," page A-2
■ "Storage Map Template 1 for the BA370 Enclosure," page A-3
■ "Storage Map Template 2 for the second BA370 Enclosure," page A-4
■ "Storage Map Template 3 for the third BA370 Enclosure," page A-5
■ "Storage Map Template 4 for the Model 4214R Disk Enclosure," page A-6
■ "Storage Map Template 5 for the Model 4254 Disk Enclosure," page A-7
■ "Storage Map Template 6 for the Model 4310R Disk Enclosure," page A-9
■ "Storage Map Template 7 for the Model 4350R Disk Enclosure," page A-11
■ "Storage Map Template 8 for the Model 4314R Disk Enclosure," page A-12
■ "Storage Map Template 9 for the Model 4354R Disk Enclosure," page A-14

Storageset Profile

Type of Storageset:

| | Mirrorset | \ldots | X RAIDset |
| :---: | :---: | :---: | :---: |$\quad \ldots$ Stripeset $\quad \ldots \quad$ Striped Mirrorset ___ JBOD

Storageset Name

Disk Drives
Unit Number

Partitions:

| Unit \# |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |

RAIDset Switches:

Reconstruction Policy Normal (default)	Reduced Membership $\ldots \quad$ No (default)	Replacement Policy Be_ performance (default)
Fast	Yes, missing:	___Best fit
		None

Mirrorset Switches:

Replacement Policy	Copy Policy	Read Source
Best performance (default)	___Normal (default)	___Least busy (defaul)
Best fit	___Fast	__Round robin
None		Disk drive:

Initialize Switches:

Chunk size	Save Configuration	Metadata
_ Automatic (default)	___No (default)	___Destroy (default)
_ 64 blocks		___Retain
_ 128 blocks		
_ 256 blocks		
O Other:		

Unit Switches:

Caching	Access by following hosts enabled
Read caching__________-_	-
Read-ahead caching___	-
Write-back caching___	
Write-through caching___	

Storage Map Template 1 for the BA370 Enclosure

Use this template for:
■ BA370 single-enclosure subsystems
■ first enclosure of multiple BA370 enclosure subsystems

Port								
$\mathbf{1}$		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$		
Power Supply							Power Supply	
Power Supply								

Storage Map Template 2 for the second BA370 Enclosure

Use this template for the second enclosure of multiple BA370 enclosure subsystems.

Storage Map Template 3 for the third BA370 Enclosure

Use this template for the third enclosure of multiple BA370 enclosure subsystems.

Storage Map Template 4 for the Model 4214R Disk Enclosure

Use this template for a subsystem with a three－shelf Model 4214R disk enclosure （single－bus）．You can have up to six Model 4214R disk enclosures per controller shelf．

Model 4214R Disk Enclosure Shelf 1 （single－bus）														
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID													$\left\lvert\, \begin{aligned} & \frac{8}{y} \\ & \frac{y}{c} \\ & \stackrel{y}{D} \end{aligned}\right.$	¢

Model 4214R Disk Enclosure Shelf 2 （single－bus）															
Bay	1	2	3	4	5	6	7	8			10	11	12	13	14
SCSIID	00	01	02	03	04	05	08	0			11	12	13	14	15
DISK ID													$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{2} \\ \stackrel{y}{c} \\ \stackrel{y}{m} \end{gathered}\right.$		

Model 4214R Disk Enclosure Shelf 3 （single－bus）															
Bay	1	2	3	4	5	6	7	8	9	1			12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	1			13	14	15
DISK ID	嵩		苟			苟			$\frac{\stackrel{8}{0}}{\frac{0}{2}}$	$\left\lvert\, \frac{\stackrel{\rightharpoonup}{0}}{\stackrel{\rightharpoonup}{0}}\right.$				$\frac{\stackrel{\rightharpoonup}{\grave{y}}}{\stackrel{\rightharpoonup}{2}}$	¢

Storage Map Template 5 for the Model 4254 Disk Enclosure

Use this template for a subsystem with a three-shelf Model 4254 disk enclosure (dual-bus). You can have up to three Model 4254 disk enclosures per controller shelf.

Model 4254 Disk Enclosure Shelf 1 (dual-bus)														
Bus A								Bus B						
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSIID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
DISK ID														

Model 4254 Disk Enclosure Shelf 2 (dual-bus)														
Bus A								Bus B						
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSIID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
DISK ID														僉

continued from previous page

Model 4254 Disk Enclosure Shelf 3 (dual-bus)															
Bus A								Bus B							
Bay	1	2	3	4	5	6	7	8			10	11	12	13	14
SCSIID	00	01	02	03	04	05	08	0			02	03	04	05	08
DISK ID											$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \end{aligned}$	\|o			-

Storage Map Template 6 for the Model 4310R Disk Enclosure

Use this template for a subsystem with a six-shelf Model 4310R disk enclosure (dual-bus). You can have up to six Model 4310R disk enclosures per controller shelf.

Model 4310R Disk Enclosure Shelf 6 (single-bus)

Model 4310R Disk Enclosure Shelf 5 (single-bus)

Model 4310R Disk Enclosure Shelf 4 (single-bus)

continued from previous page
Model 4310R Disk Enclosure Shelf 1 (single-bus)

Bay	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
SCSI ID	00	01	02	03	04	05	08	10	11	12
DISK ID										

Model 4310R Disk Enclosure Shelf 2 (single-bus)

Model 4310R Disk Enclosure Shelf 3 (single-bus)

Storage Map Template 7 for the Model 4350R Disk Enclosure

Use this template for a subsystem with a three-shelf Model 4350R disk enclosure (dual-bus). You can have up to three Model 4350R disk enclosures per controller shelf.

Model 4310R Disk Enclosure Shelf 6 (single-bus)

Bay	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$

Model 4310R Disk Enclosure Shelf 5 (single-bus)

Bay	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
SCSI ID	00	01	02	03	04	05	08	10	11	12

Model 4310R Disk Enclosure Shelf 4 (single-bus)

Storage Map Template 8 for the Model 4314R Disk Enclosure

Use this template for a subsystem with a six-shelf Model 4314R disk enclosure. You can have a maximum of six Model 4314R disk enclosures with each Model 2200 controller enclosure.

Model 4314R Disk Enclosure Shelf 6 (single-bus)

Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID		응 응 0 0.0	응 O 0 0 0			8 8 0 0 0 0	$\begin{aligned} & \hline 8 \\ & 0.0 \\ & 0 . \\ & 0.0 \\ & 00 \end{aligned}$		$\begin{aligned} & \stackrel{8}{8} \\ & \frac{0}{n} \\ & \frac{0}{0} \\ & 0 . \end{aligned}$	$\begin{aligned} & \hline \stackrel{\circ}{0} \\ & \overline{\bar{o}} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \hline \stackrel{\circ}{2} \\ & \stackrel{0}{6} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{0}{0} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \stackrel{0}{0} \end{aligned}$

Model 4314R Disk Enclosure Shelf 5 (single-bus)

Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID	8 8 8 $\stackrel{0}{0}$ 0	음 $\stackrel{0}{0}$ 0.0 0.												8 0 0 $\frac{1}{2}$ $\frac{0}{0}$ 0

Model 4314R Disk Enclosure Shelf 4 (single-bus)

continued from previous page

Model 4314R Disk Enclosure Shelf 1 (single-bus)

Model 4314R Disk Enclosure Shelf 2 (single-bus)

Model 4314R Disk Enclosure Shelf 3 (single-bus)

Storage Map Template 9 for the Model 4354R Disk Enclosure

Use this template for a subsystem with a three-shelf Model 4354R disk enclosure (dual-bus). You can have up to three Model 4350R disk enclosures per controller shelf.

