

HSZ70 Array Controller HSOF Version 7.3

EK-HSZ70-SV. B01

Compaq Computer Corporation Houston, Texas

Service Manual

January 1999

While Compaq Computer Corporation believes the information included in this manual is correct as of date of publication, it is subject to change without notice. Compaq Computer Corporation makes no representations that the interconnection of its products in the manner described in this document will not infringe existing or future patent rights, nor do the descriptions contained in this document imply the granting of licenses to make, use, or sell equipment or software in accordance with the description. No responsibility is assumed for the use or reliability of firmware on equipment not supplied by Compaq Computer Corporation or its affiliated companies. Possession, use, or copying of the software or firmware described in this documentation is authorized only pursuant to a valid written license from Compaq Computer Corporation, an authorized sublicensor, or the identified licensor.

Commercial Computer Software, Computer Software Documentation and Technical Data for Commercial Items are licensed to the U.S. Government with the Compaq Computer Corporation standard commercial license and, when applicable, the rights in DFAR 252.227 7015, "Technical Data—Commercial Items."

© 1999 Compaq Computer Corporation. All rights reserved. Printed in U.S.A.

Compaq, DIGITAL, the Compaq and DIGITAL logos are registered with the U.S. Trademark and Patent office. DIGITAL UNIX, DECconnect, HSZ, StorageWorks, VMS, OpenVMS, are trademarks of Compaq Computer Corporation.

UNIX is a registered trademark of the Open Group in the U.S. and other countries. Windows NT is a registered trademark of the Microsoft Corporation. Sun is a registered trademark of Sun Microsystems, Inc. Hewlett-Packard and HP–UX are registered trademarks of the Hewlett-Packard Company. IBM and AIX are registered trademarks of International Business Machines Corporation. All other trademarks and registered trademarks are the property of their respective owners.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the manuals, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. Restrictions apply to the use of the local-connection port on this series of controllers; failure to observe these restrictions may result in harmful interference. Always disconnect this port as soon as possible after completing the setup operation. Any changes or modifications made to this equipment may void the user's authority to operate the equipment.

Warning!

This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Achtung!

Dieses ist ein Gerät der Funkstörgrenzwertklasse A. In Wohnbereichen können bei Betrieb dieses Gerätes Rundfunkstörungen auftreten, in welchen Fällen der Benutzer für entsprechende Gegenmaßnahmen verantwortlich ist.

Avertissement!

Cet appareil est un appareil de Classe A. Dans un environnement résidentiel cet appareil peut provoquer des brouillages radioélectriques. Dans ce cas, il peut être demandé à l'utilisateur de prendre les mesures appropriées.

Contents	iii

Contents

Preface

Precautions
Electrostatic Discharge Precautionsxi
VHDCI Cable Precautions xii
Local-Connection Maintenance Port Precautions xii
Conventions xii
Typographical Conventions
Special Noticesxiii
Required Toolsxiv
Related Publicationsxv
Revision History xvi

Chapter 1 General Description

Subsystem Typical Installation1-1
Controller Physical Description1–3
Architecture
Policy Processor
Program Card1–5
Nonvolatile Memory1–6
Dual UART1–7
Timer
Diagnostic Registers
Operator Control Panel1–7
Maintenance Connection Port
Local Memory
Buses
Bus Exchanger
Value-Added Functions Chip1–10
Host Port

iv	Service Manual

Device Ports
HSOF Software
Initialization Diagnostics1–11
Executive Functions
Host Interconnect Functions
User-Interface Functions1–15
Subsystem Management Functions 1–15
Fault Management Utility (FMU)1–16
Virtual Terminal Display (VTDPY)1–16
Disk Inline Exerciser (DILX)
Field Replacement Utility (FRUTIL)1–16
Configuration Utility (CONFIG)1–17
HSUTIL
Code Load/Code Patch Utility (CLCP)1–17
Configuration menu (CFMENU)
Clone
Device Services
Value-Added Functions
Cache Module
External Cache Battery1–19
Array Controllers and Hot Swapping1-21
Host Cabling

Chapter 2 Troubleshooting

Troubleshooting Checklist
Troubleshooting Procedures
Checking Failure Entries
Displaying Failure Entries
Translating Event Codes
Instance Codes and Last Failure Codes
Controlling the Display of Significant Events and Failures
Checking for Communication Problems
VTDPY Run Procedures
Checking Controller-to-Host Communications
Checking Controller-to-Device Communications
Checking Device Type and Location

Contents	v

Checking Device Status and I/O Activity	.2–21
Checking Device-Port Status and I/O Activity	.2–23
Checking Unit Status and I/O Activity	.2–24
Checking for Disk-Drive Problems	.2–27
Finding a Disk Drive in the Subsystem	.2–27
Testing the Read Capability of a Disk Drive	.2–27
Testing the Read and Write Capabilities of a Disk Drive	.2–28
DILX Run Procedure	.2–29
DILX Error Codes	.2–32
Running the Controller Self Test	.2–32
Self Test Run Procedure	.2–33
Shutting Down and Restarting the Subsystem	.2–33
Shut Down Procedure	.2–33
Restart Procedure	.2–34

Chapter 3 Replacement Procedures

Single Controller Configuration	
Replacing the Controller	
Controller Removal Procedures	
Controller Installation Procedures	
Replacing the Cache Module	
Cache Module Removal Procedures	
Cache Module Installation Procedures	
Replacing the ECB	
Installing a New Program Card	
Dual-Redundant Controller Configuration	
Replacing a Controller Module	
Controller Removal Procedures	
Controller Installation Procedures	
Replacing a Cache Module	3–19
Cache Module Removal Procedures	
Cache Module Installation Procedures	
Program Card Replacement	
Shutdown Upgrade	
Rolling Upgrade	
Replacing an External Cache Battery	

vi	Service	Manual

Replacing the ECB
Replacing a PVA Module
Replacing the PVA in the Master Enclosure (ID 0)3-31
Replacing the PVA in the First (ID 2) or Second (ID 3) Expansion Enclosure
3–33
Replacing an I/O Module
Replacing an Environmental Monitoring Unit
Removing an EMU
Installing an EMU
Replacing SIMMs
SIMM Removal Procedure
SIMM Installation Procedure
Replacing a Failed Storageset Member
Failed RAIDset or Mirrorset Member Removal Procedure
RAIDset or Mirrorset Member Installation Procedure

Chapter 4 Upgrading the Subsystem

Upgrading Controller Software
Installing a New PCMCIA Program Card4–2
Downloading New Software Images
Using CLCP to Install, and Delete, and List Software Patches
Software Patch Installation Procedure
Software Patch Deletion Procedure
Software Patches Listing Procedure
Upgrading Device Firmware4–9
Key Points in Upgrading Firmware4–10
Firmware Upgrade Procedure
HSUTIL Messages4–12
Upgrading to a Dual-Redundant Configuration
Installing a New Controller, Cache Module, and ECB4-15
Upgrading to a Multiple-Bus Failover Configuration
Installing a New Controller, Cache Module, and ECB4-20

Appendix A LED Codes

Operator Control Panel LED Description
--

Contents	vii

Solid OCP Patterns	 	A–2
Flashing OCP Patterns	 	А-б

Appendix B Event Reporting: Templates and Codes

Iemplate and Code Descriptions B–3
Last Failure Event Sense Data Response
Multiple-Bus Failover Event Sense Data Response
Failover Event Sense Data ResponseB-3
Nonvolatile Parameter Memory Component Event Sense Data Response B-
4
Backup Battery Failure Event Sense Data Response
Subsystem Built-In Self Test Failure Event Sense Data Response B-4
Memory System Failure Event Sense Data Response
Device Services Non-Transfer Error Event Sense Data Response B–5
Disk Transfer Error Event Sense Data Response
Instance Codes
Instance Codes Format
Instance Codes Listing B–7
ASC/ASCQ Codes
Event Threshold Codes
Recommended Repair Action Codes
Last Failure Codes
Last Failure Codes Format B–9
Template and Code Tables B-11

Glossary

Index

l
ı.

Figures

Figure 1–1	Typical Installation of an HSZ701–2
Figure 1–2	HSZ70 Physical Layout1–4
Figure 1–3	HSZ70 Architecture
Figure 1–4	OCP
Figure 1–5	Initialization Diagnostics1–12
Figure 1–6	Cache Module and ECB "Y" Cable
Figure 1–7	External Cache Battery
Figure 1–8	Host Cabling for Single Configuration
Figure 1–9	Host Cabling for Transparent FailoverConfigurations 1–24
Figure 1–10	Host Cabling for Multiple Bus Failover Configurations 1–25
Figure 2–1	Structure of an Instance or Last-Failure Code
Figure 2–2	Xfer Rate Region of the Default Display 2–19
Figure 2–3	Regions on the Device Display
Figure 2–4	Unit Status on the Cache Display
Figure 3–1	Single Controller Configuration
Figure 3–2	Battery Disable Switch Location
Figure 3–3	ECB Replacement Cabling 3–11
Figure 3–4	Replacing a Program Card
Figure 3–5	Dual-Redundant Controller Configuration
Figure 3–6	Single-Battery ECB SSB Configuration 3–28
Figure 3–7	Dual-Battery ECB SBB Configuration
Figure 3–8	I/O Module Locations in a BA370 Enclosure
Figure 3–9	Cache-Module Memory Configurations
Figure 3–10	Installing a SIMM
Figure 4–1	Location of Write-Protection Switch
Figure 4–2	Connecting Dual-Redundant Controllers to the Host4-14
Figure 4–3	Connecting Multiple Bus Failover, Dual-Redundant
	Controllers to the Host 4–20
Figure B-1	Structure of an Instance CodeB-5
Figure B ₋₂	Structure of a Last Failure Code B–8

Tables

Table 1–1	Key to Figure 1–1 1–2
Table 1–2	Key to Figure 1–2 1–4
Table 1–3	Key to Figure 1–6 1–19
Table 1–4	Key to Figure 1–7 1–20
Table 1–5	Key to Figure 1–8 1–23
Table 1–6	Key to Figure 1–9 1–24
Table 1–7	Key to Figure 1–10 1–25
Table 2–1	Troubleshooting Checklist
Table 2–2	Troubleshooting Procedures (sheet 1 of 7)
Table 2–3	Event Code Types
Table 2–4	FMU SET Commands (sheet 1 of 3)
Table 2–5	VTDPY Key Sequences and Commands 2–18
Table 2–6	Xfer Rate Column Descriptions
Table 2–7	Device Map Column Descriptions 2–21
Table 2–8	Device Status Column Descriptions 2–22
Table 2–9	Device-Port Status Column Descriptions 2–24
Table 2–10	Unit Status Column Descriptions 2–25
Table 2–11	DILX Control Sequences 2–28
Table 2–12	DILX Tests
Table 2–13	Data Patterns for Phase 1: Write Test 2–31
Table 2–14	DILX Error Codes 2–32
Table 3–1	Cache Module Memory Configurations 3–41
Table 4–1	HSUTIL Messages and Inquiries
Table 4–2	Key to Figure 4–2
Table A–1	Solid OCP Patterns (sheet 1 of 4) A–2
Table A–2	Flashing OCP Patterns (sheet 1 of 4) A–6
Table B-1	Template 01: Last Failure Event Sense Data Response Format B-11
Table B–2	Template 04: Multiple-Bus Failover Event
	Sense Data Response Format B–12
Table B–3	Template 05: Failover Event Sense Data Response Format B-13
Table B–4	Template 11: Nonvolatile Parameter Memory Component
	Event Sense Data Response Format
Table B–5	Template 12: Backup Battery Failure Event
	Sense Data Response Format B–15

ix

х	Service Manual

Table B–6	Template 13: Subsystem Built-in Self Test Failure Event
	Sense Data Response Format
Table B–7	Template 14: Memory System Failure Event
	Sense Data Response Format
Table B–8	Template 41: Device Services Non-Transfer Error Event
	Sense Data Response Format
Table B–9	Template 51a: Disk Transfer Error Event
	Sense Data Response Format (sheet 1 of 2) B–19
Table B-10	Template 51b: Passthrough Device Reset Event
	Sense Data Response Format (sheet 1 of 2) B–21
Table B-11	Instance Codes (sheet 1 of 31) B-23
Table B-12	Last Failure Codes (sheet 1 of 28) B-54
Table B-13	Repair Action Codes (sheet 1 of 10) B-82
Table B-14	Component Identifier Codes B–92
Table B-15	Event Notification/Recovery Threshold Classifications B-93
Table B-16	ASC and ASCQ Codes (sheet 1 of 3) B-93

Preface

This book provides information and guidance for troubleshooting and servicing the HSZ70 array controller running HSOF Version 7.3. It also provides information and guidance for troubleshooting and servicing the cache module and external cache battery that support the controller's operation in a storage subsystem.

This book does not contain information about the operating environments to which the controller might be connected, or detailed information about subsystem enclosures or their components. See the documentation that accompanied these peripherals for information about them.

Precautions

Use the precautions described in the following paragraphs when you are carrying out any servicing procedures:

- Electrostatic Discharge Precautions, page xi
- VHDCI Cable Precautions, page xii
- Local-Connection Maintenance Port Precautions, page xii

Electrostatic Discharge Precautions

Static electricity collects on all nonconducting material, such as paper, cloth, and plastic. An electrostatic discharge (ESD) can easily damage a controller or other subsystem component even though you may not see or feel the discharge. Follow these precautions whenever servicing a subsystem or one of its components:

- Always use an ESD wrist strap when servicing the controller or other components in the subsystem. Ensure that the strap contacts bare skin and fits snugly, and that its grounding lead is attached to a bus that is a verified earth ground.
- Before touching any circuit board or component, always touch a verifiable earth ground to discharge any static electricity that may be present in your clothing.

xii Service Manual

- Always keep circuit boards and components away from nonconducting material.
- Always keep clothing away from circuit boards and components.
- Always use antistatic bags and grounding mats for storing circuit boards or components during replacement procedures.
- Always keep the ESD cover over the program card when the card is in the controller. If you remove the card, put it in its original carrying case. Never touch the contacts or twist or bend the card while handling it.
- Do not touch the connector pins of a cable when it is attached to a component or host.

VHDCI Cable Precautions

All of the cables to the controller, cache module, and external cache battery use very high density cable interconnect connectors (VHDCI). These connectors have small mating surfaces that can be adversely affected by dust and movement.

Use the following precautions when connecting cables that use VHDCI connectors:

- Clean the mating surfaces with a blast of clean air.
- Mate the connectors by hand, then tighten the retaining screws to 1.5 inch-pounds—approximately 1/4 additional turn after the connectors have fully mated.
- Test the assembly by gently pulling on the cable, which should not produce visible separation.

Local-Connection Maintenance Port Precautions

The local-connection maintenance port generates, uses, and radiates radio frequency energy through cables that are connected to it. This energy might interfere with radio and television reception. Do not leave a cable connected to this port when not communicating with the controller.

Conventions

This book adheres to the typographical conventions and special notices found in the paragraphs that follow to help you find what you're looking for.

Preface	xii

Typographical Conventions

Convention	Meaning
ALLCAPS BOLD	Command syntax that must be entered exactly as shown, for example: SET FAILOVER COPY=OTHER_CONTROLLER
ALLCAPS	Command discussed within text, for example: "Use the SHOW SPARESET command to show the contents of the spareset."
Monospaced	Screen display.
Sans serif italic	Command variable or numeric value that you supply, for example: SHOW <i>RAIDset-name</i> (when being described within the text) or set this_controller id= (n,n,n,n) when showing how to enter the command syntax.
italic	Reference to other books, for example: "See HSZ70 Array Controller HSOF Version 7.3 Configuration Manual for details."
:	Indicates that a portion of an example or figure has been omitted, for example: ADD RAIDSET RAID1 DISK10000 DISK20000 INITIALIZE RAID1 SHOW RAID1
"this controller"	The controller serving your current CLI session through a local or remote terminal.
"other controller"	The controller in a dual-redundant pair that's connected to the controller serving your current CLI session.

Special Notices

This book does not contain detailed descriptions of standard safety procedures. However, it does contain warnings for procedures that could cause personal injury and cautions for procedures that could

damage the controller or its related components. Look for these symbols when you're carrying out the procedures in this book:

Warning A warning indicates the presence of a hazard that can cause personal injury if you do not avoid the hazard.

Caution A caution indicates the presence of a hazard that might damage hardware, corrupt software, or cause a loss of data.

In addition, there are two other notices to aid you in your understanding of the subject mater being read:

Tip A tip provides alternative methods or procedures that may not be immediately obvious. A tip may also alert prior customers that the controller behavior being discussed is different from prior software or hardware versions.

Note A note provides additional information that's important to the completion of an instruction or procedure.

Required Tools

The following tools are needed for servicing the controller, cache module, and external cache battery:

- A small screwdriver for loosening and tightening the cableretaining screws.
- An antistatic wrist strap.
- An antistatic mat on which to place modules during servicing.
- An SBB Extractor for removing StorageWorks building blocks. This tool is not required, but it will enable you to provide more efficient service.

Preface	XV

Related Publications

The following table lists some of the documents related to the use of the controller, cache module, and external cache battery.

Document Title	Part Number
HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual	EK-CLI70-RM. A01
HSZ70 Array Controller HSOF Version 7.3 Configuration Manual	EK-HSZ70-CG. A01
HSZ70 Array Controller HSOF Version 7.3 Service Manual	EK-HSZ70-SV. A01
HSZ70 Family Array Controller Operating Software (HSOF) Version 7.3 Software Product Description	SPD <i>xx.xx</i> . 00
Getting Started–HSZ70 Solutions Software Version 7.3 for DIGITAL UNIX	AA-R60KD-TE
Getting Started–HSZ70 Solutions Software Version 7.3 for OpenVMS	AA–R8A7D–TE
Polycenter Console Manager	See the <i>Getting</i> <i>Started</i> guide for the platform-specific order number
StorageWorks Array Controller HSZ70 Array Controller Operating Software HSOF Version 7.3 Release Notes	EK-HSZ70-RN. B01
StorageWorks Getting Started with Command Console, Version 2.1	AA-R0HJC-TE
DIGITAL StorageWorks Ultra SCSI RAID Cabinet Subsystem (SW600) Installation and User's Guide	EK–SW600–UG
DIGITAL StorageWorks Ultra SCSI RAID Enclosure (BA370-Series) User's Guide	EK-BA370-UG
The RAIDBOOK—A Source for RAID Technology	RAID Advisory Board

xvi Service Manual

Revision History

The current revisions of this document include:

EK-HSC70-SV.B01	HSOF V7.3	January 1999
EK-HSC70-SV.A01	HSOF V7.0	July 1997

CHAPTER 1

General Description

This chapter describes in general terms, the HSZ70 Array Controller and the modules that support its operation. The following lists the contents of this chapter:

- "Subsystem Typical Installation" on page 1-1
- "Controller Physical Description" on page 1-3
 - "Architecture" on page 1-5
 - "HSOF Software" on page 1-11
- "Cache Module" on page 1-18
- "External Cache Battery," page 1-19
- "Array Controllers and Hot Swapping," page 1-21
- "Host Cabling" on page 1-22

Subsystem Typical Installation

Figure 1–1 shows an example subsystem using a DS-BA370 rackmountable enclosure:

- HSZ70 controller—Quantity 1 or 2; each supported by a cache module.
- External cache battery (ECB)—Quantity 1 or 2; provides backup power to the cache module in the event of a power failure.
- Environmental monitoring unit (EMU)—monitors the conditions within the storage subsystem and alerts the controller of potential dangers or failures that could be caused by an abnormal environment (see your associated subsystem enclosure manual for more information on the EMU).
- Power verification and addressing module (PVA)—provides a unique address for each enclosure in an extended (more than one enclosure) subsystem.

1–1

Figure 1–1 Typical Installation of an HSZ70

- - - -

Table 1–1Key to Figure 1–1

Item	Description	Part No.
1	BA370 rack-mountable enclosure	DS-BA370-AA
2	Power cable kit (white)	17-03718-09
3	Cooling fans; 8 (2 per shelf)	DS-BA35X-MK
4	I/O module; 6	DS-BA35X-MN
5	PVA module (provides a unique address to each enclosure in an extended subsystem).	DS–BA35X–EC

Genera	I Description	1–3
--------	---------------	-----

Item	Description	Part No.
6	AC input module	DS-BA35X-HE
7	Cache module; 1 or 2	70-33256-01
8	SC–5650HSZ70 array controller; 1 or 2	DS-HSZ70-AH
9	Environmental monitoring unit (EMU) The EMU monitors the subsystem environment alerting the controller of equipment failures that could cause an abnormal environment.	DS-BA35X-EB
10	180-watt power supply; 8 (2 per shelf)	DS-BA35X-HH
11	Power cable kit (black)	17-03718-10
12	 External cache battery (ECB), single External cache battery (ECB), dual (two ECBs in one Storage Building Block (SBB), which provide backup power to the cache modules during a primary power failure. 	DS–HS35X–BC DS–HS35X–BD
13	Subsystem Building Block (SBB) - a tape or disk drive unit inside a standard case .	See release notes for qualified disk/ tape drive numbers

 Table 1–1
 Key to Figure 1–1 (Continued)

Controller Physical Description

The HSZ70 controller provides its host processor with high performance, high-availability access to SCSI–2 storage devices. See the product-specific release notes that accompanied the HSOF software release for the most recent list of supported devices and operating systems.

Take a few moments to familiarize yourself with the controller physical layout as shown in Figure 1–2.

Figure 1–2 HSZ70 Physical Layout

CXO5503D

Table 1–2Key to Figure 1–2

Item	Description
1	Operator Control Panel (OCP)
2	Reset Button
3	Local Connection Port
4	Host Port Cable Slot
5	Program Card Slot
6	Module Locking/Release Levers (2)
\overline{O}	Program Card Eject Button

From the perspective of the host, the controller is a SCSI-2 device connected to one of its I/O buses. Consequently, the host sends I/O requests to the controller as it would to any SCSI-2 device.

From the subsystem perspective, the controller receives the I/O requests and directs them to the devices in the subsystem. Because the controller processes the I/O requests, the host is not burdened by the processing that's typically associated with reading and writing data to multiple storage devices.

The controller also provides the ability to combine several disk drives into a single, high performance storage unit called a storageset. Storagesets are implementations of RAID technology (Redundant Array of Independent Disks). This technology ensure that every

Genera	I Description	1–5
--------	---------------	-----

unpartitioned storageset, whether it uses two disk drives or ten, appears as a single storage unit to the host. See the *HSZ70 Array Controller HSOF Version 7.3 Configuration Manual* for more information about storagesets and how to configure them.

The components accessed by the user are conveniently located on the front panel, such as the local connection port and the operator control panel (OCP). The host port and program card slot are also located on the front panel, making it easy to update the HSOF software or to connect the controller to a different host.

Architecture

The HSZ70 controller architecture includes the components shown in the block diagram in Figure 1–3. Each of the components are described in the paragraphs that follow.

Policy Processor

The policy processor is an Intel[®] 80960CF i960 microprocessor and coordinates, controls, and executes the HSOF software for the controller. The i960 executes the software contained on the Program Card and provides an instruction execution rate of 25MHz from its internal clock. The i960 controls all but low-level device and host-port operations.

The i960 internal cache is augmented by a separate 32KB instruction/ data (I/D) cache. This static RAM cache provides the i960 nearly immediate access to the instructions and variables that it needs to operate.

Program Card

The HSOF software is stored on a 2MB PCMCIA program card. The policy processor loads the software from the program card to the local memory during controller initialization.

Note The PCMCIA card must remain inserted at all times. The HSZ70 Controller will not operate without this card in place.

Nonvolatile Memory

The controller has 32KB of nonvolatile memory (NVMEM) with which to store the following data:

- Controller configuration parameters (such as its SCSI target IDs, preferred IDs, prompt text, transfer rate, and failover status).
- Subsystem configuration, such as:
 - Name and location of disk drives.
 - Manner in which disk drives are combined into storagesets (or used in the spareset).
 - Unit numbers assigned to the storagesets.
- Previous four "last failure" and "memory-system failure" entries received from the fault manager.

NVMEM is preserved by an internal battery that provides power in the event of a power failure.

Dual UART

The dual UART (Universal Asynchronous Receiver/Transmitter) provides two functions to the HSZ70:

- Supports serial communication for a local connection to the Maintenance Port.
- Provides a serial communication link between the two controllers in a dual-redundant configuration.

The UART allows the two controllers to communicate independently of the CDAL buses. The UART is the failover communication port, informing the other controller of its present state and configuration.

Timer

The i960 processor controls and interrupts the timer at programmed intervals to track timeouts, interrupts, LED flashing frequencies, and so forth.

Diagnostic Registers

The controller has two write and two read diagnostic registers. Diagnostic and functional software use the write diagnostic registers to control the devices and the controller. For example, some bits in the registers activate test modes for forcing errors in the controller; other bits control the operator control panel LEDs. The policy processor uses the read diagnostic registers to determine the cause of an interrupt when one occurs.

Operator Control Panel

The operator control panel (OCP; see Figure 1–4) contains a reset button, six port quiesce buttons, and six LEDs:

- The Reset button (①) normally flashes at a once per second rate indicating that the controller is functioning properly.
- The Port quiesce buttons (2) are used to turn off the I/O activity on the controller device ports. To quiesce a port, push its port button and hold until the corresponding port LED remains lit. Push the port button again to resume I/O activity on the port.

1–8 Service Manual

The six LEDs (③) correspond to the six controller device ports and remain off during normal operation. If an error occurs, the reset button and LEDs illuminate in a solid or flashing pattern to help you diagnose the problem (see Appendix A, "Operator Control Panel LED Description" for the list of codes and patterns).

Figure 1–4 OCP

In addition, there are two international symbols placed on the front of the OCP:

- The SCSI standard symbol for differential SCSI bus (④) identifies the HSZ70 Array Controller as a SCSI-2 differential device to the host.
- The ISO 7000 Standard for "reset" or "initialization" (⑤) is placed just below the controller reset button.

Maintenance Connection Port

The maintenance connection port provides the location to connect a maintenance terminal, laptop, or PC to the controller so that you can upgrade the software, configure or troubleshoot the controller. This port accepts a standard RS-232 jack from any EIA-423 compatible terminal or a PC with a terminal-emulation program. The port supports serial communications up to 19200 baud using 8 data bits, 1 stop bit, and no parity (see the *HSZ70 Array Controller HSOF Version 7.3 Configuration Manual*, "Establishing a Local Connection to the Controller" on page 4-2).

General De	escription 1	1–9
------------	--------------	-----

Local Memory

The local memory loads and stores the HSOF software from the program card each time the controller initializes. As a result, the local memory contains instructions for the i960, the software variables, and the data structures (which include the i960 look-up table). This single-point of storage ensures that the data structures and buffers remain consistent during the controller operation.

The local memory consists of:

- Dynamic RAM controller
- Arbitration engine
- Gate array controller
- 16MB of dynamic RAM

Parity-protected 9-bit error detection and correction code improves error detection and data recovery. All controller buses have access to the local memory through the bus exchanger and the MDAL bus.

Buses

The HSZ70 controller architecture includes the following buses:

- IBUS—I960 bus; conveys data to and from the i960 processor and the other components on the IBUS. The bus conveys code and text from the program card, code and data from the i960 I/D cache, and configuration information to the NVMEM.
- MDAL—Memory Data and Address Lines; conveys memory data and address information to and from the local buffer memory that originate from the IBUS or NBUS.
- CDAL—Cache Data and Address Lines; conveys cache data and address information to and from either cache module. Addresses may originate from the IBUS or NBUS of either controller in a dual-redundant configuration. The CDAL conveys information to the surviving controller in the event of a failover.
- NBUS—conveys data to and from any of the components on the NBUS (for example, host ports, device ports, and the value-added functions chip). These components may access each other, the local buffer memory, and either cache module.

Bus Exchanger

The bus exchanger facilitates high-speed communication between local memory and the devices on the IBUS, MDAL bus, CDAL bus, and

1–10 Service Manual

NBUS. The bus exchanger operates as a four-way cross-point switch that coordinates addresses and data between any two ports on the exchanger.

Value-Added Functions Chip

This chip generates the RAID 5 parity on the first write of the data. Upon detection of a RAIDset failure, this chip regenerates the parity to recover the data that was stored on a failed RAIDset member. This action is accomplished by performing an XOR of the parity data on the surviving RAIDset members. The value-added functions circuit acts as an accelerator for this RAID XOR operation as well as assisting with device compare operations.

This chip is also programmed to conduct large-block read and writes from failed controller cache module to the surviving controller cache module in event of a failover.

Host Port

The host port is made up of an:

- NCR 53C770 Wide Ultra-SCSI processor,
- Wide Ultra-SCSI differential transceiver, and
- VHDCI SCSI connector.

The controller connects to a host bus through a SCSI-2 trilink connector attached to the VHDCI SCSI connector. If the controller is at the end of the host bus, an external terminator is required.

The Wide Ultra-SCSI processor reads and executes scripts from the local memory to perform command and DMA operations. The policy processor sets and maintains the operation of the Wide Ultra-SCSI processor.

Device Ports

The controller communicates with the devices and modules in the subsystem through three backplane connectors. Each connector contains two ports to give the controller access to the six SCSI–2 single-ended buses available in the enclosure. Each device port is made up of an NCR 53C770 Wide Ultra-SCSI processor to support Wide Ultra, single-ended SCSI communication to the devices in the

General Description 1–11

subsystem. Like the host port, the policy processor sets and maintains the operation of the Wide Ultra processor.

Based on SCSI-2 standards, each bus connected to a device port can support up to 16 IDs (targets plus initiators). However, the practical considerations of StorageWorks packaging limit the use to 12 target IDs and two initiator IDs per bus.

HSOF Software

The HSOF software (loaded into local memory when the controller initializes), provides the following functions:

- Initialization Diagnostics
- Executive Functions
- Host Interconnect Functions
- User-Interface Functions
- Subsystem Management Functions
- Device Services
- Value-Added Functions

Each of these are described in the following paragraphs.

Initialization Diagnostics

When the controller initializes, it performs the following "go-no go" tests to detect hardware and software faults:

- Policy Processor Built-In Self-Test
- Core Module Integrity Self-Test
- DAEMON Tests

These tests verify the integrity of the controller architecture as well as many of the components that support the controller in its enclosure.

Figure 1–5 contains a block diagram of the initialization diagnostics.

Figure 1–5 Initialization Diagnostics

Policy Processor Built-In Self-Test

The controller begins the initialization process by executing its internal built-in self-test (BIST; an integral test of the i960 processor):

- BIST fail—the controller reset button will be lit continuously (port LEDs off).
- BIST pass—the RESET button flashes at an approximate once per second rate.

Tip One of the more common causes of a BIST failure is a faulty or improperly seated program card.

Core Module Integrity Self-Test

When BIST completes successfully, the controller reads the initial boot record (IBR) to determine the address of the hardware setup parameters and process control information. The software on the program card is then initialized to the IBR parameters. The initialization routines and diagnostics now begin to test the controller module itself. These tests (part of the HSOF software) are collectively known as the core module integrity self-tests (core MIST).

If a fault occurs during core MIST, the OCP displays an LED code ("Operator Control Panel LED Description," page A–1) and the register contents may be displayed on the local terminal.

Core MIST performs the following functions in order:

- 1. Sets the initial state of the read/write diagnostic register.
- 2. Validates the contents of the program card by reading each memory location, computing an error detection code (EDC), then comparing the EDCs against preset EDCs.
- 3. Checks the controller internal buses and components attached to them: IBUS parity, I/D cache, diagnostic registers, DUART, the local memory, and so on.

To check these components, the core MIST:

- Selects a device, then checks whether the bus selected that device.
- Verifies legal transfer sizes work and illegal transfer sizes don't.
- Writes to and reads back from all legal addresses.
- Checks write/read boundaries by attempting to access nonexistent addresses.
- 4. Loads the software into the first two megabytes of local memory. Core MIST uses the EDC compare method to validate the memory contents with the program card to confirm a successful download.
- 5. Applies memory-resident code patches and updates the free memory list accordingly.
- 6. Initializes the i960 microprocessor with the IBR parameters.
- 7. Passes control to EXEC when the core MIST tests are complete.

1–14 Service Manual

DAEMON Tests

The Executive functions (EXEC) calls the diagnostic and execution monitor (DAEMON) to test the:

- Device ports.
- Host port.
- Cache module.
- Value-added software functions.

Tip You may re-run the controller DAEMON tests (also called the self-test loop as shown in Figure 1–3) as a troubleshooting aid. See "Self Test Run Procedure" on page 2-33.

- To test the host and device ports, DAEMON checks each NCR 53C770 microprocessor:
 - DAEMON passes the hardware if \geq one device port is OK.
 - DAEMON fails the hardware if:
 - * All device ports fail, or
 - * The DUART fails the core MIST and the host port fails the DAEMON test.
- To test the cache module, DAEMON checks for unwritten data:
 - No data exists. DAEMON tests the DRAB memory controller and the ECB batteries. If they pass, DAEMON passes control to the functional code. The cache manager continues to test the cache memory.

Note At least the first megabyte of the memory must test OK, or the cache module is failed.

 Unwritten data exists—DAEMON tests only the batteries, and postpones other tests. The cache manager flushes the unwritten data after testing the DRAB and memory.

If cache is locked by the other controller in dual-redundant configurations, then all cache DAEMON diagnostics are postponed. During functional code, when the cache manager determines that the cache is unlocked, the cache manager tests the DRAB, batteries, and memory. DAEMON handles all interrupts and errors received during cache module testing. If DAEMON receives an interrupt, it stops initializationand displays the error as an LED code on the OCP.

Finally, to ensure RAIDset functionality, DAEMON tests the XOR operations of the value-added hardware and its associated buffer memory. Initialization stops if the XOR operation test fails.

Executive Functions

The executive functions (EXEC) controls the interrupts, thread, queuing support, timers, and so forth to ensure a non-preemptive interrupt-driven environment.

Host Interconnect Functions

The host interconnect functions support the SCSI–2 protocol with the following features:

- SCSI passthrough software to the CLI.
- Tagged-command queuing on the host and device side.
- Mode select/sense support for SCSI.

User-Interface Functions

The command line interpreter (CLI) provides a direct, command line interface to the controller. Issue CLI commands via a local terminal connected to the controller maintenance port or the host via HSZterm. The CLI provides two kinds of commands:

- SET/SHOW commands for setting and showing the controller ID, name, path controls, and other configuration information.
- ADD/DELETE commands for adding and deleting devices, storagesets, and logical units.

See the HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual for detailed information about each of the CLI commands. See the System Manager's Guide for HSZterm for more information about installing and using HSZterm.

Subsystem Management Functions

The HSOF software contains the following utilities for managing the subsystem:

■ Fault Management Utility (FMU)

1–16 Service Manual

- Virtual Terminal Display (VTDPY)
- Disk Inline Exerciser (DILX)
- Field Replacement Utility (FRUTIL)
- Configuration Utility (CONFIG)
- HSUTIL
- Code Load/Code Patch Utility (CLCP)
- Configuration menu (CFMENU)
- Clone

Each of these is described in the following paragraphs.

Fault Management Utility (FMU)

Use the FMU to control the display of spontaneous events and failure messages that the fault management software reports to the local terminal. See "Checking Failure Entries," page 2-10 for information on how to use FMU.

Virtual Terminal Display (VTDPY)

Use VTDPY to display performance data about the controller and other subsystem components. Use VTDPY to investigate processor utilization, host port activity and status, device state, logical unit state, and cache and I/O performance. See "VTDPY Run Procedures" on page 2-17 for more information.

Disk Inline Exerciser (DILX)

Use DILX to test and verify operation of the controller and its attached SCSI-2 disk drives. DILX generates intense read/write loads to selected disk drives while monitoring their performance and status. See "DILX Run Procedure" on page 2-29, for more information about this exerciser.

Field Replacement Utility (FRUTIL)

Use FRUTIL to assist in the replacement of a failed controller (in a dual-redundant configuration) without shutting down the subsystem. You can also use this menu-driven utility to replace cache modules and external cache batteries. Most of the procedures beginning on page 3-13, "Dual-Redundant Controller Configuration", explain how to use FRUTIL.

Configuration Utility (CONFIG)

Use CONFIG to add one or more storage devices to the subsystem. See the *HSZ70 Array Controller HSOF Version 7.3 Configuration Manual* for more information about using the CONFIG utility.

HSUTIL

Use this utility program to upgrade the firmware on the disk or tape drives on the subsystem. See "Upgrading Device Firmware" on page 4-9 for more information about this utility.

Code Load/Code Patch Utility (CLCP)

Use the CLCP utility to upgrade or patch controller software. See "Firmware Upgrade Procedure," page 4-10 for more information on how to use this utility.

Configuration menu (CFMENU)

Use CFMENU to configure the storagesets in the subsystem. See the *HSZ70 Array Controller HSOF Version 7.3 Configuration Manual* for more information about using CFMENU.

Clone

Use the Clone utility to duplicate the data on any unpartitioned single disk unit, stripeset, or mirrorset. You can then backup the cloned data while the original storageset remains online. See the *HSZ70 Array Controller HSOF Version 7.3 Configuration Manual* for more information about using the clone utility.

Device Services

The SCSI-2 device service software provides the following functions:

- Device port drivers
- Addressing, access, and tagged-command queuing for qualified SCSI-2 devices
- Device warm swap
- Shelf and SBB observation and control
- Device error recovery

1–18 Service Manual

Value-Added Functions

The HSOF software provides the following value-added functions to enhance the availability, performance, subsystem management, and connectivity features of the controller:

- RAID functions to support the creation and operation of RAIDsets, stripesets, mirrorsets, striped mirrorsets, and host-based volume shadowing. See the HSZ70 Array Controller HSOF Version 7.3 Configuration Manual for more information about storagesets.
- Failover functions to support dual-redundant and multiple-bus failover configurations. In either of these configurations, two controllers exchange status signals and configuration information. If one controller fails, the surviving controller takes over the failed controller's devices and units. See the HSZ70 Array Controller HSOF Version 7.3 Configuration Manual for more information about these redundant configurations.
- Cache manager functions that control the caching of up to 128MB of data to enhance the subsystem throughput.

Cache Module

Figure 1–6 shows a cache module with its ECB "Y" cable inserted. Figure 1–1 shows its placement in the subsystem; Figure 1–7 shows the ECB.

Figure 1–6 Cache Module and ECB "Y" Cable

Table 1–3Key to Figure 1–6

Item	Description	Part No.
1	Cache-memory power LED	N/A
2	ECB "Y" cable (to ECB)	70-33268-01
3	Retaining/Locking lever (2)	N/A
4	Backplane connector	N/A
5	■ SIMM (2 or 4)	54-23391-01
	■ SIMM 64 MB pack	DS-HSSIM-AB

The cache module increases the controller I/O performance by caching read and write data.

- Read data—the controller can often satisfy a host read request immediately from the cached data rather than having to access one or more disk drives to obtain the data.
- Write data—the controller avoids the latencies associated with writing data to a disk drive.

To further ensure the availability of write data, mirror two cache modules in a dual-redundant configuration. If one cache module fails, the other one takes over until the failed module is replaced.

Note Mirroring the cache modules cuts the amount of memory available for each controller in half.

Caching techniques and policies are described in the HSZ70 Array Controller HSOF Version 7.3 Configuration Manual.

External Cache Battery

A cache module might contain up to 128MB of power-protected memory. The external cache battery (ECB; Figure 1–7) provides standby power in the event of a conventional power failure. When fully

charged, the batteries in the ECB preserve 128MB of cache memory for 24 hours; 64MB for 48 hours; and 32MB for 96 hours.

It is recommended that you replace the ECB every two years as a preventive measure.

Figure 1–7 External Cache Battery

Table 1–4 Key to Figure 1–7

Item	Description	Part No.
ECB for dual-redundant controller config ECB for single controller configuration		DS-HS35X-BD DS-HS35X-BC
1	Shut off button	N/A
2	Status LED	N/A
3	ECB "Y" Cable (to Cache module) 1	70-33268-01
4	VHDCI male port for 2nd battery connection	N/A

¹The spare end of the "Y" cable is used to plug in the replacement battery until the battery is fully charged. At that time, the original battery may be disconnected.

Whenever the controller is initialized, the internal diagnostic routines automatically check the charge in the ECB batteries:
General Description 1–21

- If the batteries are fully charged, the controller reports them as "good" and rechecks them every twenty-four hours after that.
- If the batteries are low at initialization time, the controller reports them as "low" and rechecks them every four minutes for a ten hour period (the ten hour period reflects the maximum time that the batteries should take to completely charge).
 - If the batteries have not come up to full charge in the ten hours, then the controller declares them to be "failed".
 - If the batteries come to a complete charge within that period of time, the controller reports them as "good".

Note The batteries could or fail to re-charge in between the 24-hour battery checks. This is why it is important to record the installation date on the battery and replace the batteries every two years.

If a uninterruptable power supply (UPS) is used for backup power, the controller does **not** check for a battery charge. Use the CACHE_UPS and NOCACHE_UPS commands to set the backup power source for the cache module (see the *HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual* for information about these commands.

Array Controllers and Hot Swapping

Asynchronous Drive Hot Swap (ADHS) is supported on the HSZ70. ADHS is defined as the removal or insertion of a drive without quiescing the bus:

- ADHS is supported with the following restrictions:
 - Applies to disk drives only (wait 90 sec. after return of power before enabling the bus, issuing CLI commands to the controller, and initiating controller activity).
 - Disks may be imported into slots configured as disks which are members of higher level containers (such as RAIDsets, mirrorsets, spareset, and so on). AUTOSPARING is used for these types of configurations.
- ADHS is not supported under the following operating conditions:
 - During failover.
 - During failback.

1-22 Service Manual

- During controller initialization/reboot (until the CLI prompt appears).
- During the running of a local program (DILX, CLCP, and so on).
- To perform a physical move of a device from one location to another (new port or target).
- To perform more than one drive removal/insertion at a time

Note 50 seconds of time is required for the controller to complete the process of recognizing/processing the drive insertion/removal.

Note When power cycling entire shelves during servicing, ensure all controller-based Mirror/RAID drives have not been moved to the Failedset or are faulted.

Host Cabling

HSZ70 Controller-to-Host cabling is described in this section with regards to:

- Single controller configurations (Figure 1–8).
- Dual-redundant controller configurations (Figure 1–9).
- Dual-redundant with multiple bus failover configurations (Figure 1–10).

See the *HSZ70 Array Controller HSOF Version 7.3 Configuration Manual* for instructions about configuring your controller.