Model 4354R Disk Enclosure Shelf 1 (dual-bus)

	SCSI Bus A							SCSI Bus B						
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
DISK ID			$\begin{aligned} & \hline \mathrm{O} \\ & \text { N } \\ & \text { on } \\ & \frac{5}{0} \\ & \hline 0 \end{aligned}$				8 0 0 0 $\frac{5}{5}$ 0 0					为	\|lo	\|lo

Model 4354R Disk Enclosure Shelf 2 (dual-bus)

	SCSI Bus A							SCSI Bus B						
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
DISK ID		$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{n} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$					8 0 0 0 0 0 0	8 8 8 \vdots \vdots 0		¢			-	¢

Model 4354R Disk Enclosure Shelf 3 (dual-bus)

	SCSI Bus A							SCSI Bus B						
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
DISK ID	$\begin{aligned} & \hline \stackrel{\circ}{2} \\ & 0 . \\ & \frac{0}{0} \\ & \frac{0}{0} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \frac{0}{2} \\ & \frac{1}{2} \\ & \frac{0}{0} \\ & \hline 0 \end{aligned}$						O 8 0. $\frac{0}{0}$ 0			-	-	O 0 0 0 0 0 0	僉

Appendix \boldsymbol{B}

Installing, Configuring, and Removing the Client

The following information is included in this appendix:

- "Why Install the Client?," page B-1
- "Before You Install the Client," page B-2
- "Installing the Client," page B-2
- "Troubleshooting the Client Installation," page B-3
- "Adding the Storage Subsystem and its Host to the Navigation Tree," page B-5
- "Removing the Command Console Client," page B-7
- "Where to Find Additional Information," page B-8

Why Install the Client?

The Client monitors and manages a storage subsystem by performing the following tasks:

- Create mirrored device group (RAID 1)
- Create striped device group (RAID 0)
- Create striped mirrored device group (RAID 0+1)
- Create striped parity device group (3/5)
- Create an individual device (JBOD)
- Monitor many subsystems at once
- Set up pager notification

Before You Install the Client

1. Verify you are logged into an account that is a member of the administrator group.
2. Check the software product description that came with the software for a list of supported hardware.
3. Verify that you have the SNMP service installed on the computer. SNMP must be installed on the computer for this software to work properly. The Client software uses SNMP to receive traps from the Agent. The SNMP service is available on the Windows NT or Windows 2000 installation CD-ROM. To verify that you have the SNMP service:

- For Windows NT, double-click Services in Start > Settings > Control Panel. The entry for SNMP is shown in this window. If you install the SNMP service and you already have Windows NT Service Pack 6A on the computer, reinstall the service pack after installing the SNMP service.
- For Windows 2000, click Start > Settings > Control Panel > Administrative Tools > Component Services. The entry for SNMP is shown in the Component Services window.

4. Read the release notes.
5. Read "Troubleshooting the Client Installation" in this appendix.
6. If you have the Command Console Client open, exit the Command Console Client.
7. If you have Command Console Client version 1.1b or earlier, remove the program with the Windows Add/Remove Programs utility.
8. If you have a previous version of Command Console, you can save the Navigation Tree configuration by copying the $S W C C 2 . M D B$ file to another directory. After you have installed the product, move SWCC2.MDB to the directory to which you installed SWCC.
9. Install the HS-Series Agent. For more information, see Chapter 4.

Installing the Client

1. Insert the CD-ROM into a computer running Windows 2000 with Service Pack 1 or Windows NT 4.0 (Intel) with Service Pack 6A.
2. Using Microsoft Windows Explorer, navigate to:
\swcclclientlintel
Double click SETUP.EXE
3. Select HSG80 Controller and click Next.

NOTE: If the computer does not find a previous installation, it will install the SWCC Navigation Window and the CLI Window.
4. Follow the instructions on the screen. After you install the software, the Asynchronous Event Service (AES) starts. AES is a service that runs in the background. It collects and passes traps from the subsystems to the Navigation Tree and to individual pagers (for example, to show that a disk has failed). AES needs to be running for the client system to receive updates.

NOTE: For more information on AES, see Compaq StorageWorks Command Console Version 2.4 User Guide.

Troubleshooting the Client Installation

This section provides information on how to resolve some of the problems that may appear when installing the Client software:

- Invalid Network Port Assignments During Installation
- "There is no disk in the drive" Message

Invalid Network Port Assignments
 During Installation

SWCC Clients and Agents communicate by using sockets. The SWCC installation attempts to add entries into each system list of services (services file or for UCX, the local services database). If the SWCC installation finds an entry in the local services file with the same name as the one it wants to add, it assumes the one in the file is correct.

The SWCC installation may display a message, stating that it cannot upgrade the services file. This happens if it finds an entry in the local services file with the same number as the one it wants to add, but with a different name. In that case, appropriate port numbers must be obtained for the network and added manually to the services file.

There are two default port numbers, one for Command Console (4998) and the other for the device-specific Agent and Client software, such as the Fibre Channel Interconnect Client and Agent (4989). There are two exceptions. The following software has two default port numbers:

- The KZPCC Agent and Client, (4991 and 4985)

■ The RA200 Agent and Client, (4997 and 4995)

If the Network Information Services (NIS) are being used to provide named port lookup services, contact the network administrator to add the correct ports.

The following shows how the network port assignments appear in the services file:

spgui	4998/tcp	\#Command Console
ccdevmgt	4993/tcp	\#Device Management Client and Agent
kzpccconnectport	4991/tcp	\#KZPCC Client and Agent
kzpccdiscoveryport	4985/tcp	\#KZPCC Client and Agent
ccfabric	4989/tcp	\#Fibre Channel Interconnect Agent
spagent	4999/tcp	\#HS-Series Client and Agent
spagent3	4994/tcp	\#HSZ22 Client and Agent
ccagent	4997/tcp	\#RA200 Client and Agent
spagent2	4995/tcp	\#RA200 Client and Agent

"There is no disk in the drive" Message

When you install the Command Console Client, the software checks the shortcuts on the desktop and in the Start menu. The installation will check the shortcuts of all users for that computer, even if they are not currently logged on. You may receive an error message if any of these shortcuts point to empty floppy drives, empty CD-ROM drives, or missing removable disks. Do one of the following:

- Ignore the error message by clicking Ignore.
- Replace the removable disks, and place a disk in the floppy drive and a CD-ROM in the CD-ROM drive. Then, click Retry.

Adding the Storage Subsystem and its Host to the Navigation Tree

The Navigation Tree enables you to manage storage over the network by using the Storage Window. If you plan to use pager notification, you must add the storage subsystem to the Navigation Tree.

1. Verify that you have properly installed and configured the HS-Series Agent on the storage subsystem host.
2. Click Start $>$ Programs $>$ Command Console $>$ StorageWorks Command Console. Client displays the Navigation Window. The Navigation Window lets you monitor and manage many storage subsystems over the network.

Figure B-1. Navigation window

3. Click File > Add System. The Add System window appears.
4. Type the host name or its TCP/IP address and click Apply.
5. Click Close .

Figure B-2. Navigation window showing storage host system "Atlanta"
6. Click the plus sign to expand the host icon. When expanded, the Navigation Window displays an icon for the storage subsystem. To access the Storage Window for the subsystem, double-click the Storage Window icon.

Figure B-3. Navigation window showing expanded "Atlanta" host icon
NOTE: You can create virtual disks by using the Storage Window. For more information on the Storage Window, refer to Compaq StorageWorks Command Console Version 2.4 User Guide.

Removing the Command Console Client

Before you remove the Command Console Client (CCL) from the computer, remove AES. This will prevent the system from reporting that a service failed to start every time the system is restarted. Steps 2 through 5 describe how to remove the CCL.

NOTE: When you remove the CCL, the SWCC2.MDB file is deleted. This file contains the Navigation Tree configuration. If you want to save this information, move the file to another directory.

1. Click Start $>$ Programs $>$ Command Prompt and change to the directory to which you installed the CCL.
2. Enter the following command:

C:\Program Files\Compaq\SWCC> AsyncEventService -remove
3. Do one of the following:

- On Windows NT 4.0, click Start > Settings > Control Panel, and double-click the Add/Remove Programs icon in the Control Panel. The Add/Remove Program Properties window appears.
- On Windows 2000, click Start > Settings > Control Panel > Add/Remove Programs. The Add/Remove Program window appears.

4. Select Command Console in the window.
5. Do one of the following:

- On Windows NT 4.0, click Add/Remove.
- On Windows 2000, click Change/Remove.

6. Follow the instructions on the screen.

NOTE: This procedure removes only the Command Console Client (SWCC Navigation Window). You can remove the HSG80 Client by using the Add/Remove program.

Where to Find Additional Information

You can find additional information about SWCC by referring to the online Help and to Compaq StorageWorks Command Console Version 2.4 User Guide.

About the User Guide

Compaq StorageWorks Command Console Version 2.4 User Guide contains additional information on how to use SWCC. Some of the topics in the user guide are the following:

- About AES

■ Adding Devices
■ Adding Virtual Disks
■ Setting Up Pager Notification

- How to Integrate SWCC with Compaq Insight Manager

■ Troubleshooting Information

About the Online Help

Most of the information about the Client is provided in the online Help. Online Help is provided in two places:

- Navigation Window - Online Help provides information on pager notification and a tour of the Command Console Client, in addition to information on how to add a system to the Navigation Tree.

■ Storage Window - Online Help provides detailed information about the Storage Window, such as how to create virtual disks.

Glossary

This glossary defines terms pertaining to the ACS solution software. It is not a comprehensive glossary of computer terms.

adapter	A device that converts the protocol and hardware interface of one bus type into another without changing the function of the bus.		
ACS	See array controller software.		
AL_PA	See arbitrated loop physical address. Pronounced "ann-see." Acronym for the American National Standards Institute. An organization who develops standards used voluntarily by many manufacturers within the USA. ANSI is not a government agency.		
ANSI	Abbreviated AL_PA. A one-byte value used to identify a port in an Arbitrated Loop topology.		
arbitrated loop			
physical address	See controller.	\quad	array controller
:---			
array controller			
software	\quad	Abbreviated ACS. Software contained on a removable ROM program card	
:---			
that provides the operating system for the array controller.			

bad block replacement	Abbreviated BBR. A replacement routine that substitutes defect-free disk blocks for those found to have defects. This process takes place in the controller, transparent to the host.
backplane	The electronic printed circuit board into which you plug subsystem devices-for example, the SBB or power supply.
BBR	See bad block replacement.
BIST	A single binary digit having a value of either 0 or 1. A bit is the smallest unit of data a computer can process.
bit	Also called a sector. The smallest collection of consecutive bytes addressable on a disk drive. In integrated storage elements, a block contains 512 bytes of data, error codes, flags, and the block address header.
block	A method used to bring a system or device into a defined state by means of its own action. For example, a machine routine whose first few instructions are enough to bring the rest of the routine into the computer from an input device.
bootstrapping	A diagnostic test performed by the array controller software on the controller policy processor.
built-in self-test	A binary character string made up of 8 bits operated on as a unit.
byte	A portion of memory used to accelerate read and write operations.
cache memory	Cable distribution unit. The power entry device for StorageWorks cabinets. The CDU provides the connections necessary to distribute power to the cabinet shelves and fans.
CDU	An interface that allows high speed transfer of large amounts of data. Another term for a SCSI bus. See also SCSI.
chunk	A block of data written by the host.
chunk size	The number of data blocks, assigned by a system administrator, written to the primary RAIDset or stripeset member before the remaining data blocks are written to the next RAIDset or stripeset member.
controller software.	

\(\left.$$
\begin{array}{ll}\text { coax } & \begin{array}{l}\text { A two-conductor wire in which one conductor completely wraps the other } \\
\text { with the two separated by insulation. }\end{array} \\
\text { cold swap } & \begin{array}{l}\text { A method of device replacement that requires the entire subsystem to be } \\
\text { turned off before the device can be replaced. See also hot swap and warm } \\
\text { swap. }\end{array}
$$

command line

interpreter\end{array} \quad $$
\begin{array}{l}\text { The configuration interface to operate the controller software. }\end{array}
$$\right\}\)| concat commands | Concat commands implement storageset expansion features. |
| :--- | :--- |
| configuration file | A file that contains a representation of a storage subsystem configuration. |
| container | 1) Any entity that is capable of storing data, whether it is a physical device or
 a group of physical devices. (2) A virtual, internal controller structure
 representing either a single disk or a group of disk drives linked as a
 storageset. Stripesets and mirrorsets are examples of storageset containers the
 controller uses to create units. |
| controller | A hardware device that, with proprietary software, facilitates communications
 between a host and one or more devices organized in an array. The HSG80
 family controllers are examples of array controllers. |
| copying | A state in which data to be copied to the mirrorset is inconsistent with other
 members of the mirrorset. See also normalizing. |
| copying member | Any member that joins the mirrorset after the mirrorset is created is regarded
 as a copying member. Once all the data from the normal member (or |
| members) is copied to a normalizing or copying member, the copying member | |
| then becomes a normal member. See also normalizing member. | |