Figure 1–8 Host Cabling for Single Configuration

Table 1–5Key to Figure 1–8

Part	Description	Part No.
1	Trilink connector	12-39921- 01H8861-AA
2	Cable from host processor to controller; the last two digits of the Part No. represent the cable length (in meters). An "E" represents one-half meter.	DS-BN37A-1 DS-BN37A-1E DS-BN37A-02 DS-BN37A-02 DS-BN37A-03 DS-BN37A-05 DS-BN37A-10 DS-BN37A-15 DS-BN37A-20 DS-BN37A-25
3	Ferrite Bead	16-25105-18
4	VHDCI Ultra-SCSI Differential Terminator required if controller is at the end of the host bus	H8863-AA
5	Cable to other devices on host bus	(same as Part 2)

1–24 Service Manual

Figure 1–9 Host Cabling for Transparent FailoverConfigurations

Table 1–6Key to Figure 1–9

Part	Description	Part No.
1	Trilink connector	H8861-AA
2	Cable from host processor to controller; the last two digits of the Part No. represent the cable length (in meters). An "E" represents one-half meter.	DS-BN37A-1 DS-BN37A-1E DS-BN37A-02 DS-BN37A-2E DS-BN37A-03 DS-BN37A-05 DS-BN37A-10 DS-BN37A-15 DS-BN37A-20 DS-BN37A-25
3	Ferrite Bead	16-25105-18
4	Dual-controller cable from controller "A" to controller "B".	DS-BN37A-0E
5	VHDCI Ultra-SCSI Differential Terminator required if controller is at the end of the host bus	H8863-AA
6	Cable to other devices on host bus from controller "B"	(same as Part 2)

Figure 1–10 Host Cabling for Multiple Bus Failover Configurations

Table 1–7	Key to	Figure	1 - 10
-----------	--------	--------	--------

Part	Description	Part No.
1	Trilink connector	H8861-AA
2	Cable from host processor to controller; the last two digits of the Part No. represent the cable length (in meters). An "E" represents one-half meter.	DS-BN37A-1 DS-BN37A-1E DS-BN37A-02 DS-BN37A-02 DS-BN37A-03 DS-BN37A-03 DS-BN37A-05 DS-BN37A-10 DS-BN37A-15 DS-BN37A-20 DS-BN37A-25
3	Ferrite Bead	16-25105-18
4	VHDCI Ultra-SCSI Differential Terminator or cable to other devices on host bus.	H8863-AA or same as item 2
5	VHDCI Ultra-SCSI Differential Terminator or cable to other devices on host bus.	H8863-AA or same as item 2
6	Cable to controller "B" from host processor	(same as 2)

CHAPTER 2

Troubleshooting

This chapter provides guidelines for troubleshooting the controller, cache module, and external cache battery. It also describes the utilities and exercisers that aid in troubleshooting these components. See "Appendix A" for a list of LEDs codes and "Appendix B" for a description of the event codes. See the documentation that accompanied the enclosure for troubleshooting enclosure hardware (power supplies, cooling fans, environmental monitoring unit, and so on).

The following is a list of topics contained within this section:

- "Troubleshooting Checklist," page 2-1
- "Troubleshooting Procedures," page 2-4
- "Checking Failure Entries," page 2-10
- "Checking for Communication Problems," page 2-17
- "Checking for Disk-Drive Problems," page 2-27
- "Running the Controller Self Test," page 2-32
- "Shutting Down and Restarting the Subsystem," page 2-33

Troubleshooting Checklist

Table 2–1 provides a troubleshooting checklist for use in diagnosing the controller and its supporting modules. By using this checklist, you will be able to identify many of the problems that occur during a typical installation. After identifying the problem, use Table 2–2 to confirm the diagnosis and fix the problem.

If the initial diagnosis points to several possible causes, use the tools described later in this chapter to further refine the diagnosis. If the

2–1

2–2 Service Manual

problem cannot be diagnosed in the field, call customer service for additional support.

Table 2–1 Troubleshooting Checklist

Step	Action	Follow-up	
1	Check the power to the cabinet and its components.	Are the cords connected properly?Is the power within specifications?	
2	Check the component cables.	 Are the bus cables to the controllers connected properly? Are the external cache battery (ECB) cables connected properly? 	
3	Check the program cards to ensure both are fully seated.	■ Are the cards seated properly?	
4	Check the operator control panel and devices for LED codes.	 Any LED Codes present? If so, refer to "Appendix A". 	
5	Connect a local terminal to the controller and check its configuration with the following command: SHOW THIS_CONTROLLER FULL	 Ensure that the HSOF software version is correct and that pertinent patches have been installed. Check the status of the cache module and its ECB. 	
6	Using the FMU, check for last failure or memory-system failure entries.	 Show these codes and translate the last failure codes they contain (see "Checking Failure Entries," page 2-10). If the controller failed to the extent it cannot support a local terminal for the FMU, check the host error log for the instance or last-failure codes (see "Appendix B" to interpret the event codes). 	
7	Check the status of the devices with the following command: SHOW DEVICES FULL	 Look for errors such as "misconfigured device" or "No device at this PTL." If a device reports misconfigured or missing, check its status with the following command: SHOW device-name 	

Troubleshooting	2–3
rioubloonlooding	20

Step	Action	Follow-up
8	Check the status of the storagesets with the following command: SHOW STORAGESETS FULL	 Ensure that all storagesets are "normal" (or "normalizing" if it's a RAIDset or mirrorset). Check again for misconfigured or missing devices.
9	Check the status of the units with the following command: SHOW UNITS FULL	 Ensure that all of the units are "available" or "online." If the controller reports that a unit is unavailable or offline, re-check the storageset it belongs to with the following command: SHOW storageset-name If the controller reports that a unit has "lost data" or is "unwriteable," recheck the status of the devices that make up the storageset: If the devices are OK, recheck the status of the cache module. If the unit reports a "media format error," recheck the status of the storageset and its devices.

Table 2–1 Troubleshooting Checklist (Continued)

Troubleshooting Procedures

Use Table 2–1 to find a symptom, then use this table to verify and fix the problem.

 Table 2–2
 Troubleshooting Procedures (sheet 1 of 7)

Symptom	Possible Cause	Investigation	Remedy
Reset button not lit	No power to subsystem	Check power to subsystem and power supplies on controller shelf	Replace cord or AC input power module
		Ensure all cooling fans are installed. The EMU shuts down the subsystem if one fan is missing/inoperative for more than 8 minutes,	Turn off power switch on AC input power module. Replace cooling fan. Restore power to subsystem.
	Failed controller	If the previous check	Replace controller
Reset button lit steadily; other LEDs also lit	Various	fails to produce a remedy, see "Operator Control Panel LED Description," page A-1	Follow repair action
Cannot set failover to create dual-redundant configuration	Incorrect command syntax	See the HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual for the SET FAILOVER command	Use correct command syntax
	Different software versions on controllers	Check software versions on both controllers.	Update one or both controllers so that both controllers are using the same software version
	Incompatible hardware	Check hardware versions	Upgrade controllers so that they are using compatible hardware

Troubleshooting	2–5
-----------------	-----

Symptom	Possible Cause	Investigation	Remedy
Cannot set failover to create dual-redundant configuration (Continued)	Controller previously set for failover	Ensure that neither controller is configured for failover	SET NOFAILOVER on both controllers, then reset "this" controller for failover
	Failed controller	If the previous checks fail to produce a remedy, check for OCP LED codes	Follow repair action
Unmirrored cache; controller reports failed SIMM	Improperly installed SIMM	Remove cache module and ensure that SIMM is fully seated in its slot.	Reseat SIMM
		See Figure 3–9 to determine which cache module contains the failed SIMM.	
	Failed SIMM	If the previous check fails to produce a remedy	Replace SIMM
Mirrored cache; "this controller" reports SIMM 1 or 2 failed.	Improperly installed SIMM in cache module for "this controller".	Remove cache module and ensure that SIMMs are installed properly.	Reseat SIMM
		See "Replacing SIMMs," page 3-40.	
	Failed SIMM in cache module for "this controller"	If the previous check fails to produce a remedy	Replace SIMM in the cache module for "this controller"
Mirrored cache; "this controller" reports SIMM 3 or 4 failed.	Improperly installed SIMM in cache module for "other controller".	Remove cache module and ensure that SIMMs are installed properly. See "Replacing SIMMs," page 3-40.	Reseat SIMM
	Failed SIMM in cache module for "other controller"	If the previous check fails to produce a remedy	Replace SIMM in the cache module for "other controller"

Table 2–2 Troubleshooting Procedures (sheet 2 of 7)

 Table 2–2
 Troubleshooting Procedures (sheet 3 of 7)

Symptom	Possible Cause	Investigation	Remedy
Mirrored cache; controller reports battery not present	Cache module was installed before it was connected to an ECB	ECB cable not connected to cache module	Connect ECB cable to cache module, then restart both controllers by pushing their reset buttons simultaneously
Mirrored cache; controller reports cache or mirrored cache has failed	Primary data and its mirrored copy data are not identical.	<pre>SHOW THIS_CONTROLLER indicates that the cache or mirrored cache has failed. Spontaneous FMU message indicates: Primary cache declared failed - data inconsistent with mirror, or Mirrored cache declared failed - data inconsistent with primary.</pre>	Enter SHUTDOWN command on controllers that report the problem. (This command flushes the contents of cache to synchronize its primary and mirrored data.) Restart the controllers that you shut down.

Troubleshooting	2–7
-----------------	-----

Symptom	Possible Cause	Investigation	Remedy
Invalid cache	Mirrored cache mode discrepancy. This could occur after installing a new controller. Its existing cache module is set for mirrored caching, but the new controller is set for unmirrored caching. It could also occur if the new controller is set for mirrored caching but its existing cache module is not.	SHOW THIS CONTROLLER indicates "invalid cache." Spontaneous FMU message indicates: Cache modules inconsistent with mirror mode.	Connect a local terminal to controller reporting the error and clear the error with the following command (all on one line): CLEAR_ERRORS THIS_CONTROLLER NODESTROY INVALID_CACHE
	Cache module may contain unflushed write-back data. This could occur after installing a new controller. Its existing cache module could indicate that it contains unflushed write-back data, but the new controller expects to find no data in the existing cache module. This error might also occur if installing a new cache module for a controller that expects write-back data in the cache.	SHOW THIS CONTROLLER indicates "invalid cache." No spontaneous FMU message.	Connect a local terminal to controller reporting the error and clear the error with the following command (all on one line): CLEAR_ERRORS THIS_CONTROLLER DESTROY INVALID_CACHE

Table 2–2 Troubleshooting Procedures (sheet 4 of 7)

Table 2–2 Troubleshooting Procedures (sheet 5 of 7)

Symptom	Possible Cause	Investigation	Remedy
Cannot add device	Illegal device	See product-specific release notes that accompanied the software release for the most recent list of supported devices	Replace device
	Device not properly installed in shelf	Check that SBB is fully seated	Firmly press SBB into slot
	Failed device	Check for presence of device LEDs	Follow repair action in the documentation provided with the enclosure or device
	Failed power supplies	Check for presence of power supply LEDs	Follow repair action in the documentation provided with the enclosure or power supply
	Failed bus to device	If the previous checks fail to produce a remedy	Replace enclosure or shelf
Cannot configure storagesets	Incorrect command syntax	See the HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual for the ADD storageset command	Reconfigure storageset with correct command syntax
	Exceeded maximum number of storagesets	Use CFMENU or the SHOW command to count the number of storagesets configured on controller	Delete unused storagesets
	Failed battery on ECB. (An ECB or UPS is required for RAIDsets and mirrorsets.)	Use the SHOW command to check the ECB's battery status	Replace ECB if required

Troub	les	hooting	2–9
-------	-----	---------	-----

Symptom	Possible Cause	Investigation	Remedy
Cannot assign unit number to storageset	Incorrect command syntax	See the HSZ70 Array Controller HSOF Version 7.3 Configuration Manual for correct syntax	Reassign unit number with correct syntax
	Incorrect SCSI target ID numbers set for controller that accesses desired unit (first number of unit number must be one of the SCSI target ID numbers for the controller).	Use the SHOW command to check the controller SCSI target ID numbers	Reset controller SCSI target ID numbers or assign new unit number
Unit is available but not online	This is normal. Units are "available" until the host accesses them, at which point their status is changed to "online."	None	None
Host cannot access unit	Host files or device drivers not properly installed or configured	Check for the required device special files	Configure device special files as described in the <i>Getting</i> <i>Started Manual</i> that accompanied the software release.

Table 2–2 Troubleshooting Procedures (sheet 6 of 7)

2–10	Service	Manual
------	---------	--------

 Table 2–2
 Troubleshooting Procedures (sheet 7 of 7)

Symptom	Possible Cause	Investigation	Remedy
Host log file indicates that a forced error occurred when the controller was reconstructing a RAIDset or mirrorset	Unrecoverable read errors may have occurred when controller was reconstructing the storageset. Errors occur if another member fails while the controller is reconstructing the storageset.	Conduct a read scan of the storageset using the appropriate utility from the host's operating system, such as the "dd" utility for a DIGITAL UNIX host.	Rebuild the storageset, then restore its data from a backup source. While the controller is reconstructing the storageset, monitor the activity with FMU for any unrecoverable errors. If unrecoverable errors persist, note the device on which they occurred and replace the device before proceeding.
	Host requested data from a normalizing storageset that didn't contain the data	SHOW <i>storageset-</i> <i>name</i> to see if all of its members are "normal"	Wait for normalizing members to become normal, then resume I/O to it

Checking Failure Entries

The controller fault-management software reports significant events and failures that occur during the controller's operation. This information is derived from the sense data, which the controller sends in response to a Request Sense command. This command is described in the SCSI-2 specifications: *Information technology, Small Computer System Interface, X3T9.2, 375R Rev. 10k, 10-Mar-93.*

The Fault Management Utility (FMU) provides a limited interface to the controller fault-management software. Use the FMU to:

Display the last-failure and memory-system-failure entries that the fault-management software stores in the controller's non-volatile memory.

Troubleshooting 2–11

- Translate many of the event messages that are contained in the entries related to the significant events and failures. For example, entries may contain codes that indicate the cause of the event, the software component that reported the event, the repair action, and so on.
- Set the display characteristics of spontaneous events and failures that the fault-management system sends to the local terminal.

Displaying Failure Entries

The controller stores the four most recent last-failure and memory-system failure reports as entries in its non-volatile memory (NVMEM). The occurrence of any failure event terminates the controller on which it occurred. To display the last-failure and memory-system failure entries:

- 1. Connect a local terminal to the controller.
- 2. Start FMU with the following command: **RUN FMU**
- Show one or more of the entries with the following command: SHOW event_type entry# FULL

where:

- event-type is LAST_FAIL or MEMORY_SYSTEM_FAIL
- *entry#* is ALL, MOST_RECENT, or 1 through 4
- FULL displays additional information, such as the i960 processor stack and hardware component register sets (for example, memory controller, FX, host port, and device ports).
- 4. Exit FMU with the following command: **EXIT**

Example 2–1 Last-Failure Entry

The following example shows a last-failure entry. The Informational Report—the lower half of the entry—contains the instance code, reporting component, and so forth, which you can translate with FMU to learn more about the event.

Last Failure Entry: 1. Flags: 000FF301 Template: 1.(01) Description: Last Failure Event Occurred on 06-DEC-1996 at 09:21:44 Controller Model: Serial Number: ZG51909900 Hardware Version: 0000(00)

```
2–12 Service Manual
```

```
Controller Identifier:
Unique Device Number: 01519090 Model: 40.(28) Class: 1.(01)
Firmware Version: v7.0a
Node Name: "HSZ01"
```

```
Informational Report
Instance, Code: 01010302 Description:
An unrecoverable hardware detected fault occurred.
Reporting Component: 1.(01) Description:
Executive Services
Reporting component's event number: 1.(01)
Event Threshold: 2.(02) Classification:
HARD. Failure of a component that affects controller
performance or precludes access to a device connected to
the controller is indicated.
Last Failure Code: 018800A0 (No Last Failure Parameters)
Last Failure Code: 018800A0 Description:
A processor interrupt was generated with an indication
that the program card was removed.
Reporting Component: 1.(01) Description:
Executive Services
Reporting component's event number: 136.(88)
Restart Type: 2.(02) Description: Automatic hardware restart
```

Translating Event Codes

Use the following procedure to translate any event codes reported by the fault-management reports for spontaneous events and failures:

- 1. Connect a local terminal to the controller.
- Start FMU with the following command: RUN FMU
- Show one or more of the entries with the following command: DESCRIBE code_type code#

where *code_type* is one of those listed in Table 2–3 and *code#* is the alpha-numeric value displayed in the entry (code types marked with an asterisk (*) require multiple code numbers).

Troubleshooting	2–13
rioubiconooung	2 10

Event-Code Type	Where Found
restart_type	"Restart Code," page B-9
sense_key	Table B–2, Table B–3, Table B–4, Table B–5, Table B–6, Table B–7, Table B–8, Table B–9, Table B–10
memory_system_failure	Table B–7
device services non-transfer errors	Table B–8
device_type	Table B–9, Table B–10
SCSI_command_operation*	Table B–9, Table B–10
sense_data_qualifiers*	Table B–9, Table B–10
instance	Table B–11
last_failure	Table B–12
repair_action	Table B–13
component identifier	Table B–14
event_threshold	Table B–15
ASC_ASCQ*	Table B–16

Table 2–3Event Code Types

Example 2–1 Last_Failure Code

The following example shows the FMU translation of a last-failure code.

```
Last Failure Code: 206C0020 Description:
  Controller was forced to restart in order for
  new controller code image to take effect.
Reporting Component: 32.(20) Description:
  Command Line Interpreter
Reporting component's event number: 108.(6C)
Restart Type: 2.(02) Description: Automatic hardware restart
```

2–14 Service Manual

Instance Codes and Last Failure Codes

Instance codes identify and accompany significant events that do not cause the controller to terminate operation. Last failure codes identify and accompany failure events that cause the controller to stop operating. Last failure codes are sent to the host only after the affected controller is restarted successfully.

You can translate an instance or last failure code if you understand their structure. Figure 2–1 shows an example instance code of **013A2802** (see Table B–11).

Figure 2–1 Structure of an Instance or Last-Failure Code

- ①—The component ID number identifies the software component that detected the event. See Component Identifier Codes in Table B–14.
- 2—The event number indicates the event that the component detected. When combined with the component ID, this number uniquely identifies the event (two different components can use the same event number to report different events).
- ③—The repair action indicates the action that should be taken when the event threshold is reached. See Repair Action Codes in Table B–13.
- The event threshold is reported for instance codes only and indicates:

The severity of the event and

When the repair action should be taken.

See Appendix B, "Event Reporting: Templates and Codes".

The parameter count (reported for last-failure codes only) indicates the number of fields in the event template that contain other important information about the failure.

Troubleshooting	2–15
ribubleshooting	2-10

Controlling the Display of Significant Events and Failures

The FMU SET command can be used to control how the faultmanagement software displays significant events and failures. Table 2–4 describes the SET commands that may be entered while you're running the FMU. These commands remain in effect only as long as the current FMU session remains active unless you enter the PERMANENT qualifier—the last entry in Table 2–4.

Table 2–4FMU SET Commands (sheet 1 of 3)

Command	Result
SET EVENT_LOGGING SET NOEVENT_LOGGING	Enable and disable the spontaneous display of significant device events to the local terminal and host (default = disabled).
	When enabled, the controller spontaneously displays information about the events on the local terminal. These events are preceded with "%EVL" to identify them.
	Because the events are spontaneous, logs are not stored by the controller. The spontaneous event logging is suspended during execution of CLI commands and while running utilities on the local terminal.
SET LAST_FAILURE LOGGING SET NOLAST_FAILURE LOGGING	Enable and disable the spontaneous display of failure events (default = enabled).
	When enabled, the controller spontaneously displays information relevant to the sudden termination of the controller on the local terminal. These last-failure events are preceded with "%LFL" to identify them.
	In cases of automatic hardware reset (for example, power failure or pressing the controller reset button), the last-failure log display is inhibited (automatic resets don't allow sufficient time to complete the display).
SET <i>LOG_TYPE</i> REPAIR_ACTION SET <i>LOG_TYPE</i> NOREPAIR_ACTION	Enable and disable the inclusion of repair action information for event logging or last-failure logging (default = disabled).
	When enabled, the controller displays all of the recommended repair actions associated with the event.

Table 2–4FMU SET Commands (sheet 2 of 3)

Command	Result
SET <i>LOG_TYPE</i> VERBOSE SET <i>LOG_TYPE</i> NOVERBOSE	Enable and disable the descriptive text of event codes that are contained in event logs or last-failure logs (default =disabled).
	See "Translating Event Codes," page 2-12 for instructions to translate these codes manually.
SET PROMPT SET NOPROMPT	Enable and disable the display of the CLI prompt string following the log identifiers %EVL or %LFL (default = disabled).
	This command is useful if you use the CLI prompt string to identify the controllers in a dual-redundant configuration (see the <i>HSZ70 Array Controller HSOF Version 7.3 Configuration Manual</i> for instructions to set the CLI command string for a controller).
	When enabled, the identification may be made of which controller sent the log to the local terminal.
SET TIMESTAMP SET NOTIMESTAMP	Enable and disable the display of the current date and time in the first line of an event or last-failure log. (default= disabled).
SET FMU REPAIR_ACTION SET FMU NOREPAIR_ACTION	Enable and disable the inclusion of repair actions when you enter SHOW LAST_FAILURE and SHOW MEMORY_SYSTEM_FAILURE commands (default = disabled).
	When enabled, the command outputs display all of the recommended repair actions associated with the instance codes or last-failure codes that are used to describe an event.
SET FMU_VERBOSE SET FMU_NOVERBOSE	Enable and disable descriptive text when you enter the SHOW LAST_FAILURE and SHOW MEMORY_SYSTEM_ FAILURE commands (default = disabled.
	When enabled, it identifies the fields and their numeric content that comprise an event or last-failure entry.

Troubleshooting	2–17
-----------------	------

 Table 2–4
 FMU SET Commands (sheet 3 of 3)

Command	Result
SET CLI_EVENT_REPORTING SET NOCLI_EVENT_REPORTING	Enable and disable the asynchronous errors reported at the CLI prompt, such as "swap signals disabled" or "shelf has a bad power supply" (default = enabled).
	When enabled, these errors must be cleared with the CLEAR ERRORS_CLI command (these errors are preceded with "%CER" for identification).
SHOW PARAMETERS	This command displays the current settings associated with the SET command.
SET COMMAND PERMANENT	This qualifier preserves the SET command across controller resets.

Checking for Communication Problems

Use the virtual terminal display (VTDPY) utility to obtain information about the:

- Communication between the controller and its hosts,
- Communication between the controller and the devices in the subsystem, and
- State and I/O activity of the logical units, devices, and device ports in the subsystem.

VTDPY Run Procedures

Use the following procedures to run VTDPY:

- 1. Connect a local terminal to the controller. The terminal must support ANSI control sequences.
- 2. Set the terminal to NOWRAP mode to prevent the top line of the display from scrolling off of the screen.
- 3. Start VTDPY with the following command: **RUN VTDPY**

Use the following key sequences and commands shown in Table 2–5 to control VTDPY.