data striping	The process of segmenting logically sequential data, such as a single file, so that segments can be written to multiple physical devices (usually disk drives) in a round-robin fashion. This technique is useful if the processor is capable of reading or writing data faster than a single disk can supply or accept the data. While data is being transferred from the first disk, the second disk can locate the next segment.
device	See node and peripheral device.
differential I/O module	A 16-bit I/O module with SCSI bus converter circuitry for extending a differential SCSI bus. See also I/O module.
differential SCSI bus	A bus in which a signal level is determined by the potential difference between two wires. A differential bus is more robust and less subject to electrical noise than is a single-ended bus.
DIMM	Dual inline Memory Module.
dirty data	The write-back cached data that has not been written to storage media, even though the host operation processing the data has completed.
DMA	Direct Memory Access.
DOC	DWZZA-On-a-Chip. ASCSI bus extender chip used to connect a SCSI bus in an expansion cabinet to the corresponding SCSI bus in another cabinet.
driver	A hardware device or a program that controls or regulates another device. For example, a device driver is a driver developed for a specific device that allows a computer to operate with the device, such as a printer or a disk drive.
dual-redundant configuration	A controller configuration consisting of two active controllers operating as a single controller. If one controller fails, the other controller assumes control of the failing controller devices.
dual-simplex	A communications protocol that allows simultaneous transmission in both directions in a link, usually with no flow control.
DUART	Dual universal asynchronous receiver and transmitter. An integrated circuit containing two serial, asynchronous transceiver circuits.
ECB	External cache battery. The unit that supplies backup power to the cache module in the event the primary power source fails or is interrupted.
ECC	Error checking and correction.
EDC	Error detection code.

EIA	The abbreviation for Electronic Industries Association. EIA is a standards organization specializing in the electrical and functional characteristics of interface equipment.
EMU	Environmental monitoring unit. A unit that provides increased protection against catastrophic failures. Some subsystem enclosures include an EMU which works with the controller to detect conditions such as failed power supplies, failed blowers, elevated temperatures, and external air sense faults. The EMU also controls certain cabinet hardware including DOC chips, alarms, and fan speeds.
ESD	Electrostatic discharge. The discharge of potentially harmful static electrical voltage as a result of improper grounding.
extended subsystem	A subsystem in which two cabinets are connected to the primary cabinet.
external cache battery	See ECB.
F_Port	A port in a fabric where an N_Port or NL_Port may attach.
fabric	A group of interconnections between ports that includes a fabric element.
failedset	A group of failed mirrorset or RAIDset devices automatically created by the controller.
failover	The process that takes place when one controller in a dual-redundant configuration assumes the workload of a failed companion controller. Failover continues until the failed controller is repaired or replaced.
FC-AL	The Fibre Channel Arbitrated Loop standard. See Fibre Channel.
FC-ATM	ATM AAL5 over Fibre Channel
FC-FG	Fibre Channel Fabric Generic Requirements
FG-FP	Fibre Channel Framing Protocol (HIPPI on FC)
FC-GS-1	Fibre Channel Generic Services-1
FC-GS-2	Fibre Channel Generic Services-2
FC-IG	Fibre Channel Implementation Guide
FC-LE	Fibre Channel Link Encapsulation (ISO 8802.2)

FC-PH	The Fibre Channel Physical and Signaling standard.
FC-SB	Fibre Channel Single Byte Command Code Set
FC-SW	Fibre Channel Switched Topology and Switch Controls
FCC	Federal Communications Commission. The federal agency responsible for establishing standards and approving electronic devices within the United States.
FCC Class A	This certification label appears on electronic devices that can only be used in a commercial environment within the United States.
FCC Class B	This certification label appears on electronic devices that can be used in either a home or a commercial environment within the United States.
FCP	The mapping of SCSI-3 operations to Fibre Channel.
FDDI	Fiber Distributed Data Interface. An ANSI standard for 100 megabaud transmission over fiber optic cable.
FD SCSI	The fast, narrow, differential SCSI bus with an 8-bit data transfer rate of 10 MB/s. See also FWD SCSI and SCSI.
fiber	A fiber or optical strand. Spelled fibre in Fibre Channel. A transmission medium designed to transmit digital signals in the form of pulses of light. Fiber optic cable is noted for its properties of electrical isolation and resistance to electrostatic contamination.
fiber optic cable	A high speed, high-bandwidth serial protocol for channels and networks that interconnect over twisted pair wires, coaxial cable or fiber optic cable. The Fibre Channel Switched (FC-SW) (fabric) offers up to 16 million ports with cable lengths of up to 10 kilometers. The Fibre Channel Arbitrated Loop (FC-AL) topology offers speeds of up to 100 Mbytes/seconds and up to 127 nodes, all connected in serial. In contrast to SCSI technology, Fibre Channel does not require ID switches or terminators. The FC-AL loop may be connected to a Fibre Channel fabric for connection to other nodes.
fibre channel	An interconnection scheme that allows multiple Fibre Channel ports to communicate with each other. For example, point-to-point, Arbitrated Loop, and switched fabric are all Fibre Channel topologies.
topology	A port in a fabric where N_Port or an NL_Port may be connected.
FL_Port	The act of writing dirty data from cache to a storage media.

FMU	Fault management utility.
forced errors	A data bit indicating a corresponding logical data block contains unrecoverable data.
frame	An invisible unit used to transfer information in Fibre Channel.
FRU	Field replaceable unit. A hardware component that can be replaced at the customer location by Compaq service personnel or qualified customer service personnel.
FRUTIL	Field Replacement utility.
full duplex (n)	A communications system in which there is a capability for 2-way transmission and acceptance between two sites at the same time.
full duplex (adj)	Pertaining to a communications method in which data can be transmitted and received at the same time.
FWD SCSI	A fast, wide, differential SCSI bus with a maximum 16-bit data transfer rate of $20 \mathrm{MB} / \mathrm{s}$. See also SCSI and FD SCSI.
GBIC	Gigabit Interface Converter. GBICs convert electrical signals to optical signals (and vice-versa.) They are inserted into the ports of the Fibre Channel switch and hold the Fibre Channel cables.
GLM	Gigabit link module
giga	A prefix indicating a billion $\left(10^{9}\right)$ units, as in gigabaud or gigabyte .
gigabaud	An encoded bit transmission rate of one billion (10^{9}) bits per second.
gigabyte	A value normally associated with a disk drives storage capacity, meaning a billion $\left(10^{9}\right)$ bytes. The decimal value 1024 is usually used for one thousand.
half-duplex (adj)	Pertaining to a communications system in which data can be either transmitted or received but only in one direction at one time.
hard address	The AL_PA which an NL_Port attempts to acquire during loop initialization.
heterogeneous host support	Also called noncooperating host support.
HIPPI-FC	Fibre Channel over HIPPI
host	The primary or controlling computer to which a storage subsystem is attached.

host adapter	A device that connects a host system to a SCSI bus. The host adapter usually performs the lowest layers of the SCSI protocol. This function may be logically and physically integrated into the host system.		
hot disks	A disk containing multiple hot spots. Hot disks occur when the workload is poorly distributed across storage devices which prevents optimum subsystem performance. See also hot spots.		
hot spots	A portion of a disk drive frequently accessed by the host. Because the data being accessed is concentrated in one area, rather than spread across an array of disks providing parallel access, I/O performance is significantly reduced. See also hot disks.		
hot swap	A method of device replacement that allows normal I/O activity on a device bus to remain active during device removal and insertion. The device being removed or inserted is the only device that cannot perform operations during this process. See also cold swap and warm swap.		
hub	A device (concentrator) which performs some or all of the following functions:		
■ Automatic insertion of operational loop devices without disrupting the existing configuration.			
■ Automatic removal of failed loop devices without impacting the existing			
configuration.		\quad	■ Provides a centralized (star) wiring configuration and maintenance point.
:---			

\(\left.$$
\begin{array}{ll}\text { I/O } & \text { Refers to input and output functions. } \\
\text { I/O driver } & \begin{array}{l}\text { The set of code in the kernel that handles the physical I/O to a device. This is } \\
\text { implemented as a fork process. Same as driver. }\end{array} \\
\text { I/O interface } & \begin{array}{l}\text { See interface. }\end{array} \\
\text { I/O module } & \begin{array}{l}\text { A 16-bit SBB shelf device that integrates the SBB shelf with either an 8-bit } \\
\text { single ended, 16-bit single-ended, or 16-bit differential SCSI bus. }\end{array} \\
\text { I/O operation } & \begin{array}{l}\text { The process of requesting a transfer of data from a peripheral device to } \\
\text { memory (or visa versa), the actual transfer of the data, and the processing and } \\
\text { overlaying activity to make both of those happen. }\end{array} \\
\text { IPI } & \begin{array}{l}\text { Intelligent Peripheral Interface. An ANSI standard for controlling peripheral } \\
\text { devices by a host computer. }\end{array} \\
\text { IPI-3 Disk } & \begin{array}{l}\text { Intelligent Peripheral Interface Level } 3 \text { for Disk }\end{array} \\
\text { IPI-3 Tape } & \begin{array}{l}\text { Intelligent Peripheral Interface Level 3 for Tape }\end{array} \\
\text { JBOD } & \begin{array}{l}\text { Just a bunch of disks. A term used to describe a group of single-device logical } \\
\text { units. }\end{array} \\
\text { kernel } & \begin{array}{l}\text { The most privileged processor access mode. }\end{array} \\
\text { LBN } & \begin{array}{l}\text { Logical Block Number. }\end{array}
$$

L_port node or fabric port capable of performing arbitrated loop functions and

protocols. NL_Ports and FL_Ports are loop-capable ports.\end{array}\right]\)	Light Emitting Diode.

logical bus	A single-ended bus connected to a differential bus by a SCSI bus signal converter.
logical unit	A physical or virtual device addressable through a target ID number. LUNs use their target bus connection to communicate on the SCSI bus.
logical unit number	A value that identifies a specific logical unit belonging to a SCSI target ID number. A number associated with a physical device unit during a task I/O operations. Each task in the system must establish its own correspondence between logical unit numbers and physical devices.
logon	Also called login. A procedure whereby a participant, either a person or network connection, is identified as being an authorized network participant.
loop	See arbitrated loop.
Ioop_ID	A seven-bit value numbered contiguously from zero to 126-decimal and represent the 127 legal AL_PA values on a loop (not all of the 256 hex values are allowed as AL_PA values per FC-AL.)
loop tenancy	The period of time between the following events: when a port wins loop arbitration and when the port returns to a monitoring state.
L_Port	A node or fabric port capable of performing Arbitrated Loop functions and protocols. NL_Ports and FL_Ports are loop-capable ports.
LRU	Least recently used. A cache term used to describe the block replacement policy for read cache.
Mbps	Approximately one million (10 ${ }^{6}$) bits per second-that is, megabits per second.
MBps	Approximately one million (10 0^{6}) bytes per second-that is, megabytes per second.
terminal	An EIA-423-compatible terminal used with the controller. This terminal is used to identify the controller, enable host paths, enter configuration information, and check the controller status. The maintenance terminal is not required for normal operations.
See also local terminal.	

metadata	The data written to a disk for the purposes of controller administration. Metadata improves error detection and media defect management for the disk drive. It is also used to support storageset configuration and partitioning. Nontransportable disks also contain metadata to indicate they are uniquely configured for StorageWorks environments. Metadata can be thought of as "data about data."
mirroring	The act of creating an exact copy or image of data.
mirrored write-back caching	See RAID level 1.
mirrorset	A method of caching data that maintains two copies of the cached data. The copy is available if either cache module fails.
MIST	Module Integrity Self-Test.
N_port	A port attached to a node for use with point-to-point topology or fabric topology.
NL_port	A port attached to a node for use in all ttopologies.
network	In data communication, a configuration in which two or more terminals or devices are connected to enable information transfer.
node	In data communications, the point at which one or more functional units connect transmission lines.
Non-L_Port	A Node of Fabric port that is not capable of performing the Arbitrated Loop functions and protocols. N_Ports and F_Ports loop-capable ports.
non-participating mode	A mode within an L_Port that inhibits the port from participating in loop activities. L_Ports in this mode continue to retransmit received transmission words but are not permitted to arbitrate or originate frames. An L_Port in non-participating mode may or may not have an AL_PA. See also participating mode.
nominal membership	The desired number of mirrorset members when the mirrorset is fully populated with active devices. If a member is removed from a mirrorset, the actual number of members may fall below the "nominal" membership.
node	In data communications, the point at which one or more functional units connect transmission lines. In Fibre Channel, a device that has at least one N_Port or NL_Port.

nonredundant
controller
configuration normal member
normalizing
normalizing
member

NVM

OCP
other controller
outbound fiber
parallel data
transmission
parity
parity bit
parity check
(1) A single controller configuration. (2) A controller configuration that does not include a second controller.

A mirrorset member that, block-for-block, contains the same data as other normal members within the mirrorset. Read requests from the host are always satisfied by normal members.

Normalizing is a state in which, block-for-block, data written by the host to a mirrorset member is consistent with the data on other normal and normalizing members. The normalizing state exists only after a mirrorset is initialized. Therefore, no customer data is on the mirrorset.

A mirrorset member whose contents are the same as all other normal and normalizing members for data that has been written since the mirrorset was created or lost cache data was cleared. A normalizing member is created by a normal member when either all of the normal members fail or all of the normal members are removed from the mirrorset. See also copying member.

Non-Volatile Memory. A type of memory where the contents survive power loss. Also sometimes referred to as NVMEM.

Operator control panel. The control or indicator panel associated with a device. The OCP is usually mounted on the device and is accessible to the operator.

The controller in a dual-redundant pair that is connected to the controller serving the current CLI session. See also this controller.

One fiber in a link that carries information away from a port.
A data communication technique in which more than one code element (for example, bit) of each byte is sent or received simultaneously.

A method of checking if binary numbers or characters are correct by counting the ONE bits. In odd parity, the total number of ONE bits must be odd; in even parity, the total number of ONE bits must be even.

A binary digit added to a group of bits that checks to see if errors exist in the transmission.