Table 2–5 VTDPY Key Sequences and Comma	ands
---	------

Command	Action
Ctrl/C	Enables command mode; after entering Ctrl/C, enter one of the following commands and press Return: DISPLAY CACHE DISPLAY DEFAULT DISPLAY DEFAULT DISPLAY STATUS HELP INTERVAL seconds (to change update interval)
Ctrl/G	Updates screen
Ctrl/O	Pauses (and resumes) screen updates
Ctrl/R	Refreshes current screen display
Ctrl/Y	Exits VTDPY

The commands may be abbreviated to the minimum number of characters necessary to identify the command. Enter a question mark (?) after a partial command to see the values that can follow the supplied command. For example, if you enter DISP ?, the utility will list CACHE, DEFAULT, and so forth (separate "DISP" and "?" with a space). Upon successfully executing a command—other than HELP—VTDPY exits command mode. Pressing Enter (Return) without a command also causes VTDPY to exit command mode.

Checking Controller-to-Host Communications

Use the transfer-rate region of the default display (Figure 2–2) to see how or if the controller is communicating with the host.

Troubleshooting 2–19

Figure 2–2 Xfer Rate Region of the Default Display

```
VTDPY> DISPLAY DEFAULT
```

 S/N: ZG64100176 SW: v7.0 HW: CX-02

 65% I/D Hit 99.8% Idle
 0 KB/S
 0 Rq/S
 Up: 0 5:14.53

 Pr
 Name Stk/Max Typ Sta
 CPU% Xfer Rate
 Target
 Unit ASWC KB/S Rd% Wr%

 Cm% HT%
 0
 NULL
 0/ 0
 Rn
 99.8 TW I
 Mhz
 111111 P0300 o

 1
 FCTRL
 1/ 1 FNC
 Bl
 0.0
 03W 6 10.00
 0123456789012345 D0303 o^ b

 2
 RECON
 10/ 1 FNC
 Bl
 0.0
 P1
 hH
 PDD
 D0304 o^ b

 3
 HP_MAIN
 40/ 3 FNC
 Bl
 0.0
 r3 ????hH
 P0401

 7
 VTDPY
 20/ 12 DUP
 Rn
 0.0
 5
 P hH

 15
 SVANVUP
 10/ 2 FNC
 Bl
 0.0
 6 DDD
 hH

 16
 MDATA
 10/ 4 FNC
 Bl
 0.0
 10/ 1 HK
 10/ 4 FNC

Table 2–6 describes the contents for each column of the Xfer Rate region of Figure 2–2.

Table 2–6	Xfer Rate	Column 1	Descri	ptions
Table 2–6	Xfer Rate	Column	Descri	ption

Column	Contents
Т	SCSI target ID
W	Transfer width: W for 16-bit; blank for 8-bit.
I	Initiator that negotiated synchronous communication.
MHz	Synchronous data rate negotiated by the initiator at the specified SCSI ID number. Async indicates that no communication has been established between the initiator (controller or host) and the SCSI target.

Checking Controller-to-Device Communications

Use the device display (Figure 2–3) to see how or if the controller is communicating with the devices in the subsystem. This display contains three important regions:

- **1**—Device map region (upper left)
- **2**—Device status region (upper right)
- **3**—Device-port status (lower left)

2–20 Service Manual

Figure 2–3 Regions on the Device Display

VTDPY>DISPLAY DEVICE

				S/N	1: Z	ZG64	41003	176 SW	≬: v	7.	.0 HW: (CX-02								
679	∛ I/D	Hit	99.9%	Idle		_	0 KI	B/S			0 Rq/S		Up:		0	5:17	.54			
O:	Targe	t				2	P TL	ASWF	Rq/	S	RdKB/S	WrKB/S	Que	Τg	CR	BR T	R			
			111111					P112	20 A	^	0	0			0	0	0	0	0	0
(01234	5678	9012345					D113	30 A	^	0	0			0	0	0	0	0	0
Ρ1		hH	PDD					D114	10 A	^	0	0			0	0	0	0	0	0
02		hH	DD D					D212	20 A	^	0	0			0	0	0	0	0	0
r3	???	?hH						D213	30 A	^	0	0			0	0	0	0	0	0
t4		hH	DDD					D215	50 a	^	0	0			0	0	0	0	0	0
5	P	hH						?302	20	^	F 0	0			0	0	0	0	0	0
б	DDD	hH						?303	30	^	F 0	0			0	0	0	0	0	0
								?304	10	^	F 0	0			0	0	0	0	0	0
								?305	50	^	F 0	0			0	0	0	0	0	0
	ച							D409	90 A	^	0	0			0	0	0	0	0	0
	0							D410)0 A	^	0	0			0	0	0	0	0	0
Por	rt Rq	/S R	dKB/S W	rKB/S	CR	BR	TR	D411	L0 A	^	0	0			0	0	0	0	0	0
1		0	0	0	0	0	0	P503	30 A	^	0	0			0	0	0	0	0	0
2		0	0	0	0	0	0	D601	L0 A	^	0	0			0	0	0	0	0	0
3		0	0	0	0	0	0	D602	20 A	^	0	0			0	0	0	0	0	0
4		0	0	0	0	0	0	D603	30 A	^	0	0			0	0	0	0	0	0
5		0	0	0	0	0	0													
6		0	0	0	0	0	0													

Checking Device Type and Location

The device map region of the device display (**O**upper left) shows all of the devices that the controller recognizes through its device ports. Table 2–7 describes the contents for each column of the device map region.

Troubleshooting	2–21
rioubloonlooding	

 Table 2–7
 Device Map Column Descriptions

Column	Contents								
Port	SCSI ports 1 through 6.								
Target	SCSI targets 0 through 15. Single controllers occupy 7; dual-redundant controllers occupy 6 and 7.								
	D = disk drive or CD-ROM drive								
	F = foreign device								
	H = this controller								
	h = other controller in dual-redundant configurations								
	P = passthrough device								
	? = unknown device type								
	= no device at this port/target location								

Checking Device Status and I/O Activity

The device status region of the device display (**2** upper right) shows the name and I/O characteristics for all of the devices that the controller recognizes. Table 2–8 describes the contents for each column of the device status region.

2–22	Service	Manua
2-22	OCIVICE	manua

Column	Contents				
PTL	Kind of device and its port-target-lun (PTL) location:				
	D = disk drive				
	P = passthrough device				
	? = unknown device type				
	= no device at this port/target location				
A	Availability of the device:				
	A = available to this controller				
	a = available to other controller				
	U = unavailable, but configured on this controller				
	u = unavailable, but configured on other controller				
	= unknown availability state				
S	Spindle state of the device:				
	• = disk is spinning at correct speed; tape is loaded				
	> = disk is spinning up				
	< = disk is spinning down				
	v = disk is not spinning				
	= unknown spindle state				
W	Write-protection state of the device. For disk drives, a W in this column indicates that the device is hardware write protected. This column is blank for other kinds of devices.				
F	Fault state of the device. An F in this column indicates an unrecoverable device fault. If this field is set, the device fault LED should also be lit.				
Rq/S	Average request rate for the device during the last update interval. Requests can be up to 32K and generated by host or cache activity.				
RdKB/S	Average data transfer rate from the device (reads) during the last update interval.				

Table 2–8 Device Status Column Descriptions

Troubleshooting	2-23
ribubleshooting	2-20

Column	Contents
WrKB/S	Average data transfer rate to the device (writes) during the last update interval.
Que	Maximum number of I/O requests waiting to be transferred to the device during the last update interval.
Tg	Maximum number of requests queued to the device during the last update interval. If the device does not support tagged queuing, the maximum value is 1.
CR	Number of SCSI command resets that occurred since VTDPY was started.
BR	Number of SCSI bus resets that occurred since VTDPY was started.
TR	Number of SCSI target resets that occurred since VTDPY was started.

Table 2–8 Device Status Column Descriptions (Continued)

Checking Device-Port Status and I/O Activity

The device-port status region of the device display (③ lower left) shows the I/O characteristics for the controller device ports. Table 2–9 describes the contents for each column of the device-port status region.

2–24	Service	Manua
2-24	Service	ivianua

Column	Contents
Port	SCSI device ports 1 through 6.
Rq/S	Average request rate for the port during the last update interval. Requests can be up to 32K and generated by host or cache activity.
RdKB/S	Average data transfer rate from the devices on the port (reads) during the last update interval.
WrKB/S	Average data transfer rate to the devices on the port (writes) during the last update interval.
CR	Number of SCSI command resets that occurred since VTDPY was started.
BR	Number of SCSI bus resets that occurred since VTDPY was started.
TR	Number of SCSI target resets that occurred since VTDPY was started.

Table 2–9 Device-Port Status Column Descriptions

Checking Unit Status and I/O Activity

Use the cache display (Figure 2–4) to see the status and I/O activity for the logical units configured on the controller.

Figure 2–4 Unit Status on the Cache Display

VTDPY> DISPLAY CACHE

					S/N	: ZG6	64100	0176	SW:	v7.0 1	HW: CX-	-02			
					669	∦ I/I) Hit	. 99	.8%	Idle	0	KB/S	0 Rq/S Up:	0	5:16.42
Unit	ASI	МС	KB/S	Rd%	Wr%	Cm%	HT%	PH%	MS%	Purge	BlChd	BlHit			
P0300	0		0	0	0	0	0	0	0	0	0	0			
D0303	o ^	b	0	0	0	0	0	0	0	0	0	0			
D0304	o ^	b	0	0	0	0	0	0	0	0	0	0			
P0400			0	0	0	0	0	0	0	0	0	0			
P0401			0	0	0	0	0	0	0	0	0	0			
D0402	x^	b	0	0	0	0	0	0	0	0	0	0			

Troubleshooting	2–25
ribubicariooting	2 20

Table 2–10 describes the contents for each column of the unit status region.

Column	Contents					
Unit	Kind of unit (and its unit number):					
	D = disk drive or CD-ROM drive					
	P = passthrough device					
	? = unknown device type					
A	Availability of the unit:					
	a = available to other controller					
	d = disabled for servicing. Offline.					
	e = mounted for exclusive access by a user					
	f = media format error					
	i = inoperative					
	m = maintenance mode for diagnostic purposes					
	• = online. Host may access this unit through "this controller."					
	r = rundown with the SET NORUN command					
	v = no volume mounted due to lack of media					
	x = online. Host may access this unit through "other controller."					
	= unknown availability					
S	Spindle state of the device:					
	<pre>^ = disk is spinning at correct speed; tape is loaded</pre>					
	> = disk is spinning up; tape is loading					
	< = disk is spinning down; tape is unloading					
	v = disk is not spinning; tape is unloaded					
	= unknown spindle state					

 Table 2–10
 Unit Status Column Descriptions

2–26	Service	Manua
2-20	Service	ivianua

Column	Contents
W	Write-protection state. For disk drives, a W in this column indicates that the device is hardware write protected. This column is blank for units that comprise other kinds of devices.
С	Caching state of the device:
	b = read and write-back caching enabled
	r = read caching only
	= caching disabled
KB/S	Average amount of data transferred to and from the unit during the last update interval in 1000-byte increments.
Rd%	Percentage of data transferred between the host and the unit that were read from the unit.
Wr%	Percentage of data transferred between the host and the unit that were written to the unit.
CM%	Percentage of data transferred between the host and the unit were compared. A compare operation can accompany a read or a write operation, so this column is not the sum of columns Rd% and Wr%.
HT%	Cache-hit percentage for data transferred between the host and the unit.
PH%	Partial cache-hit percentage for data transferred between the host and the unit.
MS%	Cache-miss percentage for data transferred between the host and the unit.
Purge	Number of blocks purged from the cache during the last update interval.
BlChd	Number of blocks added to the cache during the last update interval.
BlHit	Number of blocks hit during the last update interval.

 Table 2–10
 Unit Status Column Descriptions (Continued)

Troubleshooting 2–27

Checking for Disk-Drive Problems

Use the disk inline exerciser (DILX) to check the data-transfer capability of disk drives. DILX generates intense read/write loads to the disk drive while monitoring the drive performance and status. Run DILX on as many disk drives as you would like but, because this utility creates substantial I/O loads on the controller, it is recommended that you stop host-based I/O during the test. You may also use DILX to exercise the read capability of CD-ROM drives.

Finding a Disk Drive in the Subsystem

Follow these steps to find a disk drive or device in the subsystem:

- 1. Connect a local terminal to the controller.
- Show the devices that are configured on the controller with the following command:
 SHOW DEVICES
- 3. Find the device in the enclosure with the following command: LOCATE *device-name*

This command causes the found device's LED to blink continuously. Enter the following command to turn off the LED: LOCATE CANCEL

Testing the Read Capability of a Disk Drive

Test the read capability of a disk drive by performing the following procedure:

- 1. From a host console, dismount logical unit that contains the disk drive you want to test.
- 2. Connect a local terminal to the controller that accesses the disk drive you want to test.
- 3. Run DILX with the following command: **RUN DILX**
- 4. Decline the Auto-configure option so that you can specify the disk drive to test.
- 5. Accept the default test settings and run the test in read-only mode.

2–28 Service Manual

- 6. Enter the unit number of the disk drive you want to test. For example, to test D107, enter the number 107.
- 7. Testing more than one disk drive?
 - Yes—enter their unit numbers when prompted
 - No—enter "n" to start the test.

Use the control sequence found in Table 2–11 to control DILX during the test:

 Table 2–11
 DILX Control Sequences

Command	Action
Ctrl/C	Terminates the test
Ctrl/G	Displays the performance summary for the current test and continue testing
Ctrl/Y	Terminates the test and exits DILX

Testing the Read and Write Capabilities of a Disk Drive

Run a DILX Basic Function test to test the read and write capability of a disk drive. During the Basic Function test, DILX runs the four tests shown in Table 2–12.

Note DILX repeats the last three tests until the time established in step 6 of the procedure expires.

Troubleshooting	2–29
Troubleshooting	2–29

Table 2–12 DILX Tests

Test Name	Description	Length of Time to Complete
Write	Writes specific patterns of data to the disk drive (see Table 2–13 on page 2-31). DILX does not repeat this test.	
Random I/O	Simulates typical I/O activity by issuing read, write, access, and erase commands to randomly chosen logical block numbers (LBNs). You can set the ratio of these commands, as well as the percentage of read and write data that are compared throughout this test.	6 minutes
Data Transfer	Tests throughput by starting at an LBN and transferring data to the next LBN that has not been written to.	2 minutes
Seek	Stimulates head motion on the disk drive by issuing single-sector erase and access commands. Each I/O uses a different track on each subsequent transfer. You can set the ratio of access and erase commands.	2 minutes

DILX Run Procedure

Use the following procedure to run DILX *n* (a specific disk drive):

- 1. From a host console, dismount the logical unit that contains the disk drive you want to test.
- 2. Connect a local terminal to the controller that accesses the disk drive you want to test.
- 3. Run DILX with the following command: **RUN DILX**
- 4. Decline the auto-configure option so that you can specify the disk drive to test.

Tip Use the auto-configure option if you want to test the read and write capabilities of every disk drive in the subsystem.

- 5. Decline the default settings.
- 6. Enter the number of minutes you want to run the DILX Basic Function test.

2–30 Service Manual

Note To ensure that DILX accesses the entire diskspace, you should enter 120 or more.)

- 7. Enter the number of minutes between the display of performance summaries.
- 8. Choose to include performance statistics in the summary.
- 9. Choose to display both hard and soft errors.
- 10. Choose to display the hex dump.
- 11. Accept the hard-error limit default.
- 12. Accept the soft-error limit default.
- 13. Accept the queue depth default.
- 14. Choose option 1 to run a Basic Function test.
- 15. Enable phase 1, the write test.
- 16. Accept the default percentage of requests that DILX issues as read requests during phase 2, the random I/O test. DILX issues the balance as write requests.
- 17. Choose ALL for the data patterns that DILX issues for write requests.
- 18. Perform the initial write pass.
- 19. Allow DILX to compare the read and write data.
- 20. Accept the default percentage of reads and writes that DILX compares.
- 21. Enter the unit number of the disk drive you want to test. For example, if you want to test D107, you'd enter the number 107.
- 22. Testing more than one disk drive?
 - Yes—enter their unit numbers when prompted.
 - No—enter "n" to start the test.

Use the control sequences shown in Table 2-11 to control the write test. Table 2-13 shows the disk write data for each test pattern.
Troubleshooting	2–31

 Table 2–13
 Data Patterns for Phase 1: Write Test

Pattern	Data Written (in Hexadecimal)
1	0000
2	8B8B
3	3333
4	3091
5	0001, 0003, 0007, 000F, 001F, 003F, 007F, 00FF, 01FF, 03FF, 07FF, 0FFF, 1FFF, 3FFF, 7FFF
6	FIE, FFFC, FFFC, FFFC, FFE0, FFE0, FFE0, FFE0, FE00, FC00, F800, F000, F000, C000, 8000, 0000
7	0000, 0000, 0000, FFFF, FFFF, FFFF, 0000, 0000, FFFF, FFFF, 0000, FFFF, 0000, FFFF, 0000, FFFF
8	B6D9
9	5555, 5555, 5555, AAAA, AAAA, AAAA, 5555, 5555, AAAA, AAAA, 5555, AAAA, 5555, AAAA, 5555, AAAA, 5555
10	DB6C
11	2D2D, 2D2D, 2D2D, D2D2, D2D2, D2D2, 2D2D, 2D2D, D2D2, D2D2, 2D2D, D2D2, 2D2D, D2D2, 2D2D, D2D2
12	6DB6
13	0001, 0002, 0004, 0008, 0010, 0020, 0040, 0080, 0100, 0200, 0400, 0800, 1000, 2000, 4000, 8000
14	FIE, FFFD, FFFB, FFF7, FFEF, FFDF, FFBF, FF7F, FEFF, FDFF, FBFF, F7FF, EFFF, BFFF, DFFF, 7FFF
15	DB6D, B6DB, 6DB6, DB6D, B6DB, 6DB6, DB6D, B6DB, 6DB6, DB6D, B6DB, 6DB6, DB6D
16	3333, 3333, 3333, 1999, 9999, 9999, B6D9, B6D9, B6D9, B6D9, B6D9, FFFF, FFFF, 0000, 0000, DB6C, DB6C
17	9999, 1999, 699C, E99C, 9921, 9921, 1921, 699C, 699C, 0747, 0747, 0747, 699C, E99C, 9999, 9999
18	FFFF

2–32 Service Manual

DILX Error Codes

Table 2–14 describes the error codes that DILX may display during and after testing. Contact your service representative to interpret the end-message fields.

Error Code	Explanation
1	Illegal Data Pattern Number found in data pattern header.
	DILX read data from the disk and discovered that the data did not conform to the pattern in which it was previously written.
2	No write buffers correspond to data pattern.
	DILX read a legal data pattern from the disk but because no write buffers correspond to the pattern, the data must be considered corrupt.
3	Read data does not match write buffer.
	DILX compared the read and write data and discovered that they didn't correspond.

Table 2–14 DILX Error Codes

Running the Controller Self Test

During start up, the controller runs a self test (also known as the DAEMON tests). These tests automatically test the device ports, host port, cache module, and value-added functions. If you are experiencing intermittent problems with one of these components, you can manually run the self test in a continuous loop rather than restarting the controller over and over again.

See "DAEMON Tests," page 1-14, for more information about these tests.

Troubleshooting 2-33

Self Test Run Procedure

Use the following procedure to run the controller self test:

- 1. Connect a local terminal to the controller.
- 2. Start the self test with one of the following commands: SELFTEST THIS CONTROLLER SELFTEST OTHER_CONTROLLER

The self test runs until it detects an error or until you press the controller reset button.

If the self test detects an error, it saves information about the error and produces an OCP LED code for a "DAEMON hard error" (Table A–1 on page A-2).

Restart the controller to write the error information to the host error log, then check the log for a "built-in self-test failure" event report. This report will contain an instance code, located at offset 32 through 35, that you can use to determine the cause of the error. See "Translating Event Codes," page 2-12 for help on translating instance codes. Instance codes are found in Table B–11 on page B-23.

Shutting Down and Restarting the Subsystem

This section contains procedures to shut down and restart a subsystem.

Shut Down Procedure

Follow these steps to shut down a subsystem:

- 1. From a host console, dismount the logical units in the subsystem.
- 2. Connect a maintenance terminal to one of the controllers in your subsystem.

2–34 Service Manual

3. Shut down the controllers. In single configurations, you only need to shut down "this controller." In dual-redundant configurations, shut down the "other controller" first, then shut down "this controller" with the following commands:

SHUTDOWN OTHER_CONTROLLER SHUTDOWN THIS_CONTROLLER

When the controllers shut down, their reset buttons and their first three LEDs are lit continuously. This may take several minutes, depending on the amount of data that needs to be flushed from the cache modules.

- 4. Turn off the power to the subsystem.
- 5. Unplug the subsystem power cord.
- 6. Disable the ECBs by pressing their shut off buttons until their status lights stops blinking—about two seconds.

Restart Procedure

Follow these steps to restart a subsystem:

- 1. Plug in the subsystem power cord.
- 2. Turn on the subsystem. The controllers automatically restart and the ECB automatically re-enable themselves to provide backup power to the cache modules.

CHAPTER 3

Replacement Procedures

This chapter describes the removal and replacement procedures for the components of the HSZ70 Array Controller subsystem with the exception of the power supplies, cooling fans, and cables. For these components, please refer to the enclosure documentation. Chapter 3 contents:

- "Single Controller Configuration," page 3-2
 - "Replacing the Controller," page 3-2
 - "Replacing the Cache Module," page 3-7
 - "Replacing the ECB," page 3-9
 - "Installing a New Program Card," page 3-12
- "Dual-Redundant Controller Configuration," page 3-13
 - "Replacing a Controller Module," page 3-14
 - "Replacing a Cache Module," page 3-19
 - "Program Card Replacement," page 3-24
 - "Replacing the ECB," page 3-29
- "Replacing a PVA Module," page 3-31
 - "Replacing the PVA in the Master Enclosure (ID 0)," page 3-31
 - "Replacing the PVA in the First (ID 2) or Second (ID
 3) Expansion Enclosure," page 3-33
- "Replacing an I/O Module," page 3-36
- "Replacing an Environmental Monitoring Unit," page 3–39
- "Replacing SIMMs," page 3-40
- "Replacing a Failed Storageset Member," page 3-43

3–1

3–2 Service Manual

Single Controller Configuration

Follow the instructions in this section to replace modules in a single controller configuration (Figure 3–1).

If you are replacing modules in a dual-redundant controller configuration, see "Dual-Redundant Controller Configuration," page 3–13.

To upgrade a single controller to a dual-redundant controller configuration, see "Upgrading to a Dual-Redundant Configuration," page 4-14.

Figure 3–1 Single Controller Configuration

CXO5602A

Caution You must shut down the subsystem before removing or replacing any modules. If you remove the controller or any other module without first shutting down the subsystem, data loss may occur.

Replacing the Controller

Use the steps outlined in "Controller Removal Procedures" and "Controller Installation Procedures" to replace a controller.

Controller Removal Procedures

Use the following steps to remove the HSZ70 controller:

- 1. From the host console, dismount the logical units in the subsystem.
- 2. Last Failure Codes desired?
 - Yes—connect a PC or terminal to the controller maintenance port to obtain the last failure codes (see HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual for details).

Note The HSZ70 Controller must be operational to complete this step. If not operational, go to step 7.

- No—go to step 7.
- 3. Start the FMU to obtain the last failure codes:

RUN FMU

4. Display the instance and last failure codes:

SHOW LAST_FAILURE ALL

- 5. Record the codes in the order that they appear.
- 6. Exit FMU:

EXIT

Note If the container was initialized with the INITIALIZE command *SAVE_CONFIGURATION* switch (see *HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual*),the controller loads the subsystem configuration from that device.

If the SAVE_CONFIGURATION switch was not used, you will have to manually configure the new controller as described in HSZ70 Array Controller HSOF Version 7.3 Configuration Manual

Caution The cache module may contain data if the controller crashed and you weren't able to shut it down with the SHUTDOWN THIS_CONTROLLER command.

3–4 Service Manual

 Shut down the controller with the following command: SHUTDOWN THIS_CONTROLLER

When the controller shuts down, its reset button and the first three LEDs are lit continuously.

Caution ESD can easily damage a controller. Wear a snug-fitting, grounded ESD wrist strap.

Note If it is anticipated that the system will be shutdown for more than a few minutes, for example, waiting an hour for the part to arrive, then you should also disable the cache batteries to avoid a deep discharge of the battery (which will extend its life).

- 8. Is power to the subsystem going to be off for more than an hour?
 - Yes—Press the battery-disable switch (see Figure 3–2) until the status light stops blinking (about 5 seconds).
 - No—go to step 9.
- 9. Turn off power to the subsystem
- 10. Remove the program card ESD cover and program card (save them for the replacement controller).
- 11. Remove the trilink connectors, but do not disconnect the host bus cables (or terminators) from the trilink connectors.

Note Disabling the cache batteries prevent the batteries from performing a deep-discharge when the power is anticipated to be off for an extended period of time. This will extend the over-all life of the batteries.

Figure 3–2 Battery Disable Switch Location

Note One or two trilink connectors may be attached, depending on the configuration.

- 12. If connected, disconnect the PC or terminal from the controller maintenance port.
- 13. Disengage both retaining levers and remove the controller, then place the controller into an antistatic bag or onto a grounded antistatic mat.

3–6 Service Manual

Controller Installation Procedures

Use the following steps to install a new controller or to re-install the current controller:

Caution ESD can easily damage a controller. Wear a snug-fitting, grounded ESD wrist strap.

Make sure you align the controller in the appropriate guide rails. If you do not align the module correctly, damage to the backplane can occur.

- 1. Insert the new controller into its slot, and engage its retaining levers.
- 2. Connect the trilink connectors (with the host bus cables attached) to the new controller.

Note One or two trilink connectors may be attached, depending on the configuration.

- 3. Restore power to the subsystem.
- 4. Connect a PC or terminal to the controller maintenance port.
- 5. Hold the reset button while inserting the program card into the new controller. Release the reset button and replace the ESD cover.
- 6. When the CLI prompt reappears, display details about the configuration of the controller:

SHOW THIS_CONTROLLER FULL

See the *HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual* for detailed information about using this command.

- 7. Perform one of the following:
 - Configure the controller (refer to the HSZ70 Array Controller HSOF Version 7.3 Configuration Manual).

Note If the controller you're installing was previously used in another subsystem, it will need to be purged of the old configuration (see CONFIGURATION RESET in the *HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual*).

- Restore the configuration saved with the INITIALIZE SAVE_CONFIGURATION switch by holding button 6 while releasing the reset button.
- 8. Using CLCP, install any patches that you had installed on the previous controller (see "Software Patch Installation Procedure," page 4–5).
- 9. Mount the logical units on the host.
- 10. Set the subsystem date and time with the following command:

SET THIS_CONTROLLER TIME=*dd-mmm-yyyy:hh:mm:ss*

11. Disconnect the PC or terminal from the controller maintenance port.

Replacing the Cache Module

Use the following steps described in "Cache Module Removal Procedures" and "Cache Module Installation Procedures" to replace the cache module.

Cache Module Removal Procedures

Use the following steps to remove the cache module:

- 1. From the host console, dismount the logical units in the subsystem. If you are using a Windows NT platform, shut down the server.
- 2. Last Failure Codes desired?
 - Yes—connect a PC or terminal to the controller maintenance port to obtain the last failure codes (see HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual for details).

Note Controller must be operational to complete this step. If not operational, go directly to step 7.

■ No—go to step 7.

3. Start the FMU to obtain the last failure codes:

RUN FMU

4. Display the instance and last failure codes:

SHOW LAST_FAILURE ALL

5. Record the codes in the order that they appear.

6. Exit FMU:

EXIT

Note If the container was initialized with the INITIALIZE command *SAVE_CONFIGURATION* switch (see *HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual*), the controller loads the subsystem configuration from that device.

If the SAVE_CONFIGURATION switch was not used, you will have to manually configure the new controller as described in HSZ70 Array Controller HSOF Version 7.3 Configuration Manual

Caution The cache module may contain data if the controller crashed and you weren't able to shut it down with the SHUTDOWN THIS_CONTROLLER command.

7. Shut down the controller with the following command:

SHUTDOWN THIS_CONTROLLER

When the controller shuts down, its reset button and the first three LEDs are lit continuously.

8. Turn off power to the subsystem.

Caution ESD can easily damage a cache module. Wear a snug-fitting, grounded ESD wrist strap.

9. Disable the ECB by pressing the battery disable switch until the status light stops blinking—about five seconds.

Caution The ECB must be disabled—the status light is not lit or is not blinking—before disconnecting the ECB cable from the cache module. Failure to disable the ECB could result in cache module damage.

10. Disconnect the ECB cable from the cache module.

11. Disengage both retaining levers, remove the cache module, and place the cache module into an antistatic bag or onto a grounded antistatic mat.

Cache Module Installation Procedures

Use the following steps to install the cache module:

Caution ESD can easily damage a cache module. Wear a snug-fitting, grounded ESD wrist strap.

Make sure you align the cache module in the appropriate guide rails. If you do not align the cache module correctly, damage to the backplane can occur.

1. Insert the new cache module into its slot and engage its retaining levers.

Caution The ECB must be disabled—the status light is not lit or is not blinking—before connecting the ECB cable to the cache module. Failure to disable the ECB could result in ECB damage.

- 2. Connect the ECB cable to the new cache module (follow the VHDCI cable precautions).
- 3. If not already connected, connect a PC or terminal to the controller maintenance port.
- 4. Restore power to the subsystem. The ECB automatically re-enables itself to provide backup power to the cache module. The controller restarts with the configuration that resides in NVRAM.
- 5. Mount the logical units on the host. If you are using a Windows NT platform, restart the server.
- 6. Set the subsystem date and time with the following command:

SET THIS_CONTROLLER TIME=*dd-mmm-yyyy:hh:mm:ss*

7. Disconnect the PC or terminal from the controller maintenance port.

Replacing the ECB

Use the procedure outlined to turn the cabinet power off, remove, and then replace the ECB.

3–10 Service Manual

- 1. If the controller and cache module are not operating, go to step 4. Otherwise, go to the next step.
- 2. Connect a PC or terminal to the controller maintenance port. The controller to which you're connected is "this controller."
- 3. Shut down the controller with the following command:

SHUTDOWN THIS_CONTROLLER

When the controller shuts down, its reset button and first three LEDs are lit continuously. This may take several minutes, depending on the amount of data that needs to be flushed from the cache modules.

- 4. Turn off the power to the subsystem.
- 5. Insert the new ECB into its slot (leaving the old ECB in place until the batteries on the new ECB are fully charged; see Figure 3–3).

Caution The ECB cable has a 12-volt and a 5-volt pin. Improper handling or misalignment when connecting or disconnecting could cause these pins to contact ground, resulting in cache module damage.

- 6. Connect the open end of the ECB Y cable to the new ECB.
- 7. Restore power to the subsystem. The controller automatically restarts.
- 8. New ECB fully charged?
 - Yes—Disconnect the ECB cable from the old ECB.
 - No—Wait until ECB is fully charged.

Figure 3–3 ECB Replacement Cabling

Note A continuously lit ECB status light indicates the batteries are fully charged whereas a blinking status light indicates that the batteries are charging.

9. Remove the old ECB.

10. Disconnect the PC or terminal from the controller maintenance port.

3–12 Service Manual

Installing a New Program Card

Note Before installing the software, ensure that all applicable software patches, if any, are installed (on the one controller, or both controllers if a dual-redundant configuration). The installation may not work properly if the applicable software patches are not installed prior to installing the major release (this applies to reverting to an older code release as well as upgrading the software).

Refer to "Software Patch Installation Procedure," page 4-5 for a description of software patch installation procedure.

You must shut down and restart the controller during this upgrade (storage devices will then be unavailable to the host system). Use the following procedure to install a new program card with software:

- 1. Halt all host I/O activity to the controller and prepare the host system for a controller shutdown using the appropriate procedures for your operating system.
- 2. Establish a local connection to the controller through the maintenance port of the controller.
- Shut down "this controller" by using the following command: SHUTDOWN THIS_CONTROLLER

Caution Ensure that you wait until the Rest button stops flashing and stays lit continuously. This indicates that unwritten data is flushed from the cache module.

- 4. Remove the PCMCIA program card ESD cover (③ on Figure 3-4).
- 5. See Figure 3–4: Press and hold the HSZ70 Controller reset button (④ on Figure 3–4) while pushing the eject button (① on Figure 3–4) to eject the old program card (release the button after the card is ejected).
- 6. Press and hold the Reset button while inserting the new program card (② on Figure 3–4). Release the button after the card is inserted.

Note The controller will initialize and the Reset button will flash at an approximate once per second rate when ready for operation.

- 7. Replace the ESD cover and push the locking pins locking the card into place.
- 8. Mount the storage units on the host.

Dual-Redundant Controller Configuration

Follow the instructions in this section to replace modules in a dualredundant controller configuration (refer to Figure 3–5). If you're replacing modules in a single controller configuration, see "Single Controller Configuration," page 3–2.

CXO6230A

3–14 Service Manual

The following paragraphs in this section contain procedures for replacing

- The controller and cache modules,
- Only the controller, or
- The cache module.

Please observe the following pointers before starting:

- The new controller hardware must be compatible with the functioning controller hardware. See the product-specific release notes that accompanied the software release for information regarding hardware compatibility.
- The software versions and patch levels must be the same on both controllers. See "Software Patch Installation Procedure," page 4–5, to install software patches on a newly installed controller.
- The new cache module must contain the same memory configuration as the module it is replacing.

Replacing a Controller Module

Use the following steps in "Controller Removal Procedures" and "Controller Installation Procedures" to replace a controller.

Controller Removal Procedures

Use the following steps to remove a controller:

- 1. Connect a PC or terminal to the operational controller maintenance port. The controller to which you're connected is "this controller;" the controller that you're removing is the "other controller."
- 2. Disable failover and take the controllers out of their dual-redundant configuration with the following command:

SET NOFAILOVER

- 3. Start FRUTIL with the following command: **RUN FRUTIL**
- 4. FRUTIL displays the FRUTIL Main menu:

FRUTIL Main Menu:

- 1. Replace or remove a controller or cache module
- 2. Install a controller or cache module
- 3. Replace a PVA module
- 4. Replace an I/O module

```
5. Exit
Enter choice: 1, 2, 3, 4, or 5 ->
```

5. Enter option 1 from the FRUTIL Main menu. FRUTIL displays the Replace or Remove Options menu:

Replace or remove Options: 1. Other controller and cache module 2. Other controller module 3. Other cache module 4. Exit

Enter choice: 1, 2, 3, or 4 ->

6. Enter option 2 from the Replace or Remove Options menu.

Caution The device ports must quiesce before removing the controller. Failure to allow the ports to quiesce may result in data loss. Quiescing may take several minutes.

ESD can easily damage a controller. Wear a snug-fitting, grounded ESD wrist strap.

Note A countdown timer allows a total of two minutes to remove the controller. If you exceed two minutes, "this controller" exits FRUTIL and resumes operations.

7. Remove the trilink connectors from the "other controller," but don't disconnect the host bus cables (or terminators) from the trilink connectors.

Note One or two trilink connectors may be attached, depending on the configuration.

- 8. Disengage both retaining levers and remove the "other controller," then place this controller into an antistatic bag or onto a grounded antistatic mat.
- 9. Once the controller is removed, FRUTIL displays the following:

```
Restarting all device ports. Please wait...
Device Port 1 restarted.
Device Port 2 restarted.
```

3–16 Service Manual

```
Device Port 3 restarted.
Device Port 4 restarted.
Device Port 5 restarted.
Device Port 6 restarted.
Do you have a replacement controller? Y/N
```

- Enter N(0) if you don't have a replacement controller; disconnect the PC or terminal from the controller maintenance port.
- Enter Y(es) if you have a replacement controller and want to install it now. FRUTIL displays the following:

```
Insert the slot A [or B] controller? Y/N
```

Note If you entered Y(es) go to step 6 in the "Controller Installation Procedures".

10. Remove the program card ESD cover and program card from the "other controller." Save them for the replacement controller.

Note If it is anticipated that the power to both controllers will be shut off for any extended period of time, then the ECB batteries should also be disabled to avoid a deep cycle discharge (shortening the life of the batteries). If this is the case, follow the steps outlined in step 8 on page 3-4 before continuing.

Controller Installation Procedures

Use the following steps to install a controller:

- 1. Connect a PC or terminal to the operational controller maintenance port. The controller to which you're connected is "this controller;" the controller that you are installing is the "other controller."
- 2. Start FRUTIL with the following command:

RUN FRUTIL

3. FRUTIL displays the FRUTIL Main menu:

FRUTIL Main Menu:

- 1. Replace or remove a controller or cache module
- 2. Install a controller or cache module
- 3. Replace a PVA module
- 4. Replace an I/O module
- 5. Exit

Enter choice: 1, 2, 3, 4, or 5 ->

- 4. Enter option 2 from the FRUTIL Main menu. FRUTIL displays the Install Options menu:
 - Install Options:
 1. Other controller and cache module
 2. Other controller module
 3. Other cache module
 4. Exit
 Enter choice: 1, 2, 3, or 4 ->
- 5. Enter option 2 from the Install Options menu. FRUTIL display the following:

Insert the slot A [or B] controller? Y/N

6. Enter Y(es) and press Enter.

Note A countdown timer allows a total of two minutes to install the controller. If you exceed two minutes, "this controller" will exit FRUTIL and resume operations.

Caution ESD can easily damage a controller. Wear a snug-fitting, grounded ESD wrist strap.

Make sure you align the controller in the appropriate guide rails. If you do not align the controller correctly, damage to the backplane can occur.

7. Ensure that the program card is not already installed in the new controller and insert the new controller into its slot. Engage its retaining levers.

FRUTIL displays the following:

The configuration has two controllers.

To restart the other controller:

- 1. Type 'restart other_controller'.
- Press and hold the reset button while inserting the program card on the slot A [or B] controller, then release the reset button.

The controller will restart.

3–18 Service Manual

Field Replacement Utility terminated.

Note If the controller you're installing was previously used in another subsystem, it will need to be purged of the controller's previous configuration (see CREATE_PARTITION in the *HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual*).

Note FRUTIL may display the following message: %CER--18-NOV-1998 10:39:01--Other controller not responding - RESET-signal asserted

This is not an error message. Please continue with controller replacement procedure.

8. Wait for FRUTIL to terminate, then connect the trilink connectors to the new controller.

Note One or two trilink connectors may be attached, depending on the configuration.

9. To allow the "other controller" to restart, type the following command:

RESTART OTHER _CONTROLLER

- 10. Hold the reset button while inserting the program card into the new controller. Release the reset button and replace the ESD cover. The controller will restart.
- 11. Refer to the *HSZ70 Array Controller HSOF Version 7.3 Configuration Manual*, to configure the controller.
- 12. Re-establish the dual-redundant controller configuration with one of the following commands:

SET FAILOVER COPY=THIS_CONTROLLER

SET MULTIBUS_FAILOVER COPY=THIS_CONTROLLER

Refer to the HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual for proper use of these CLI commands.

13. Disconnect the PC or terminal from the controller maintenance port.

Replacing a Cache Module

Use the following steps in "Cache Module Removal Procedures" and "Cache Module Installation Procedures" to replace a cache module.

Note The new cache module must contain the same memory configuration as the module it is replacing.

Cache Module Removal Procedures

Use the following steps to remove a cache module:

- Connect a PC or terminal to the operational controller maintenance port. The controller to which you're connected is "this controller"; the controller whose cache module you're replacing is the "other controller."
- 2. Disable failover and take the controllers out of their dual-redundant configuration with the following command:

SET NOFAILOVER

3. Start FRUTIL with the following command:

RUN FRUTIL

4. FRUTIL displays the following:

FRUTIL Main Menu:
1. Replace or remove a controller or cache module
2. Install a controller or cache module
3. Replace a PVA module
4. Replace an I/O module
5. Exit
Enter choice: 1, 2, 3, 4, or 5 ->
5. Enter option 1 from the FRUTIL Main menu. FRUTIL displays the
Replace or Remove Options menu:
Replace or remove Options:
1. Other controller and cache module

- Other controller module
 Other cache module
- 4. Exit
- Enter choice: 1, 2, 3, or 4 \rightarrow
- 6. Enter option 3 from the Replace or Remove Options menu.

3–20 Service Manual

7. Enter Y(es) and press Enter. FRUTIL displays the following:

Remove the slot A (or B) cache module? Y/N

 Enter Y(es) and press Enter. Wait for FRUTIL to quiesce the device ports. After the ports have been quiesced (this may take several minutes), FRUTIL displays the following:

All device ports quiesced; Remove the slot B cache module within x minutes, xx seconds. Then disconnect the external battery, if in use, from the cache module.

Caution The device ports must quiesce before removing the cache module. Failure to allow the ports to quiesce may result in data loss.

Caution ESD can easily damage the cache module. Wear a snugfitting, grounded ESD wrist strap.

Note A countdown timer allows a total of two minutes to remove the cache module. If you exceed two minutes, "this controller" will exit FRUTIL and resume operations.

- 9. Disengage both retaining levers and partially remove the "other controller" cache module—about half way.
- 10. Disable the ECB by pressing the battery disable switch until the status light stops blinking—about five seconds.

Caution The ECB must be disabled—the status light is not lit or blinking—before disconnecting the ECB cable from the cache module. Failure to disable the ECB could result in cache module damage.

11. Disconnect the ECB cable from the "other controller" cache module, remove the cache module, and place it onto a grounded antistatic mat or into an antistatic bag.

Once the cache module is removed, FRUTIL displays the following:

Restarting all device ports. Please wait...

```
Device Port 1 restarted.
Device Port 2 restarted.
Device Port 3 restarted.
Device Port 4 restarted.
Device Port 5 restarted.
Device Port 6 restarted.
Do you have a replacement cache module? Y/N
```

12. Enter one of the following:

- N(o) if you don't have a replacement cache module, and disconnect the PC or terminal from the controller maintenance port.
- Y(es) if you have a replacement cache module and want to install it now. FRUTIL displays the following:

Insert the slot A [or B] cache module? Y/N

Note If you entered Y(es) go to step 7 of the "Cache Module Installation Procedures".

Cache Module Installation Procedures

Use the following steps to install a cache module:

Note Go to step 5 if you selected Y(es) in step 12 of the removal procedure (continuous removal and installation).

- 1. Connect a PC or terminal to the operational controller. The controller to which you're connected is "this controller"; the controller whose cache module you're installing is the "other controller."
- 2. Start FRUTIL with the following command: RUN FRUTIL
- 3. FRUTIL displays the following:

```
FRUTIL Main Menu:
1. Replace or remove a controller or cache module
2. Install a controller or cache module
3. Replace a PVA module
4. Replace an I/O module
5. Exit
Enter choice: 1, 2, 3, 4, or 5 ->
```

4.	Enter option 2 from the FRUTIL Main menu. FRUTIL displays the
	Install Options menu:

```
Install Options:
1. Other controller and cache module
2. Other controller module
3. Other cache module
4. Exit
Enter choice: 1, 2, 3, or 4 ->
```

5. Enter option 3 from the Install Options menu. FRUTIL display the following:

Insert the slot A [or B] cache module? Y/N

6. Enter Y(es) and press Enter. FRUTIL displays the following:

```
Quiescing all device ports. Please wait...
Device Port 1 quiesced.
Device Port 2 quiesced.
Device Port 3 quiesced.
Device Port 5 quiesced.
Device Port 6 quiesced.
All device ports quiesced.
.
.
Perform the following steps:
1. Turn off the battery for the new cache module by pressing
the battery's shut off button for five seconds
2. Connect the battery to the new cache module.
3. Insert the new cache module in slot A [or B] within 2
minutes.
```

Note A countdown timer allows a total of two minutes to install the cache module. If you exceed two minutes, "this controller" will exit FRUTIL and resume operations.

Caution ESD can easily damage a cache module. Wear a snugfitting, grounded ESD wrist strap. Make sure you align the cache module in the appropriate guide rails. If you do not align the cache module correctly, damage to the backplane can occur.