A method of detecting errors when data is sent over a communications line. With even parity, the number of ones in a set of binary data should be even. With odd parity, the number of ones should be odd.

participating mode	A mode within an L_Port that allows the port to participate in loop activities. A port must have a valid AL_PA to be in participating mode.
PCM	Polycenter Console Manager.
PCMCIA	Personal Computer Memory Card Industry Association. An international association formed to promote a common standard for PC card-based peripherals to be plugged into notebook computers. The card commonly known as a PCMCIA card is about the size of a credit card.
parity	A method of checking if binary numbers or characters are correct by counting the ONE bits. In odd parity, the total number of ONE bits must be odd; in even parity, the total number of ONE bits must be even. Parity information can be used to correct corrupted data. RAIDsets use parity to improve the availability of data.
parity bit	A binary digit added to a group of bits that checks to see if there are errors in the transmission.
parity RAID	See RAIDset.
partition	A logical division of a container, represented to the host as a logical unit.
peripheral device	Any unit, distinct from the CPU and physical memory, that can provide the system with input or accept any output from it. Terminals, printers, tape drives, and disks are peripheral devices.
point-to-point	A network configuration in which a connection is established between two, and only two, terminal installations. The connection may include switching facilities.
connection	(1) In general terms, a logical channel in a communications system. (2) The
port_name	hardware and software used to connect a host controller to a communications bus, such as a SCSI bus or serial bus. Regarding the controller, the port is (1) the logical route for data in and out of a controller that can contain one or more channels, all of which contain the same type of data. (2) The hardware and software that connects a controller to a SCSI device.
A 64-bit unique identifier assigned to each Fibre Channel port. The	
Port_Name is communicated during the logon and port discovery process.	

primary cabinet	The primary cabinet is the subsystem enclosure that contains the controllers, cache modules, external cache batteries, and the PVA module.
private NL_Port	An NL_Port which does not attempt login with the fabric and only communicates with NL_Ports on the same loop.
program card	The PCMCIA card containing the controller operating software.
protocol	The conventions or rules for the format and timing of messages sent and received.
PTL	Port-Target-LUN. The controller method of locating a device on the controller device bus.
PVA module	Power Verification and Addressing module.
quiesce	The act of rendering bus activity inactive or dormant. For example, "quiesce the SCSI bus operations during a device warm-swap."
RAID level 0	Redundant Array of Independent Disks. Represents multiple levels of storage access developed to improve performance or availability or both.
RA RAID storageset that stripes data across an array of disk drives. A single	
logical disk spans multiple physical disks, enabling parallel data processing	
for increased I/O performance. While the performance characteristics of	
RAID level 0 is excellent, this RAID level is the only one that does not	
provide redundancy. Raid level 0 storagesets are sometimes referred to as	
stripesets.	

RAID level 5	A RAID storageset that, unlike RAID level 3, stores the parity information across all of the disk drives within the storageset. See also RAID level 3.
RAID level 3/5	A RAID storageset that stripes data and parity across three or more members in a disk array. A RAIDset combines the best characteristics of RAID level 3 and RAID level 5. A RAIDset is the best choice for most applications with small to medium I/O requests, unless the application is write intensive. A RAIDset is sometimes called parity RAID.
RAIDset	See RAID level 3/5.
RAM	Random access memory.
read ahead caching	A caching technique for improving performance of synchronous sequential reads by prefetching data from disk.
read caching	A cache management method used to decrease the subsystem response time to a read request by allowing the controller to satisfy the request from the cache memory rather than from the disk drives.
reconstruction	The process of regenerating the contents of a failed member data. The reconstruct process writes the data to a spareset disk and incorporates the spareset disk into the mirrorset, striped mirrorset, or RAIDset from which the failed member came. See also regeneration.
reduced	Indicates that a mirrorset or RAIDset is missing one member because the member has failed or has been physically removed.
redundancy	The provision of multiple interchangeable components to perform a single function in order to cope with failures and errors. A RAIDset is considered to be redundant when user data is recorded directly to one member and all of the other members include associated parity information.
regeneration	(1) The process of calculating missing data from redundant data. (2) The process of recreating a portion of the data from a failing or failed drive using the data and parity information from the other members within the storageset. The regeneration of an entire RAIDset member is called reconstruction. See also reconstruction.
request rate	The rate at which requests are arriving at a servicing entity.
RFI	Radio frequency interference. The disturbance of a signal by an unwanted radio signal or frequency.

replacement policy

SCSI-A cable

SCSI bus signal converter

SCSI device

SCSI device ID number

SCSI-P cable

SCSI port

SCSI ID number The representation of the SCSI address that refers to one of the signal lines numbered 0 through 15.
The policy specified by a switch with the SET FAILEDSET command indicating whether a failed disk from a mirrorset or RAIDset is to be automatically replaced with a disk from the spareset. The two switch choices are AUTOSPARE and NOAUTOSPARE.

StorageWorks building block. (1) A modular carrier plus the interface required to mount the carrier into a standard StorageWorks shelf. (2) any device conforming to shelf mechanical and electrical standards installed in a 3.5 -inch or 5.25 -inch carrier, whether it is a storage device or power supply.

Small computer system interface. (1) An ANSI interface standard defining the physical and electrical parameters of a parallel I/O bus used to connect initiators to devices. (2) a processor-independent standard protocol for system-level interfacing between a computer and intelligent devices including hard drives, floppy disks, CD-ROMs, printers, scanners, and others.

A 50-conductor (25 twisted-pair) cable generally used for single-ended, SCSI-bus connections.

Sometimes referred to as an adapter. (1) A device used to interface between the subsystem and a peripheral device unable to be mounted directly into the SBB shelf of the subsystem. (2) a device used to connect a differential SCSI bus to a single-ended SCSI bus. (3) A device used to extend the length of a differential or single-ended SCSI bus. See also DWZZA, DWZZB, DWZZC, and I/O module.
(1) A host computer adapter, a peripheral controller, or an intelligent peripheral that can be attached to the SCSI bus. (2) Any physical unit that can communicate on a SCSI bus.

A bit-significant representation of the SCSI address referring to one of the signal lines, numbered 0 through 7 for an 8 -bit bus, or 0 through 15 for a 16 -bit bus. See also target ID number.

A 68-conductor (34 twisted-pair) cable generally used for differential bus connections.
(1) Software: The channel controlling communications to and from a specific SCSI bus in the system. (2) Hardware: The name of the logical socket at the back of the system unit to which a SCSI device is connected.