 Disable the ECB to which you're connecting the new cache module by pressing the battery disable switch until the status light stops blinking about five seconds.

Caution The ECB must be disabled—the status light is not lit or is not blinking—before connecting the ECB cable to the cache module. Failure to disable the ECB could result in ECB damage.

- 8. Connect the ECB cable to the new cache module (follow the VHDCI Cable Precautions).
- 9. Insert the new cache module into its slot and engage its retaining levers.

Note In mirrored mode, FRUTIL will initialize the mirrored portion of the new cache module, check for old data on the cache module, and then restart all device ports. After the device ports have been restarted, FRUTIL will test the cache module and the ECB.

After the test completes, the device ports will quiesce and a mirror copy of the cache module data will be created on the newly installed cache module.

FRUTIL displays the following:

The configuration has two controllers.

- To restart the other controller:
- 1. Type 'restart other_controller'.
- Press and hold the reset button while inserting the program card on the slot A [or B] controller, then release the reset button. The controller will restart.
- Field Replacement Utility terminated.
- 10. To allow the "other controller" to restart, type the following command:

RESTART OTHER _CONTROLLER

3–24 Service Manual

- 11. Hold the reset button while inserting the program card into the controller. Release the reset button and replace the ESD cover. The controller will restart.
- 12. Re-establish the dual-redundant controller configuration with one of the following commands:

SET FAILOVER COPY=THIS_CONTROLLER

SET MUTIBUS_FAILOVER COPY=THIS_CONTROLLER

Refer to the HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual for proper use of these commands.

13. Disconnect the PC or terminal from the controller maintenance port.

Program Card Replacement

The PCMCIA Program Card may be replaced by shutting down both controllers (shutdown upgrade) or by shutting down only one of the controllers at a time (rolling upgrade). A shutdown upgrade is one in which the storage devices are taken off-line for the period of time that the software is being installed.

If access to the storage devices is needed during the period of time the software is being installed, then use the "Rolling Upgrade," page 3-25.

Shutdown Upgrade

Use the following procedure to install the new software in a shutdown upgrade manner:

- Halt all host I/O activity to the controller and prepare the host system for a controller shutdown using the appropriate procedures for your operating system.
- 2. Establish a local connection to the controller through the maintenance port of the controller.
- 3. Shutdown both controllers with the following commands:

SHUTDOWN OTHER_CONTROLLER SHUTDOWN THIS_CONTROLLER

Caution Before continuing, wait until the Reset buttons on both controllers stop flashing (lit continuously). This indicates that unwritten data is flushed from the cache module.

- 4. See Figure 3–4: Remove the PCMCIA program card ESD covers (③) from both controllers.
- 5. Press and hold the controller Reset button (④) while ejecting (①) the old program card (②). Release the button after the card is ejected and repeat for other controller.

Note The controller will initialize and the Reset button will flash at an approximate once per second rate when ready for operation.

6. Press and hold the reset button while inserting the new program card (release the button after the new card is inserted); repeat for other controller.

Note The controllers initialize and their rest buttons will flash at an approximate once per second rate when ready for operation.

- 7. Replace the ESD covers on both controllers, pushing their locking pins to secure them in place.
- 8. Mount the storage units on the host.

Note You can identify the version of the HSOF software that is currently loaded in the controller by entering a SHOW THIS_CONTROLLER command at the CLI prompt.

Rolling Upgrade

A "rolling" upgrade procedure is one in which the storage devices do not have to be placed offline to upgrade the software. Using the failover capabilities of the controllers, only one controller at a time need be shutdown, allowing the host system to have storage device activity from the subsystem being upgraded.

Use the following procedure to install the new program card with its software:

1. Establish a local connection to the controller through the maintenance port of one of the controllers ("this controller").

3–26 Service Manual

2. Remove the preferred target IDs from the "other controller" by using the following command:

SET OTHER_CONTROLLER NOPREFERRED

Note Ensure you have the preferred target IDs written down before clearing them out with the SET OTHER_CONTROLLER *NOPREFERRED* command. This will speed up the process at the end of the installation procedure.

3. Wait for the CLI prompt, and then shut down "other controller" by using the following command:

SHUTDOWN OTHER_CONTROLLER

Note If the EMU alarm is turned on, then the alarm will "sound" when the controller is shut down. The alarm may be turned off by pressing the lit EMU "fault" button.

Caution See Figure 3–4: Before continuing, wait until the Reset button (④) stops flashing and stays lit continuously. This indicates that unwritten data is flushed from the cache module.

- 4. Remove the program card ESD cover (③) from "other controller".
- 5. Press and hold the controller Reset button (④) while ejecting (①) the old program card (②). Release the button after the card is ejected.
- 6. Press and hold the Reset button while inserting the new program card in "other controller" (release the button after the new card is inserted).

Note Wait for the following to happen before continuing: 1) The Reset button flashes at an approximate once per second rate and 2) the maintenance terminal displays a message that finishes with: other controller restarted.

 Read the status of "other controller" by issuing the following command: SHOW OTHER_CONTROLLER **Note** When the SHOW OTHER_CONTROLLER command verifies that the other controller restarted, it is safe to continue.

- 8. Replace the ESD cover on "other controller" and push the locking pins to secure it.
- 9. First pass through this procedure?
 - YES—Move the maintenance port cable from "this controller" to "other controller" maintenance port and repeat procedure from step 3 to step 8 to replace the other program card.

Note "Other controller" switches with "this controller"—the controller that the maintenance port cable was plugged into originally— ("this controller") becomes "other controller" for the second pass through steps 2–8.

- NO—Go to step 10
- 10. Re-establish the preferred target ID list in the two controllers by issuing the following commands:

SET OTHER_CONTROLLER *PREFERRED_ID=n,n,...* SET THIS_CONTROLLER *PREFERRED_ID=n,n,...*

Replacing an External Cache Battery

Use the procedure described in "Replacing the ECB" to remove, and then replace an External Cache Battery (ECB) in the HSZ70. A single-battery ECB is shown in Figure 3–6 and a dual-battery ECB is shown in Figure 3–7.

Figure 3–6 Single-Battery ECB SSB Configuration

Figure 3–7 Dual-Battery ECB SBB Configuration

1	Battery disable switch
2	Status LED
3	ECB Y cable
4	Faceplate and controls for second battery

Replacing the ECB

Use the following steps to replace the ECB SSB with the cabinet powered on:

Caution Do not disconnect the old ECB until the batteries in the new ECB are fully charged.

Note The procedure for a dual-redundant controller configuration assumes that a single ECB SBB with a dual battery is installed and an empty slot is available for the replacement ECB SBB. If an empty slot is not available, place the new ECB SBB on the top of the enclosure. After the old ECB SBB has been removed, carefully insert the new ECB SBB into the empty slot.

- 1. Connect a PC or terminal to the controller with the operational ECB. The controller to which you're connected is "this controller"; the controller whose ECB you are replacing is the "other controller".
- 2. Disable failover and take the controllers out of their dual-redundant configuration with the following command:

SET NOFAILOVER

- 3. Start FRUTIL with the following command: **RUN FRUTIL**
- 4. Choose Option 3 from the FRUTIL Main menu:

FRUTIL Main Menu:

- 1. Replace or remove a controller or cache module
- 2. Install a controller or cache module
- 3. Replace other cache module battery
- 4. Replace a PVA module
- 5. Replace an I/O module
- 6. Exit

Enter choice: 1, 2, 3, 4, or 5 ->

5. Confirm that you have a new dual-battery replacement ECB. FRUTIL displays the following:

Do you have a NEW replacement battery? Y/N

3–30 Service Manual

Caution The ECB cable has a 12-volt and a 5-volt pin. Improper handling or misalignment when connecting or disconnecting could cause these pins to contact ground, resulting in cache module damage.

- 6. Enter Y(es) and press Enter.
- 7. Confirm that you want to install a replacement ECG. FRUTIL displays the following:

Replace the battery for the cache module in slot A (or B)? Y/N

- 8. Enter Y(es) and press Enter.
- 9. Insert the new ECB SBB into the empty battery slot.

Note If an empty slot is not available, place the new ECB SBB on the top of the enclosure.

10. Connect the new battery to the unused end of the Y cable attached to cache A [or B].

Caution Do not disconnect the old ECB until the batteries in the new ECB are fully charged. The new ECB's status light will be lit continuously to indicate that its batteries are fully charged. A blinking status light indicates that its batteries are charging. You may operate the subsystem regardless of the old ECB's status.

- 11. Wait until the new ECB's status light is on continuously, then disconnect the old battery.
- 12. Re-establish the dual-redundant controller configuration with one of the following commands:

SET FAILOVER COPY=THIS_CONTROLLER

SET MULTIBUS_FAILOVER COPY=THIS_CONTROLLER

Refer to the HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual for proper use of these CLI commands.

13. Disconnect the terminal for the controller.

- 14. To connect the other cache module to the new ECB, repeat the appropriate steps for the remaining controller and cache module.
- 15. Remove the old ECB.

Note If an empty slot was not available, and the new ECB was placed on top of the enclosure, carefully insert it into the empty slot now.

Replacing a PVA Module

Use the following instructions in this section to replace a PVA module:

- "Replacing the PVA in the Master Enclosure (ID 0)," page 3-31.
- "Replacing the PVA in the First (ID 2) or Second (ID 3) Expansion Enclosure," page 3-33.

Note This procedure is not applicable for the DS-350/356-Mx shelf. The HSZ70 controller can support up to three enclosures: the master enclosure (ID 0), the first expansion enclosure (ID 1), and the second expansion enclosure (ID 2).

A PVA can be replaced in either a single or a dual-redundant controller configuration using this procedure.

Replacing the PVA in the Master Enclosure (ID 0)

Use the following steps to replace the PVA in the master enclosure:

- 1. Connect a PC or terminal to the controller maintenance port.
- 2. In a dual-redundant controller configuration, disable failover with the following command:

SET NOFAILOVER

- 3. In a dual-redundant controller configuration, remove the program card ESD cover and program card from the "other controller." Save them for reinstallation.
- 4. Start FRUTIL with the following command:

RUN FRUTIL

FRUTIL displays the following:

Do you intend to replace this controller's cache battery? Y/N

5. Enter N(0). FRUTIL displays the FRUTIL Main menu:

FRUTIL Main Menu:

- 1. Replace or remove a controller or cache module
- 2. Install a controller or cache module
- 3. Replace a PVA module
- 4. Replace an I/O module
- 5. Exit
- Enter choice: 1, 2, 3, 4, or 5 ->
- 6. Enter option 3 from the FRUTIL Main menu. FRUTIL displays the PVA Replacement menu:

FRUTIL PVA Replacement Menu:

```
    Master Enclosure (ID 0)
    First Expansion Enclosure (ID 2)
    Second Expansion Enclosure (ID 3)
```

```
4. Exit
```

```
Enter Choice: 1, 2, 3, or 4 ->
```

Note The FRUTIL PVA Replacement Menu has options for three enclosures regardless of how many enclosures are physically configured.

 Enter option 1 from the FRUTIL PVA Replacement Menu. FRUTIL displays the following:

Do you have a replacement PVA module? Y/N

8. Enter Y(es) and press Enter. FRUTIL displays the following:

Ensure the replacement PVA's address is set to zero. Press return to quiesce device port activity.

- 9. Set the replacement PVA address to zero.
- 10. Press Enter and wait for FRUTIL to quiesce the device ports. This may take several minutes. FRUTIL displays the following:

All device ports quiesced. Replace the PVA in the master cabinet.

11. Remove the old PVA and install the new PVA. FRUTIL displays the following:
Press return to resume device port activity.

12. Press **Enter** to resume device port activity (this may take several minutes). When all port activity has restarted, FRUTIL displays the following:

PVA replacement complete.

In a dual-redundant configuration, FRUTIL also displays:

The configuration has two controllers.

To restart the other controller:

- 1. Type 'restart other_controller'.
- Press and hold the reset button while inserting the program card on the slot A [or B] controller, then release the reset button. The controller will restart.

Field Replacement Utility terminated.

13. To allow the "other controller" to restart, type the following command:

RESTART OTHER _CONTROLLER

- 14. Hold the reset button while inserting the program card into the controller. Release the reset button and replace the ESD cover. The controller will restart.
- 15. Re-establish the dual-redundant controller configuration with one of the following commands:

SET FAILOVER COPY=THIS_CONTROLLER

SET MULTIBUS_FAILOVER COPY=THIS_CONTROLLER

Refer to the HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual for proper use of these CLI commands

16. Disconnect the PC or terminal from the controller maintenance port.

Replacing the PVA in the First (ID 2) or Second (ID 3) Expansion Enclosure

Use the following steps to replace the PVA in the first expansion (ID 2) or second expansion (ID 3) enclosure:

- 1. Connect a PC or terminal to the controller maintenance port.
- 2. In a dual-redundant controller configuration, disable failover with the following command:

SET NOFAILOVER

3–34 Service Manual

- 3. In a dual-redundant controller configuration, remove the program card ESD cover and program card from the "other controller." Save them for reinstallation.
- 4. Start FRUTIL with the following command:

RUN FRUTIL

FRUTIL displays the following:

Do you intend to replace this controller's cache battery? Y/N

5. Enter N(0). FRUTIL displays the FRUTIL Main menu:

```
FRUTIL Main Menu:
1. Replace or remove a controller or cache module
2. Install a controller or cache module
3. Replace a PVA module
4. Replace an I/O module
5. Exit
Enter choice: 1, 2, 3, 4, or 5 ->
```

6. Enter option 3 from the FRUTIL Main menu. FRUTIL displays the PVA Replacement menu:

```
FRUTIL PVA Replacement Menu:
1. Master Enclosure (ID 0)
2. First Expansion Enclosure (ID 2)
3. Second Expansion Enclosure (ID 3)
4. Exit
Enter Choice: 1, 2, 3, or 4 ->
```

Note The HSZ70 controller can support up to three enclosures. The FRUTIL PVA Replacement menu has options for three enclosures regardless of how many enclosures are connected.

- 7. Enter one of the following from the FRUTIL PVA Replacement menu:
 - Option 2 to replace the PVA in the first expansion enclosure.
 - Option 3 to replace the PVA in the second expansion enclosure.

FRUTIL displays the following: Do you have a replacement PVA module? Y/N

8. Enter Y(es) and press Enter. FRUTIL displays the following:

```
Ensure the replacement PVA's address is set to 2 [or 3]. Press return to quiesce device port activity.
```

- 9. Set the replacement PVA address to one of the following:
 - 2 for the first expansion enclosure
 - 3 for the second expansion enclosure
- 10. Press Enter and wait for FRUTIL to quiesce the device ports. This may take several minutes. FRUTIL displays the following:

```
All device ports quiesced.
Using the power switch, power down expansion cabinet #2 [or
#3] and replace the PVA.
```

- 11. Power down the appropriate expansion cabinet.
- 12. Remove the old PVA and install the new PVA.
- 13. Power on the appropriate expansion cabinet. FRUTIL displays the following:

Press return to resume device port activity.

14. Press **Enter** to resume device port activity. This may take several minutes. When all port activity has restarted, FRUTIL displays the following:

PVA replacement complete.

In a dual-redundant configuration, FRUTIL also displays:

The configuration has two controllers.

- To restart the other controller:
- Type 'restart other_controller'.
 Press and hold the reset button while inserting the program card on the slot B controller, then release the reset button. The controller will restart.

Field Replacement Utility terminated.

15. To allow the "other controller" to restart, type the following command:

RESTART OTHER _CONTROLLER

16. Hold the reset button while inserting the program card into the new controller. Release the reset button and replace the ESD cover. The controller will restart.

3–36 Service Manual

17. Re-establish the dual-redundant controller configuration with one of the following commands:

SET FAILOVER COPY=THIS_CONTROLLER

SET MULTIBUS_FAILOVER COPY=THIS_CONTROLLER

Refer to the HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual for proper use of these CLI commands.

18. Disconnect the PC or terminal from the controller maintenance port.

Replacing an I/O Module

Figure 3–8 shows a rear view of the BA370 enclosure and the location of the six I/O modules (also referred to as ports). Use the following steps to replace an I/O module:

Note This procedure is only applicable to the BA370 enclosure.

An I/O module can be replaced in either a single-controller or a dualredundant controller configuration using this procedure.

Figure 3–8 I/O Module Locations in a BA370 Enclosure

Note The controller can function with one failed I/O module.

1. Connect a PC or terminal to the controller maintenance port.

2. In a dual-redundant controller configuration, disable failover with the following command:

SET NOFAILOVER

- 3. In a dual-redundant controller configuration, remove the program card ESD cover and program card from the other controller. Save them for reinstallation.
- 4. Start FRUTIL with the following command:

RUN FRUTIL

5. FRUTIL displays the FRUTIL Main menu:

```
FRUTIL Main Menu:
1. Replace or remove a controller or cache module
2. Install a controller or cache module
3. Replace a PVA module
4. Replace an I/O module
5. Exit
Enter choice: 1, 2, 3, 4, or 5 ->
```

Note The FRUTIL display of I/O status shows the status of three enclosures regardless of how many are configured.

6. Enter option 4 from the FRUTIL Main menu.

The I/O Module status as displayed by FRUTIL shows the following possible states:

- Single Ended OK
- Differential OK
- Termination only OK
- Missing or bad
- Unknown or bad
- \blacksquare N/A (cabinet is not present).

In the following FRUTIL example, cabinet 0, port 5 is missing or bad:

I/O Module Status:

Cabinet 0			Cabinet 2		Cab	Cabinet 3		
Port	1:	Single	Ended	-	OK	N/A	:	N/A
Port	2:	Single	Ended	-	OK	N/A	:	N/A
Port	3:	Single	Ended	-	OK	N/A	:	N/A

3–38 Service Manual

Port 4: Single Ended - OK N/A N/A Port 5: Missing or bad N/A N/A Port 6: Single Ended - OK N/A N/A Is the replacement I/O module available? Y/N

- 7. Enter Y(es) and press Enter.
- Wait for FRUTIL to quiesce the device ports. After the ports have been quiesced (this may take several minutes), FRUTIL displays the following:

All device ports quiesced.

Caution If you remove the incorrect module, the controller will crash.

- 9. Disconnect the cables (there may be one or two) from the appropriate I/O module.
- 10. Remove the failed I/O module.
- 11. Install a new I/O module.
- 12. Connect the cables (there may be one or two) to the I/O module.
- 13. Press Enter to resume device port activity. When all port activity has restarted, FRUTIL displays the following:

I/O module replacement complete.

In a dual-redundant configuration, FRUTIL also displays:

The configuration has two controllers.

To restart the other controller:

- 1. Type 'restart other_controller'.
- Press and hold the reset button while inserting the program card on the slot A [or B] controller, then release the reset button. The controller will restart.

Field Replacement Utility terminated.

14. To allow the "other controller" to restart, type the following command:

RESTART OTHER _CONTROLLER

15. Hold the reset button while inserting the program card into the new controller. Release the reset button and replace the ESD cover. The controller will restart.

16. Re-establish the dual-redundant controller configuration with one of the following commands:

SET FAILOVER COPY=THIS_CONTROLLER

SET MULTIBUS_FAILOVER COPY=THIS_CONTROLLER

Refer to the HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual for proper use of these CLI commands.

17. Disconnect the PC or terminal from the controller maintenance port.

Replacing an Environmental Monitoring Unit

Use the following steps in "Removing an EMU" and "Installing an EMU" to replace the Environmental Monitoring Unit (see Figure 1–1 on page 1-2 for the location of the EMU).

Removing an EMU

- 1. From a host console, stop all host activity and dismount the logical units in the subsystem.
- 2. Connect a PC or terminal to the maintenance port of one of the controllers in your subsystem.
- 3. Shut down the controllers. In single controller configurations, you only need to shut down "this controller." In dual-redundant controller configurations, shut down the "other controller" first, then shut down "this controller" with the following commands:

SHUTDOWN OTHER_CONTROLLER

SHUTDOWN THIS_CONTROLLER

When the controllers shut down, their reset buttons and their first three LEDs are lit continuously. This may take several minutes, depending on the amount of data that needs to be flushed from the cache modules.

4. Turn off all the ac input boxes for each expansion enclosure.

Caution ESD can easily damage an EMU. Wear a snug-fitting, grounded ESD wrist strap.

3–40 Service Manual

5. Disengage both retaining levers and remove the EMU.

Installing an EMU

Caution ESD can easily damage an EMU. Wear a snug-fitting, grounded ESD wrist strap.

Make sure you align the EMU in the appropriate guide rails. If you do not align the EMU correctly, damage to the backplane can occur.

- 1. Align the EMU in the top, left-hand slot and insert it.
- 2. Insert the EMU into its slot until the extractor latches engage the enclosure, then Engage its retaining levers to secure the EMU.
- 3. Expansion enclosures present?
 - Yes—turn on all the ac input boxes for each expansion enclosure.
 - $\blacksquare No-go to step 6.$
- 4. Turn on all the ac input boxes for the master enclosure.
- 5. If not already connected, connect a PC or terminal to the controller maintenance port.
- 6. Mount the logical units on the host. If you are using a Windows NT platform, restart the server.
- 7. Set the subsystem date and time with the following command:

SET THIS_CONTROLLER TIME=DD-MMM-YYYY:HH:MM:SS

8. Disconnect the PC or terminal from the controller's maintenance port.

Replacing SIMMs

Use the following steps in "SIMM Removal Procedure" and "SIMM Installation Procedure" to replace one or more SIMMs in a cache module. The cache module may be configured as shown in Figure 3–9 and Table 3–1.

Figure 3–9 Cache-Module Memory Configurations

CXO5609A

Configuration	Quantity	SIMM type	Location
64 MB	2	32 MB	1 and 3
128 MB	4	32 MB	1, 2, 3, and 4

 Table 3–1
 Cache Module Memory Configurations

Note If a SIMM fails, note which SIMM you need to replace based on the diagram that displays on the console.

Caution ESD can easily damage a cache module or a SIMM. Wear a snug-fitting, grounded ESD wrist strap.

SIMM Removal Procedure

Use the following steps to remove a SIMM from a cache module:

3–42 Service Manual

- 1. Remove the cache module using the steps in "Cache Module Removal Procedures," page 3–7.
- 2. Press down on the SIMM retaining levers at either end of the SIMM you want to remove.
- 3. Grasp the SIMM and gently remove it from the SIMM slot.

SIMM Installation Procedure

Use the following steps to install a SIMM in a cache module:

1. Insert the SIMM at a 45 degree angle as shown in Figure 3–10.

Figure 3–10 Installing a SIMM

- 2. Rock the SIMM gently until it is seated in the socket.
- 3. Tip the SIMM upright until both retaining clips engage the SIMM.

Caution Both cache modules must have the same amount of memory. Populate sockets one and three for 64 MB of memory, or all four sockets for 128 MB as shown in Figure 3–9.

4. Install the cache module using the steps in either "Cache Module Installation Procedures," page 3–9, or "Cache Module Installation Procedures," page 3–21.

Replacing a Failed Storageset Member

Replacing a failed storageset member means putting a satisfactory drive into the spareset. If a disk drive fails in a RAIDset or mirrorset, the controller automatically places it into the failedset:

- If the spareset contains a replacement drive that satisfies the storageset replacement policy, the controller replaces the failed member with the replacement drive.
- If the spareset is empty or does not contain a satisfactory drive, the controller reduces the storageset so that it can operate without one of its members.

The storageset remains in this reduced state until the spareset contains a satisfactory drive. When the controller senses a satisfactory drive in the spareset, it automatically places the drive into the storageset and restores the storageset to normal.

Failed RAIDset or Mirrorset Member Removal Procedure

Use the following steps to remove a failed RAIDset/mirrorset member:

- 1. Connect a PC or terminal to the maintenance port of the a controller that accesses the reduced RAIDset or mirrorset.
- 2. Enable AUTOSPARE with the following command:

SET FAILEDSET AUTOSPARE

With AUTOSPARE enabled, any new disk drive that you insert into the PTL location of a failed disk drive is automatically initialized and placed into the spareset.

3. Remove the failed disk drive.

RAIDset or Mirrorset Member Installation Procedure

Insert a new disk drive that satisfies the replacement policy of the reduced storageset into the PTL location of the failed disk drive.

3–44 Service Manual

Note The controller initializes the new disk drive placing it into the spareset. When the new drive becomes a member of the spareset, the controller uses it to restore the reduced RAIDset or mirrorset. If initialization fails, the new disk drive is placed into the failedset.

CHAPTER 4

Upgrading the Subsystem

This chapter provides instructions for upgrading subsystems that use the controller, cache module, and external cache battery:

- "Upgrading Controller Software," page 4-2
 - "Downloading New Software Images," page 4-2
 - "Using CLCP to Install, and Delete, and List Software Patches," page 4-5
- "Upgrading Device Firmware," page 4-9
 - "Key Points in Upgrading Firmware," page 4-10
 - "Firmware Upgrade Procedure," page 4-10
 - "HSUTIL Messages," page 4-12
- "Upgrading to a Dual-Redundant Configuration," page 4-14
 - "Installing a New Controller, Cache Module, and ECB," page 4-15
 - "Upgrading to a Multiple-Bus Failover Configuration," page 4-18
 - "Installing a New Controller, Cache Module, and ECB," page 4-20

4–1

4–2 Service Manual

Upgrading Controller Software

You can upgrade the controller software two ways:

- Install a new PCMCIA program card that contains the new software.
- Download a new software image and use the menu-driven Code Load/Code Patch utility (CLCP) to write it onto the existing program card. You may also use this utility to list, install, and delete patches to the controller software.

Installing a New PCMCIA Program Card

Use the procedure found in Chapter 3, "Replacement Procedures" to replace a failed PCMCIA program card. The procedure is the same as "Upgrading Controller Software".

Caution Ensure that the two PCMCIA program cards are at the same revision level when completed.

Downloading New Software Images

Use CLCP to download new software to the program card with the card installed in the controller:

1. Obtain the new software image file from a customer service representative.

Note The image file can also be loaded by using the StorageWorks Command Console (SWCC); instructions may be found in the SWCC documentation.

- 2. Load the image onto a PC or workstation using its file-transfer or network-transfer capabilities.
- 3. From a host console, quiesce all port activity and dismount the storage units in the subsystem.

Note Do not remove the PCMCIA program card.

- 4. Remove the ESD cover. If your program card is equipped with a writeprotection switch, disable write-protection by sliding the switch to the left (Figure 4–1).
- 5. Connect a PC or terminal to the controller maintenance port.

6. Start CLCP with the following command:

RUN CLCP

CLCP displays the following: Select an option from the following list: Code Load & Patch local program Main Menu 0: Exit 1: Enter Code LOAD local program 2: Enter Code PATCH local program 3: Enter EMU Code LOAD Utility Enter option number (0..3) [0] ?

Enter 1 from the CLCP Main menu to start the Code LOAD local program. CLCP displays the following:

You have selected the Code Load Utility. This utility is used to load a new software image into the program card currently inserted in the controller.

Type ^Y or ^C (then RETURN) at any time to abort code load. The code image may be loaded using SCSI Write Buffer commands through the SCSI Host Port, or using KERMIT through the maintenance terminal port.

- 0: Exit
- 1: Use the SCSI Host Port
- 2: Use the Maintenance Terminal Port

4–4 Service Manual

Enter option number (0..2) [0] ?

Note You can use either the SCSI host port (if your operating system supports it) or the maintenance port. To use the SCSI host port, go to step 7. To use the maintenance port, go to step 9.

7. Enter 1 from the menu. CLCP displays the following:

```
WARNING: proceeding with Controller Code Load will overwrite
the current Controller code image with a new image.
Do you want to continue (y/n) [n]: ?
```

- Enter Y(es) and the download starts. When the download is complete. CLCP writes the new image to the program card and restarts the controller. This process takes one to three minutes. Go to step 14.
- 9. Enter 2 from the menu. CLCP displays the following:

Perform the following steps before continuing:

- * get new image file on serial line host computer
- * configure KERMIT with the following parameters:

terminal speed 19200 baud, eight bit, no parity, 1 stop bit

It will take approximately 35 to 45 minutes to perform the code load operation.

WARNING: proceeding with Controller Code Load will overwrite the current Controller code image with a new image. Do you want to continue (y/n) [n]: ?

10. Enter Y(es) and CLCP displays:

Start KERMIT now...

- 11. Connect the PC to the controller maintenance port (for detailed information on how to connect the PC to the controller maintenance port, see Chapter 2 in the *HSZ70 Array Controller HSOF Version 7.3 Configuration Manual*).
- 12. Configure the KERMIT transfer protocol on the PC to 19200 baud, eight bits, no parity, and one stop bit.
- 13. Use KERMIT to transfer the binary image from the PC to the controller.

When the download is complete, CLCP automatically writes the new image to the program card and restarts the controller.

14. Verify that the controller is running the new software version with the following command:

SHOW THIS CONTROLLER

- 15. Re-enable PCMCIA Program Card write-protection by sliding the switch to the right (if applicable).
- 16. Replace the program card ESD cover.
- 17. Repeat the procedure to upgrade the other controller in dual-redundant subsystems.
- 18. Mount the storage units in the subsystem.

Using CLCP to Install, and Delete, and List Software Patches

Use CLCP to manage software patches. Software patches are small programming changes placed into the controller's non-volatile memory and become active as soon you restart the controller. There is space for about ten patches (depending upon the size of the patches).

Keep the following points in mind while installing or deleting patches:

- Patches are associated with specific software versions. CLCP verifies the patch against the currently installed version.
- Patches are sequential: patch one must be entered before patch two, and so on.
- Deleting one patch also deletes all higher-numbered patches. For example, if you delete patch two, you'll automatically delete patches three, four, and so on.
- Controllers in a dual-redundant configuration must have the same patches. You must install patches into each controller separately.

Software Patch Installation Procedure

Use the following steps to install a software patch:

- 1. Obtain the patch file from a customer service representative or via the Internet at: http://www.storage.digital.com. Select "support" and then "array controllers" to display the web page that contains the patch descriptions and procedures for downloading the appropriate patch(es).
- 2. Connect a PC or terminal to the controller maintenance port (for detailed information on how to connect the PC to the controller maintenance port, see Chapter 2 in the *HSZ70 Array Controller HSOF Version 7.3 Configuration Manual*).
- 3. From the host console, quiesce all port activity.
- 4. Start CLCP with the following command:

RUN CLCP

CLCP displays the following:

Select an option from the following list: Code Load & Patch local program Main Menu 0: Exit 1: Enter Code LOAD local program 2: Enter Code PATCH local program 3: Enter EMU Code LOAD utility Enter option number (0..3) [0] ?

5. Enter 2. CLCP displays the following:

You have selected the Code Patch local program. This program is used to manage software code patches. Select an option from the following list: Type ^Y or ^C (then RETURN) at any time to abort Code Patch. Code Patch Main Menu

- 0: Exit
- 1: Enter a Patch
- 2: Delete Patches
- 3: List Patches

Enter option number (0..3) [0] ?

6. Enter 1 to install a patch. CLCP displays the following:

This is the Enter a Code Patch option. The program prompts you for the patch information, one line at time. Be careful to enter the information exactly as it appears on the patch release. Patches may be installed for any version of software; however, patches entered for software versions other than XXXXX are not applied until the matching version of software is installed.

To enter any patch, you must first install all patches with lower patch numbers than the patch you are entering, beginning with patch number 1, for a specific software version. If you incorrectly enter the patch information, you are given the option to review the patch one line at a time.

Type ^Y or ^C (then RETURN) at any time to abort Code Patch. Do you wish to continue (y/n) [y] ?

- 7. Enter y(es) and follow the on-screen prompts.
- 8. After the patch is installed, press the reset button on "this controller" to restart the controller.

Upgrading the Subsystem 4–7

Software Patch Deletion Procedure

Use the following steps to delete a software patch:

- 1. From a host console, quiesce all port activity.
- 2. Connect a PC or terminal to the controller maintenance port (for detailed information on how to connect the PC to the controller maintenance port, see Chapter 2 in the *HSZ70 Array Controller HSOF Version 7.3 Configuration Manual*).
- 3. Start CLCP with the following command:

RUN CLCP

CLCP displays the following:

Select an option from the following list: Code Load & Patch local program Main Menu 0: Exit 1: Enter Code LOAD local program 2: Enter Code PATCH local program 3: Enter EMU Code LOAD utility Enter option number (0..3) [0] ?

4. Enter 2. CLCP displays the following:

You have selected the Code Patch local program. This program is used to manage software code patches. Select an option from the following list:

Type ^Y or ^C (then RETURN) at any time to abort Code Patch. Code Patch Main Menu

0: Exit

- 1: Enter a Patch
- 2: Delete Patches
- 3: List Patches

Enter option number (0..3) [0] ?

5. Enter 2 to delete patches. CLCP displays the following:

This is the Delete Patches option. The program prompts you for the software version and patch number you wish to delete. If you select a patch for deletion that is required for another patch, all dependent patches are also selected for deletion. The program lists your deletion selections and asks if you wish to continue.

Type ^Y or ^C (then RETURN) at any time to abort Code Patch. The following patches are currently stored in the patch area: Software Version - Patch number(s)

4–8 Service Manual

```
xxxx xxxx
Currently, xx% of the patch area is free.
Software Version of patch to delete ?
```

6. Enter the software version of the patch to delete and press return. CLCP displays the following:

```
Patch Number to delete ?
```

7. Enter the patch number to delete and press return. CLCP displays the following:

```
The following patches have been selected for deletion:
Software Version - Patch #
xxxx xxxx
Do you wish to continue (y/n) [n] ?
```

8. Enter y(es) and the patches are deleted. CLCP displays the following:

```
Code Patch Main Menu

0: Exit

1: Enter a Patch

2: Delete Patches

3: List Patches

Enter option number (0..3) [0] ?
```

- 9. Enter 0 to exit.
- 10. Press the reset button on "this controller" to restart the controller.

Software Patches Listing Procedure

Use the following steps to list software patches:

- 1. Connect a PC or terminal to the controller maintenance port (for detailed information on how to connect the PC to the controller maintenance port, see Chapter 2 in the *HSZ70 Array Controller HSOF Version 7.3 Configuration Manual*).
- 2. Start CLCP with the following command:

RUN CLCP

CLCP displays the following:

```
Select an option from the following list:
Code Load & Patch local program Main Menu
0: Exit
1: Enter Code LOAD local program
2: Enter Code PATCH local program
```

```
3: Enter EMU Code LOAD utility
Enter option number (0..3) [0] ?
```

3. Enter 2. CLCP displays the following:

```
You have selected the Code Patch local program. This program
is used to manage software code patches. Select an option
from the following list:
Type ^Y or ^C (then RETURN) at any time to abort Code Patch.
Code Patch Main Menu
0: Exit
```

```
    1: Enter a Patch
    2: Delete Patches
```

3: List Patches

Enter option number (0..3) [0] ?

4. Enter 3 to list patches. CLCP displays the following:

```
The following patches are currently stored in the patch area:

Software Version - Patch number(s)

xxxx xxx

Code Patch Main Menu

0: Exit

1: Enter a Patch

2: Delete Patches

3: List Patches

Enter option number (0..3) [0] ?

Enter 0 to exit.
```

Upgrading Device Firmware

Use HSUTIL to upgrade the firmware in a storage device. The new firmware should be located in contiguous blocks at a specific LBN on a source disk drive configured as a unit on the same controller. Upgrading firmware on a disk or tape drive is a two-step process:

- Copy the new firmware from your host to a disk drive configured as a unit in your subsystem
- Use HSUTIL to load the firmware onto the devices in the subsystem.

4–10 Service Manual

Key Points in Upgrading Firmware

Keep the following points in mind while using HSUTIL to upgrade firmware on a device:

- Do not install firmware on an unsupported device. HSUTIL has been tested only with the devices listed in the product-specific release notes that accompanied the software release. Installation of the firmware made on an unsupported device may cause the upgrade to fail rendering the device unusable. This action will require the attention of the manufacturer to correct.
- The storage device may become unusable if the power fails or the bus is reset while HSUTIL is installing the new firmware. To minimize this possibility, we recommend that you secure a reliable power source and suspend all I/O to the bus that services the device being upgraded.
- HSUTIL may only be used on storage devices that cannot be accessed by the host. Devices that are configured as containers or members of containers must be first removed from the container. If firmware is to be installed on a device that has previously been configured in a container, you'll have to delete the unit number and storageset name associated with it.
- During the installation, the source disk drive is not available for other subsystem operations.
- Some devices may not reflect the new firmware version number when viewed from the "other" controller in a dual-redundant configuration. If you experience this, enter the following CLI command: CLEAR_ERRORS *device-name* UKNOWN.
- Do not issue any CLI commands that access or inspect devices that are being formatted.

Firmware Upgrade Procedure

Use the following procedure to upgrade firmware with HSUTIL:

- 1. Connect a local terminal to the controller that accesses the device you want to upgrade.
- 2. Configure a single-disk unit.

Upgrading the Subsystem 4–11

Note In the steps that follow, you will copy the firmware image to this unit, then use HSUTIL to distribute it to the devices you are upgrading. This unit must be a newly initialized disk with no label or file structure to ensure that the firmware image resides in contiguous blocks starting from LBN 0 or another known LBN.

Additionally, write-back caching must be disabled (see HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual).

See the HSZ70 Array Controller HSOF Version 7.3 Configuration Manual for instructions on configuring a single-disk unit.

3. Copy the firmware image to the single-disk unit that you configured in step 2. The firmware image must begin at a known LBN (usually 0) and must be contiguous. See the documentation that accompanied your host's operating system for instructions on copying firmware images to a disk drive.

Caution You must quiesce the host load before running HSUTIL or damage to the storage device can occur.

4. Start HSUTIL with the following command:

RUN HSUTIL

HSUTIL displays the following:

HSUTIL Main Menu:

- 0. Exit
- 1. Disk Format
- 2. Disk Device Code Load
- 3. Tape Device Code Load
- 4. Disaster Tolerance Backend Controller Code Load Enter function number: (0:4) [0]?
- 5. Enter 2 from the HSUTIL menu.
- 6. Choose the single-disk unit as the source disk for the download.
- 7. Enter the starting LBN of the firmware image—usually LBN 0.

4–12 Service Manual

8. Enter the product ID of the device you want to upgrade. This ID corresponds to the product information that's reported in the "Type" column when you issue the SHOW DISK FULL command.

HSUTIL lists all devices that correspond to the product ID you entered.

- 9. Enter the disk or tape name of the device you want to upgrade.
- 10. Confirm or enter the byte count of the firmware image.
- 11. Confirm the download.
- 12. Some disk firmware releases require that you reformat the disk after upgrading its firmware. See the documentation that accompanied the firmware to determine if you need to reform the device.
- 13. When HSUTIL finishes downloading the firmware, it displays the new firmware revision for the disk drive.

HSUTIL Messages

HSUTIL may produce one or more of the following messages shown in Table 4–1 while you are formatting disk drives or installing new firmware. Many of the self-explanatory messages have been omitted from Table 4–1.

Table 4–1	HSUTIL Messages	and	Inquiries

Message	Description
Insufficient resources	HSUTIL cannot find or perform the operation because internal controller resources are not available.
Unable to change operation mode to maintenance for unit	HSUTIL was unable to put the source single disk drive unit into maintenance mode to enable formatting or code load.
Unit successfully allocated	HSUTIL has allocated the single disk drive unit for code load operation.
	At this point, the unit and its associated device are not available for other subsystem operations.
Unable to allocate unit	HSUTIL could not allocate the single disk drive unit. An accompanying message explains the reason.
Unit is owned by another sysop	Device cannot be allocated because it is being used by another subsystem function or local program.
Unit is in maintenance mode	Device cannot be formatted or code loaded because it is being used by another subsystem function or local program.

Upgrading the Subsystem	4–13
-------------------------	------

Message	Description		
Exclusive access is declared for unit	Another subsystem function has reserved the unit shown.		
The other controller has exclusive access declared for unit	The "other controller" has locked out "this controller" from accessing the unit shown.		
The RUNSTOP_SWITCH is set to RUN_DISABLED for unit	The RUN\NORUN unit indicator for the unit shown is set to NORUN; the disk cannot spin up.		
What BUFFER SIZE, (in BYTES), does the drive require (2048, 4096, 8192) [8192]?	HSUTIL detects that an unsupported device has been selected as the target device and the firmware image requires multiple SCSI Write Buffer commands.		
	You must specify the number of bytes to be sent in each Write Buffer command. The default buffer size is 8192 bytes. A firmware image of 256 KB, for example, can be code loaded in 32 Write Buffer commands, each transferring 8192 bytes.		
What is the TOTAL SIZE of the code image in BYTES [<i>device default</i>]?	HSUTIL detects that an unsupported device has been selected as the target device.		
	You must enter the total number of bytes of data to be sent in the code load operation.		
Does the target device support only the download microcode and save?	HSUTIL detects that an unsupported device has been selected as the target device.		
	You must specify whether the device supports the SCSI Write Buffer command's download and save function.		
Should the code be downloaded with a single write buffer command?	HSUTIL detects that an unsupported device has been selected as the target device.		
	You must indicate whether to download the firmware image to the device in one or more contiguous blocks, each corresponding to one SCSI Write Buffer command.		

Table 4–1 HSUTIL Messages and Inquiries (Continued)

4-14 Service Manual

Upgrading to a Dual-Redundant Configuration

Use the steps in the following procedure to upgrade a singleconfiguration subsystem to a dual-redundant (transparent failover) configuration subsystem. To replace components, refer to Chapter 3, "Replacement Procedures". Before you complete this procedure, you'll need the following items:

- New HSZ70 Controller with the same software version and patch level that is installed on the current single controller.
- New cache module with the same memory configuration that is installed in the current single cache module.
- New External Cache Battery (ECB) suitable for a dual-redundant configuration.
- New ECB cable.
- Dual-controller cable from controller "A" to controller "B" (shown in Figure 4–2 as ④).

Figure 4–2 Connecting Dual-Redundant Controllers to the Host

CXO5612B

ι	Ipgrading	the	Subsystem	4	-15
---	-----------	-----	-----------	---	-----

Table 4–2Key to Figure 4–2

Part	Description	Part No.
1	Trilink connector	H8861-AA
2	Cable from host processor to controller; the last two digits represent the cable length (in meters). An "E" represents one-half meter.	DS-BN37A-1 DS-BN37A-1E DS-BN37A-02 DS-BN37A-02 DS-BN37A-03 DS-BN37A-05 DS-BN37A-10 DS-BN37A-15 DS-BN37A-20 DS-BN37A-25
3	Ferrite Bead	16-25105-18
4	Dual-controller cable from controller "A" to controller "B".	DS-BN37A-0E
5	VHDCI Ultra-SCSI Differential Terminator required if controller is at the end of the host bus	H8863-AA
6	Cable to other devices on host bus from controller "B"	(same as Part 2)

Installing a New Controller, Cache Module, and ECB

Use the following steps to install a new controller, cache module and ECB:

- 1. Connect a PC or terminal to the controller maintenance port. The controller to which you're connected is "this controller"; the controller that you're installing is the "other controller."
- 2. Start FRUTIL with the following command:

RUN FRUTIL

FRUTIL displays the following:

Do you intend to replace this controller's cache battery? $\ensuremath{\mathtt{Y/N}}$

3. Enter N(0). FRUTIL displays the FRUTIL Main menu:

FRUTIL Main Menu:

- 1. Replace or remove a controller or cache module
- 2. Install a controller or cache module

```
4-16 Service Manual
```

```
3. Replace a PVA module
    4. Replace an I/O module
    5. Exit
   Enter choice: 1, 2, 3, 4, or 5 ->
4. Enter 2 from the FRUTIL Main menu. FRUTIL displays the Install
   Options menu:
   Install Options:
    1. Other controller and cache module
    2. Other controller module
    3. Other cache module
    4. Exit
   Enter choice: 1, 2, 3, or 4 ->
5. Enter 1 from the Install Options menu. FRUTIL display the following:
   Insert the both the slot B controller and cache module? \ensuremath{\mathtt{Y/N}}
6. Enter Y(es) and press return. FRUTIL displays the following:
   Quiescing all device ports. Please wait...
     Device Port 1 quiesced.
     Device Port 2 quiesced.
     Device Port 3 quiesced.
     Device Port 4 quiesced.
     Device Port 5 quiesced.
     Device Port 6 quiesced.
    All device ports quiesced.
   Perform the following steps:
    1. Turn off the battery for the new cache module by pressing
       the battery's shut off button for five seconds.
    2. Connect the battery to the new cache module.
    3. Insert the new cache module in slot B within 4 minutes.
```

Note A countdown timer allows a total of four minutes to install the cache module and controller. If you exceed four minutes, "this controller" will exit FRUTIL and resume operations.