serial transmission	A method transmission in which each bit of information is sent sequentially on a single channel rather than simultaneously as in parallel transmission.
signal converter	See SCSI bus signal converter.
single ended I/0	
module	A 16-bit I/O module. See also I/O module.
single-ended	An electrical connection where one wire carries the signal and another wire or shield is connected to electrical ground. Each signal logic level is determined by the voltage of a single wire in relation to ground. This is in contrast to a differential connection where the second wire carries an inverted signal.
spareset	A collection of disk drives made ready by the controller to replace failed members of a storageset.
storage array	An integrated set of storage devices.
storage array	See storage subsystem.
subsystem	(1) A group of devices configured with RAID techniques to operate as a single container. (2) Any collection of containers, such as stripesets, mirrorsets, striped mirrorsets, and RAIDsets.
storageset	Concat commands implement storageset expansion features.
storageset	
expansion	The controllers, storage devices, shelves, cables, and power supplies used to form a mass storage subsystem.
storage subsystem	

stripe	The data divided into blocks and written across two or more member disks in an array.
striped mirrorset	See RAID level 0+1.
stripeset	See RAID level 0.
stripe size	The stripe capacity as determined by $n-1$ times the chunksize, where n is the number of RAIDset members.
striping	The technique used to divide data into segments, also called chunks. The segments are striped, or distributed, across members of the stripeset. This technique helps to distribute hot spots across the array of physical devices to prevent hot spots and hot disks.
	Each stripeset member receives an equal share of the I/O request load, improving performance.
surviving controller	The controller in a dual-redundant configuration pair that serves its companion devices when the companion controller fails.
switch	A method that controls the flow of functions and operations in software.
synchronous	Pertaining to a method of data transmission which allows each event to operate in relation to a timing signal. See also asynchronous.
tape	A storage device supporting sequential access to variable sized data records.
target	(1) A SCSI device that performs an operation requested by an initiator. (2) Designates the target identification (ID) number of the device.
target ID number	The address a bus initiator uses to connect with a bus target. Each bus target is assigned a unique target address.
this controller	The controller that is serving your current CLI session through a local or remote terminal. See also other controller.
tape inline exerciser	(TILX) The controller diagnostic software to test the data transfer capabilities of tape drives in a way that simulates a high level of user activity.
transfer data rate	The speed at which data may be exchanged with the central processor, expressed in thousands of bytes per second.
ULP	Upper Layer Protocol.

ULP process	A function executing within a Fibre Channel node which conforms to the Upper Layer Protocol (ULP) requirements when interacting with other ULP processes.
Ultra SCSI	A Fast-20 SCSI bus. See also Wide Ultra SCSI.
unit	A container made accessible to a host. A unit may be created from a single disk drive or tape drive. A unit may also be created from a more complex container such as a RAIDset. The controller supports a maximum of eight units on each target. See also target and target ID number.
unwritten cached	Sometimes called unflushed data. See dirty data.
data	Uninterruptible power supply. A battery-powered power supply guaranteed to provide power to an electrical device in the event of an unexpected interruption to the primary power supply. Uninterruptible power supplies are usually rated by the amount of voltage supplied and the length of time the voltage is supplied.
UPS	Very high-density-cable interface. A 68-pin interface. Required for Ultra-SCSI connections.
VHDCI	A software path from an operator terminal on the host to the controller's CLI interface, sometimes called a host console. The path can be established via the host port on the controller or via the maintenance port through an intermediary host.
virtual terminal	

write-through caching

write hole

write-through cache

A cache management method used to decrease the subsystem response time to a read. This method allows the controller to satisfy the request from the cache memory rather than from the disk drives.

The period of time in a RAID level 1 or RAID level 5 write operation when an opportunity emerges for undetectable RAIDset data corruption. Write holes occur under conditions such as power outages, where the writing of multiple members can be abruptly interrupted. A battery backed-up cache design eliminates the write hole because data is preserved in cache and unsuccessful write operations can be retried.

A cache management technique for retaining host write requests in read cache. When the host requests a write operation, the controller writes data directly to the storage device. This technique allows the controller to complete some read requests from the cache, greatly improving the response time to retrieve data. The operation is complete only after the data to be written is received by the target storage device.

This cache management method may update, invalidate, or delete data from the cache memory accordingly, to ensure that the cache contains the most current data.

Index

A

ADD CONNECTIONS
transparent failover 1-13
ADD UNIT
transparent failover 1-13
adding
virtual disks B-8
adding a disk drive to the spareset
configuration options 5-22
adding disk drives
configuration options 5-22
Agent
functions 4-1
installing 4-5
array of disk drives 2-12
assigning unit numbers $1-13$
assignment
unit numbers
fabric topology 5-20
unit qualifiers
fabric topology 5-20
assignment of unit numbers
fabric topology
partition 5-21
single disk 5-20
asynchronous event service B-8
autospare
enabling
fabric topology 5-23
availability $2-18$

B

backup
cloning data 8-2
subsystem configuration 8-1

C

cabling
controller pair 5-10
multiple-bus failover
fabric topology configuration 5-10
single controller 5-4
cache modules
location 1-2, 1-3
read caching 1-8
write-back caching $1-8$
write-through caching 1-8
caching techniques
mirrored 1-9
read caching 1-8
read-ahead caching $1-8$
write-back caching 1-8
write-through caching 1-8
changing switches
configuration options 5-24, 5-25
chunk size
choosing for RAIDsets and stripesets 2-25
controlling stripesize 2-25
using to increase request rate $2-26$
using to increase write performance 2-27
CHUNKSIZE 2-25
CLI commands
installation verification 5-9, 5-15
verify host configuration 6-1
verify virtual disk 6-1
CLI prompt
changing
fabric topology 5-21
Client
removing B-7
uninstalling $\mathrm{B}-7$
CLONE utility
backup 8-2
cloning
backup 8-2
command console LUN
SCSI-2 mode 1-16
SCSI-3 mode 1-15
Compaq Insight Manager B-8
comparison of container types 2-12
Configuration
fabric topology
procedure flowchart
illustrated $2-\xi \varpi$ ıu
configuration
backup 8-1
completing 3-8
fabric topology
devices 5-15
multiple-bus failover cabling 5-10
multiple-bus failover using CLI 7-4
single controller cabling 5-3
NetWare volume 3-8
restoring 2-27
rules 2-3
verify host 6-1
configuration options
fabric topology
adding a disk drive to the spareset 5-22
adding disk drives 5-22
changing switches
device 5-25
displaying the current switches 5-24
initialize 5-25
RAIDset and mirrorset 5-24
unit 5-25
changing switches for a storageset or device 5-24
changing the CLI prompt 5-21
deleting a storageset 5-24
enabling autospare 5-23
removing a disk drive from the spareset 5-23
configuring
pager notification B-8
configuring devices
fabric topology 5-15
connections 1-10
naming $1-10$
containers
attributes 2-11
comparison 2-12
illustrated 2-11
mirrorsets 2-16
planning storage 2-11
stripesets 2-15
controller
verification of installation 5-15
controller verification
installation 5-9, 5-15
controllers
cabling 5-4, 5-10
location 1-2, 1-3
node IDs 1-20
verification of installation 5-9, 5-15
worldwide names $1-20$
creating
storageset and device profiles 2-12

D

device switches
changing
fabric topology 5-25
devices
changing switches
fabric topology 5-24
configuration
fabric topology 5-15
creating a profile $2-12$
disk drives
adding
fabric topology 5-22
adding to the spareset
fabric topology 5-22
array 2-12
corresponding storagesets $2-29$
dividing 2-22
removing from the spareset
fabric topology 5-23
displaying the current switches
fabric topology 5-24
dividing storagesets 2-22

E

enabling
switches 2-23
erasing metadata $2-28$
establishing a local connection 5-2

F

Fabric topology
procedure flowchart
illustrated $2-\xi$ ■uı
fabric topology
configuration
single controller cabling 5-3
failover 1-5
transparent $1-5$
First enclosure of multiple-enclosure subsystem
storage map template $1 \mathrm{~A}-3, \mathrm{~A}-6, \mathrm{~A}-7, \mathrm{~A}-9$, $\mathrm{A}-11, \mathrm{~A}-12, \mathrm{~A}-14$
functions
Agent 4-1
G
geometry
initialize switches 2-28

H

host access
restricting by offsets
transparent failover 1-19
restricting in transparent failover mode 1-17
disabling access paths $1-18$
separate links $1-17$
host adapter
installation 3-5
preparation 3-5
host connections $1-10$
naming $1-10$

I

initialize switches
changing
fabric topology 5-25
CHUNKSIZE 2-25
geometry 2-28
NOSAVE_CONFIGURATION 2-27
SAVE_CONFIGURATION 2-27
installation
controller verification 5-9, 5-15
host adapter 3-5
invalid network port assignments $\mathrm{B}-3$
there is no disk in the drive message $\mathrm{B}-4$
installation verification
CLI commands 5-9, 5-15
installing
Agent 4-5
integrating SWCC B-8
invalid network port assignments $\mathrm{B}-3$

J

JBOD 2-12

L

LOCATE
find devices 2-38
location
cache module $1-2,1-3$
controller 1-2, 1-3
logintmo parameter 3-8
LUN IDs
general description 1-22
LUN presentation 1-14

M

maintenance port connection
establishing a local connection 5-2
illustrated 5-2
mapping storagesets 2-29
messages
there is no disk in the drive B-4
mirrored caching
enabling 1-9
illustrated 1-9
mirrorset switches
changing fabric topology 5-24
mirrorsets
planning considerations 2-16
important points $2-17$
switches 2-24
moving storagesets 8-6
multiple-bus failover
CLI configuration procedure
fabric topology 7-4
fabric topology preferring units 5-21
fabric topology configuration cabling 5-10

N

NetWare drive installation 3-6
NetWare volume
configuration 3-8
network port assignments $\mathrm{B}-3$
node IDs 1-20
restoring 1-20
NODE_ID
worldwide name 1-20
NOSAVE_CONFIGURATION 2-27

O

offset
LUN presentation 1-14
restricting host access
transparent fafilover 1-19
SCSI version factor $1-15$
online help
SWCC B-8
options
for mirrorsets 2-24
for RAIDsets 2-24
initialize 2-25
other controller 1-3

P

pager notification $\mathrm{B}-8$
configuring B-8
partitions
assigning a unit number
fabric topology 5-21
defining 2-22
planning considerations 2-22
performance 2-18
planning
overview 2-12
striped mirrorsets 2-21
stripesets 2-15
planning considerations 2-18
planning storage
containers 2-11
where to start 2-2
planning storagesets
characteristics
changing switches 2-23
enabling switches 2-23
initialization switch 2-23
storagest switch 2-23
unit switch 2-23
switches
initialization 2-25
storageset 2-24
preferring units
multiple-bus failover
fabric topology 5-21
profiles
creating 2-12
description 2-12
storageset A-1
example A-2

R

RAIDset switches
changing
fabric topology 5-24
RAIDsets
choosing chunk size 2-25
maximum membership 2-19
planning considerations 2-18
important points $2-19$
switches 2-24
read caching
enabled for all storage units $1-8$
general description 1-8
read requests
decreasing the subsystem response time with
read caching 1-8
read-ahead caching $1-8$
enabled for all disk units $1-8$
removing
Client B-7
request rate $2-26$
requirements
host adapter installation 3-5
restricting host access
disabling access paths
transparent failover 1-18
separate links
transparent failover 1-17
transparent failover 1-17

S

SAVE_CONFIGURATION 2-27
saving configuration 2-27
SCSI version
offset 1-15

SCSI-2
assigning unit numbers $1-15$
command console lun 1-16
SCSI-3
assigning unit numbers $1-15$
command console lun 1-15
Second enclosure of multiple-enclosure
subsystem
storage map template $2 \mathrm{~A}-4$
selective storage presentation $1-16$
SET CONNECTIONS
transparent failover 1-13
setting
controller configuration handling 2-27
single disk (JBOD)
assigning a unit number
fabric topology 5-20
Single-enclosure subsystem
storage map template 1
A-3
software
verification 3-5
storage
creating map 2-29
profile
example A-2
storage map 2-29
Storage map template 1 A-3
first enclosure of multiple-enclosure subsystem A-3, A-6, A-7, A-9, A-11, A-12, A-14
single enclosure subsystem A-3
Storage map template 2 A-4
second enclosure of multiple-enclosure subsystem A-4
Storage map template 3 A-5
third enclosure of multiple-enclosure
subsystem A-5
storageset
deleting
fabric topology 5-24
fabric topology
changing switches 5-24
planning considerations 2-14
mirrorsets $2-16$
partitions 2-22
RAIDsets 2-18
striped mirrorsets $2-20$
stripesets 2-14
profile 2-12
example $2-13$
profiles A-1
storageset profile $2-12$
storageset switches
SET command 2-24
storagesets
creating a profile $2-12$
moving 8-6
striped mirrorsets
planning 2-21
planning considerations $2-20$
stripesets
distributing members across buses $2-16$
planning 2-15
planning considerations $2-14$
important points $2-15$
subsystem
saving configuration 2-27
subsystem configuration
backup 8-1
SWCC 4-1
additional information $\mathrm{B}-8$
integrating $\mathrm{B}-8$
online help $\mathrm{B}-8$
switches
changing 2-23
changing characteristics 2-23
CHUNKSIZE 2-25
enabling 2-23
mirrorsets 2-24
NOSAVE_CONFIGURATION 2-27
RAIDset 2-24
SAVE_CONFIGURATION 2-27
switches for storagesets
overview 2-23

T

templates
subsystem profile $\mathrm{A}-1$
terminology
other controller 1-3
this controller 1-3
Third enclosure of multiple-enclosure subsystem
storage map template $3 \mathrm{~A}-5$
this controller 1-3
transparent failover $1-5$
ADD CONNECTIONS 1-13
ADD UNIT 1-13
matching units to host connections $1-13$
restricting host access $1-17$
disabling access paths $1-18$
separate links $1-17$
restricting host access by offsets $1-19$
SET CONNECTIONS 1-13
troubleshooting
invalid network port assignments $\mathrm{B}-3$
there is no disk in the drive message $B-4$

\mathbf{U}

uninstalling
Client B-7
unit numbers
assigning 1-13
fabric topology 5-20
assigning depending on SCSI version $1-15$
assigning in fabric topology
partition 5-21
single disk 5-20
unit qualifiers
assigning
fabric topology 5-20
unit switches
changing
fabric topology 5-25
units
LUN IDs 1-22

V

verification
controller installation 5-9, 5-15
software 3-5
verification of installation
controller 5-9, 5-15
verify host configuration
CLI commands 6-1
verify virtual disk
CLI commands 6-1
virtual disks
adding B-8

W

worldwide names 1-20

NODE_ID 1-20
REPORTED PORT_ID 1-20
restoring 1-20
write performance 2-27
write requests
improving the subsystem response time with write-back caching $1-8$
placing data with with write-through caching 1-8
write-back caching
general description 1-8
write-through caching
general description 1-8