Caution ESD can easily damage a cache module or controller. Wear a snug-fitting, grounded ESD wrist strap.

- 7. Insert the new ECB SBB into an empty slot.
- Disable the ECB to which you're connecting the new cache module by pressing the battery disable switch until the status light stops blinking about five seconds.

Caution The ECB must be disabled—the status light is not lit or is not blinking—before connecting the ECB cable to the cache module. Failure to disable the ECB could result in ECB damage.

Make sure you align the cache module and controller in the appropriate guide rails. If you do not align the modules correctly, damage to the backplane can occur.

- 9. Connect the ECB cable to the new cache module.
- 10. Insert the new cache module into its slot and engage its retaining levers. FRUTIL displays the following:

Insert the controller module, without its program card, in slot B within x minutes, xx seconds.

11. Ensure that the program card is not in the new controller and insert the new controller into its slot. Engage its retaining levers.

Note In mirrored mode, FRUTIL will initialize the mirrored portion of the new cache module, check for old data on the cache module, and then restart all device ports. After the device ports have been restarted, FRUTIL will test the cache module and the ECB. After the test completes, the device ports will quiesce and a mirror copy of the cache module data will be created on the newly installed cache module.

FRUTIL displays the following:

The configuration has two controllers.

To restart the other controller:

- 1. Type 'restart other_controller'.
- 2. Press and hold the reset button while inserting the

4–18 Service Manual

program card on the slot B controller, then release the reset button. The controller will restart.

Field Replacement Utility terminated.

Note If the controller being installed was previously used in another subsystem, it will need to be purged of the controller's old configuration.

12. Wait for FRUTIL to terminate and connect the trilink connectors to the new controller.

Note One or two trilink connectors may be attached, depending on the configuration.

- 13. To allow the "other controller" to restart, type the following command: RESTART OTHER _CONTROLLER
- 14. Hold the reset button while inserting the program card into the controller. Release the reset button and replace the ESD cover. The controller will restart.
- 15. See *HSZ70 Array Controller HSOF Version 7.3 Configuration Manual*, to configure the controller.
- 16. Re-establish the dual-redundant controller configuration with the following command:

SET FAILOVER COPY=THIS_CONTROLLER

Refer to the HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual for proper use of this CLI command.

17. Disconnect the PC or terminal from the controller maintenance port.

Upgrading to a Multiple-Bus Failover Configuration

Use the steps in the following procedure to upgrade a singleconfiguration subsystem to a multiple-bus failover configuration subsystem. To replace components, refer to Chapter 3, "Replacement Procedures". Before you complete this procedure, you'll need the following items:

- New HSZ70 Controller with the same software version and patch level that is installed on the current single controller.
- New cache module with the same memory configuration that is installed in the current single cache module.
- New External Cache Battery (ECB) suitable for a dual-redundant configuration.
- New ECB cable.
- Dual-controller cable from controller "A" to controller "B" (shown in Figure 4–2 as ④).

To connect a pair of multiple-bus failover dual-redundant controllers to the host:

- 1. Stop all I/O from the host to its devices on the bus to which you are connecting the controllers.
- 2. Refer to Figure 4–3 for the balance of these steps: Remove the trilink connectors (① 12–39921–01) from both controllers. These connectors are 68-pin Y-adapters that maintain bus continuity even when they are disconnected from their controller.
- 3. Connect a bus cable ⁽²⁾ from the host to one of the connectors on the front of each trilink connector.
- 4. If you are connecting a host to a controller in a BA370 enclosure that will reside in an SW600 cabinet, snap a ferrite bead ③ on each bus cable within one inch of the controller.

If you are connecting a host to a controller in any other enclosure or cabinet, skip to step 5.

Figure 4-3 Connecting Multiple Bus Failover, Dual-Redundant Controllers to the Host

- 5. Perform one of the following:
 - If the controllers are at the end of the bus, connect a terminator ④ to the open connectors on the front of each trilink connector.
 - If the controllers are not at the end of the bus, connect a cable (5) that continues to the next device on each bus and install the terminator at the end of the bus.
- 6. Reconnect the trilink connectors to host ports on the controllers. Do not disconnect the host cables from the trilink connectors.
- 7. Route and tie the cables as desired.
- 8. Restart the I/O from the host. Some operating systems may require you to restart the host to see the devices attached to the new controller.

Installing a New Controller, Cache Module, and ECB

Use the following steps to install a new controller, cache module and ECB:

- 1. Connect a PC or terminal to the controller maintenance port. The controller to which you're connected is "this controller"; the controller that you're installing is the "other controller."
- 2. Start FRUTIL with the following command:

RUN FRUTIL

FRUTIL displays the following:

Do you intend to replace this controller's cache battery? $\ensuremath{\mathtt{Y/N}}$

3. Enter N(0). FRUTIL displays the FRUTIL Main menu:

```
FRUTIL Main Menu:
```

- 1. Replace or remove a controller or cache module
- 2. Install a controller or cache module
- 3. Replace a PVA module
- 4. Replace an I/O module
- 5. Exit
- Enter choice: 1, 2, 3, 4, or 5 ->
- 4. Enter 2 from the FRUTIL Main menu. FRUTIL displays the Install Options menu:

Install Options:

- 1. Other controller and cache module $% \left({{{\left({{{{\left({{{{}}} \right)}}} \right)}}} \right)$
- 2. Other controller module $% \left({{{\left({{{\left({{{\left({{{{}}}} \right)}} \right)}_{i}}} \right)}_{i}}} \right)$
- 3. Other cache module
- 4. Exit
- Enter choice: 1, 2, 3, or 4 ->
- 5. Enter 1 from the Install Options menu. FRUTIL display the following:

Insert the both the slot B controller and cache module? Y/N

6. Enter y(es) and press return. FRUTIL displays the following:

```
Quiescing all device ports. Please wait...
Device Port 1 quiesced.
Device Port 2 quiesced.
Device Port 3 quiesced.
Device Port 4 quiesced.
Device Port 5 quiesced.
Device Port 6 quiesced.
All device ports quiesced.
.
.
Perform the following steps:
1. Turn off the battery for the new cache module by pressing
the battery's shut off button for five seconds.
2. Connect the battery to the new cache module.
3. Insert the new cache module in slot B within 4 minutes.
```

4-22 Service Manual

Note A countdown timer allows a total of four minutes to install the cache module and controller. If you exceed four minutes, "this controller" will exit FRUTIL and resume operations.

Caution ESD can easily damage a cache module or controller. Wear a snug-fitting, grounded ESD wrist strap.

- 7. Insert the new ECB SBB into an empty slot.
- Disable the ECB to which you're connecting the new cache module by pressing the battery disable switch until the status light stops blinking about five seconds.

Caution The ECB must be disabled—the status light is not lit or is not blinking—before connecting the ECB cable to the cache module. Failure to disable the ECB could result in ECB damage.

Make sure you align the cache module and controller in the appropriate guide rails. If you do not align the modules correctly, damage to the backplane can occur.

- 9. Connect the ECB cable to the new cache module.
- 10. Insert the new cache module into its slot and engage its retaining levers. FRUTIL displays the following:

Insert the controller module, without its program card, in slot B within x minutes, xx seconds.

11. Ensure that the program card is not in the new controller and insert the new controller into its slot. Engage its retaining levers.

Note In mirrored mode, FRUTIL will initialize the mirrored portion of the new cache module, check for old data on the cache module, and then restart all device ports. After the device ports have been restarted, FRUTIL will test the cache module and the ECB. After the test completes, the device ports will quiesce and a mirror copy of the cache module data will be created on the newly installed cache module.

FRUTIL displays the following:

The configuration has two controllers.

- To restart the other controller:
- 1. Type 'restart other_controller'.
- Press and hold the reset button while inserting the program card on the slot B controller, then release the reset button. The controller will restart.

Field Replacement Utility terminated.

Note If the controller being installed was previously used in another subsystem, it will need to be purged of the controller's old configuration.

12. Wait for FRUTIL to terminate and connect the trilink connectors to the new controller.

Note One or two trilink connectors may be attached, depending on the configuration.

13. To allow the "other controller" to restart, type the following command:

RESTART OTHER _CONTROLLER

- 14. Hold the reset button while inserting the program card into the controller. Release the reset button and replace the ESD cover. The controller will restart.
- 15. See *HSZ70 Array Controller HSOF Version 7.3 Configuration Manual*, to configure the controller.
- 16. Re-establish the dual-redundant controller configuration with the following command:

SET MULTIBUS_FAILOVER COPY=THIS_CONTROLLER

Refer to the HSZ70 Array Controller HSOF Version 7.3 CLI Reference Manual for proper use of this CLI commands.

17. Disconnect the PC or terminal from the controller maintenance port.
APPENDIX A LED Codes

This appendix describes the LED codes that may be encountered while servicing the controller, cache module, and external cache battery:

- "Operator Control Panel LED Description," page A-1
- "Solid OCP Patterns," page A-2
- "Flashing OCP Patterns," page A-6

Operator Control Panel LED Description

Use Table A–1 to interpret solid OCP patterns and Table A–2 to interpret flashing OCP patterns. Use this legend for both of these tables:

- \blacksquare = Reset button on
- \Box = Reset button off
- \bullet = LED on
- O = LED off

Note If the reset button is flashing and an LED is lit continuously, either the devices on that LED bus don't match the controller configuration, or an error has occurred in one of the devices on that bus.

A–1

A–2 Service Manual

Solid OCP Patterns

Table A-1 Solid OCI Lattering (Sheet 1 Or	Table A-1	Solid	OCP	Patterns	(sheet 1	of 4)
---	-----------	-------	-----	----------	----------	-------

Pattern	Error	Repair Action
	DAEMON diagnostic failed hard in non-fault tolerant mode.	Verify that cache module is present and operating. If the error persists, replace controller.
	DAEMON diagnostic detected critical hardware component failure; controller can no longer operate.	
	Recursive firmware bugcheck.	Replace the controller.
	NVMEM version mismatch.	Replace the program card with one that contains the latest software version.
	NVMEM write error.	Replace the controller.
	NVPM read error.	Replace the controller.
	An unexpected Non-Maskable Interrupt (NMI) error occurred during firmware bugcheck.	Reset the controller.
	NVMEM configuration inconsistent.	Reset the controller.
	Bugcheck with no restart.	Reset the controller.
	Software-induced controller reset failed to occur.	Replace the controller.
	Hardware-induced controller reset failed to occur.	Replace the controller.
	Bugcheck within bugcheck controller.	Reset the controller.

5

Pattern	Error	Repair Action
	NVMEM structure revision too low. NVMEM structure revision number is less than the one that can be handled by the software version attempting to be executed.	Verify that the program card contains the latest software version. If the error persists, replace the controller.
	Program card write fail.	Replace the program card.
	ILF\$INIT unable to allocate memory.	Replace the controller.
	An unexpected bugcheck occurred before subsystem initialization completed.	Reinsert the controller. If that does not correct the problem, reset the controller. If the error persists, try resetting the controller again, and replace it if no change occurs.
	Cache module has illegal SIMM configuration.	Verify that the SIMMs are installed as shown in Table 3–1 on page 3-41.
	More than one cabinet have the same SCSI (PVA) ID in an extended subsystem.	 Reconfigure the PVA ID to uniquely identify each cabinet in the subsystem: The cabinet with the controllers must be set to PVA ID 0 Additional cabinets must use PVA IDs 2 and 3 If the error continues after PVA settings are unique: Replace each PVA module one at a time. Check the cabinet if the problem remains.

Table A-1 Solid OCP Patterns (sheet 2 of 4)

A–4 Service Manual

Table A-1 Solid OCP Patterns (sheet 3 of 4)

Pattern	Error	Repair Action
	The cabinet with the controllers is not configured to PVA ID 0.	Set the PVA ID to 0 for the cabinet with the controllers.
		If the problem persists, try the following repair actions: 1. Replace the PVA module. 2. Replace the EMU. 3. Remove all devices. 4. Replace the cabinet.
	Termination power for one or more of the cabinet's device SCSI buses is absent or unacceptable.	Ensure that all of the cabinet's device SCSI buses have an I/O module. If the problem persists, replace the failed I/O module.
	Jumpers are installed on the backplane instead of terminators. One or more SCSI bus terminators are either missing from the backplane or	Ensure that the cabinet SCSI bus terminators are installed and that there are no jumpers. Replace the failed terminator if the
	broken. All cabinet I/O modules are not of the	problem continues. Ensure that the I/O modules in an
	same type. Cabinet I/O modules are a combination of single-sided and differential.	extended subsystem are either all single- ended or all differential, but not both.

LED Codes	A–5
-----------	-----

Pattern	Error	Repair Action
	EMU protocol version incompatible with controller software version.	Upgrade either the EMU microcode or the software (refer to the Release Notes that accompanied the controller software).
	No program card detected. Controller unable to read program card.	Ensure that the program card is properly seated while resetting the controller. If the error persists, try the card with another controller; or replace the card. If the error persists, replace the controller that reported the error.
	Catastrophic controller or power failure.	Check the power. If good, reset controller. If the problem persists, reseat controller module and reset controller. If the problem is still evident, replace controller module.

Table A-1 Solid OCP Patterns (sheet 4 of 4)

A–6	Service	Manual

Flashing OCP Patterns

Table A-2 Flashing OCP Patterns (sheet 1 of 4)

Pattern	Error	Repair Action
	Program card EDC error.	Replace the program card.
	Timer zero in the timer chip runs when disabled.	Replace the controller.
	Timer zero in the timer chip decrements incorrectly.	Replace the controller.
	Timer zero in the timer chip did not interrupt the processor when requested.	Replace the controller.
	Timer one in the timer chip decrements incorrectly.	Replace the controller.
	Timer one in the timer chip did not interrupt the processor when requested.	Replace the controller.
	Timer two in the timer chip decrements incorrectly	Replace the controller.
	Timer two in the timer chip did not interrupt the processor when requested.	Replace the controller.
	Memory failure in the I/D cache.	Replace the controller.
	No hit or miss to the I/D cache when expected.	Replace the controller.
	One or more bits in the diagnostic registers did not match the expected reset value.	Replace the controller.
	Memory error in the nonvolatile journal SRAM.	Replace the controller.
	Wrong image seen on program card	Replace the program card.
	At least one register in the controller DRAB does not read as written.	Replace the controller.

Table A-2 Flashing OCP Patterns (sheet 2 of 4)

Pattern	Error	Repair Action
	Main memory is fragmented into too many sections for the number of entries in the good memory list.	Replace the controller.
	The controller DRAB chip does not arbitrate correctly.	Replace the controller.
	The controller DRAB chip failed to detect forced parity, or detected parity when not forced.	Replace the controller.
	The controller DRAB chip failed to verify the EDC correctly.	Replace the controller.
	The controller DRAB chip failed to report forced ECC.	Replace the controller.
	The controller DRAB chip failed some operation in the reporting, validating, and testing of the multi-bit ECC memory error	Replace the controller.
	The controller DRAB chip failed some operation in the reporting, validating, and testing of the multiple single-bit ECC memory error.	Replace the controller.
	The controller main memory did not write correctly in one or more sized memory transfers.	Replace the controller.
	The controller did not cause an I-to-N bus timeout when accessing an "reset" host port chip.	Replace the controller.
	The controller DRAB chip did not report an I- to-N us timeout when accessing a "reset" host port chip.	Replace the controller.
	The controller DRAB chip did not interrupt the controller processor when expected.	Replace the controller.

Table A-2 Flashing OCP Patterns (sheet 3 of 4)

Pattern	Error	Repair Action
	The controller DRAB chip did not report an NXM error when an attempt to access non-existent memory was made.	Replace the controller.
	The controller DRAB chip did not report an address parity error when one was forced.	Replace the controller.
	There was an unexpected nonmaskable interrupt from the controller DRAB chip during the DRAB memory test.	Replace the controller.
	Diagnostic register indicates there is no cache module, but an interrupt exists from the non- existent cache module.	Replace the controller.
	The required amount of memory available for the code image to be loaded from the program card is insufficient.	Replace the controller.
	The required amount of memory available in the pool area is insufficient for the controller to run.	Replace the controller.
	The required amount of memory in the buffer area is insufficient for the internal debugger to run.	Replace the controller.
	The required amount of memory available in the buffer area is insufficient for the controller to run.	Replace the controller.
	The code image was not the same as the image on the card after the contents were copied to memory.	Replace the controller.
	Diagnostic register indicates that the cache module does not exist, but access to that cache module caused an error.	Replace the backplane of the controller shelf.

Pattern Error **Repair Action** Diagnostic register indicates that the cache Replace the backplane of the module does not exist, but access to that cache controller shelf. module did not cause an error. Non-existent memory regions were not trapped Replace the controller. as required. The journal SRAM battery is bad. Replace the controller. There was an unexpected interrupt from a read Replace the controller. cache or the "present" and "lock" bits are not working correctly. There is an interrupt pending on the controller's Replace the controller. policy processor when there should be none. There was an unexpected fault during Replace the controller. initialization. There was an unexpected maskable interrupt Replace the controller. received during initialization There was an unexpected non-maskable Replace the controller. interrupt received during initialization. An illegal process was activated during Replace the controller. initialization.

Table A-2 Flashing OCP Patterns (sheet 4 of 4)

APPENDIX B

Event Reporting: Templates and Codes

This appendix contains descriptions of the event codes that the faultmanagement software generates for spontaneous events and last-failure events.

The HSZ70 controller uses various codes to report different types of events, and these codes are presented in template displays:

- Instance codes (unique codes that identify events).
- ASC and ASCQ codes (explain the cause of the events).
- Last failure codes (unrecoverable conditions that may occur in the controller).

This appendix contains the following sections:

- Template and Code Descriptions:
 - "Last Failure Event Sense Data Response," on page B-3
 - "Multiple-Bus Failover Event Sense Data Response," on page B-3
 - "Nonvolatile Parameter Memory Component Event Sense Data Response," on page B-4
 - "Backup Battery Failure Event Sense Data Response," on page B-4
 - "Subsystem Built-In Self Test Failure Event Sense Data Response," on page B-4
 - "Memory System Failure Event Sense Data Response," on page B-4
 - "Device Services Non-Transfer Error Event Sense Data Response," on page B-5
 - "Disk Transfer Error Event Sense Data Response," on page B-5
 - "ASC/ASCQ Codes," on page B-7
 - "Event Threshold Codes," on page B-7

B–1

B-2 Service Manual

- "Recommended Repair Action Codes," on page B-7
- "Last Failure Codes," on page B-8
- Template and Code Tables:
 - Table B–1, "Template 01: Last Failure Event Sense Data Response Format" on page B–11
 - Table B–2, "Template 04: Multiple-Bus Failover Event Sense Data Response Format" on page B–12
 - Table B–3, "Template 05: Failover Event Sense Data Response Format" on page B–13
 - Table B–4, "Template 11: Nonvolatile Parameter Memory Component Event Sense Data Response Format" on page B–14
 - Table B–5, "Template 12: Backup Battery Failure Event Sense Data Response Format" on page B–15
 - Table B–6, "Template 13: Subsystem Built-in Self Test Failure Event Sense Data Response Format" on page B–16
 - Table B–7, "Template 14: Memory System Failure Event Sense Data Response Format" on page B–17
 - Table B–8, "Template 41: Device Services Non-Transfer Error Event Sense Data Response Format" on page B–18
 - Table B–9, "Template 51a: Disk Transfer Error Event Sense Data Response Format (sheet 1 of 2)" on page B–19
 - Table B–10, "Template 51b: Passthrough Device Reset Event Sense Data Response Format (sheet 1 of 2)" on page B–21
 - Table B–11, "Instance Codes (sheet 1 of 31)" on page B–23
 - Table B-12, "Last Failure Codes (sheet 1 of 28)" on page B-54
 - Table B–13, "Repair Action Codes (sheet 1 of 10)" on page B–82
 - Table B-14, "Component Identifier Codes" on page B-92
 - Table B–15, "Event Notification/Recovery Threshold Classifications" on page B–93
 - Table B–16, "ASC and ASCQ Codes (sheet 1 of 3)" on page B–93

Event Reporting: Templates and Codes B–3

Template and Code Descriptions

Last Failure Event Sense Data Response

Unrecoverable conditions detected by either software or hardware and certain operator-initiated conditions result in the termination of HSZ70 controller operation. In most cases, following such a termination, the controller attempts to restart (reboot) with hardware components and software data structures initialized to the states necessary to perform normal operations (Table B–1).

- Instance Codes (byte offset 8-11) are described in Table B–11, "Instance Codes (sheet 1 of 31)" on page B–23.
- Last Failure Codes (byte offset 104-107) are described in Table B-12, "Last Failure Codes (sheet 1 of 28)" on page B-54.
- ASC and ASCQ codes (byte offsets 12 and 13) are described in Table B–16, "ASC and ASCQ Codes (sheet 1 of 3)" on page B–93.

Multiple-Bus Failover Event Sense Data Response

The SCSI Host Interconnect Services software component reports Multiple Bus Failover events via the Multiple Bus Failover Event Sense Data Response (Table B–2).

- Instance Codes (byte offset 8-11) are described in Table B–11, "Instance Codes (sheet 1 of 31)" on page B–23.
- ASC and ASCQ codes (byte offsets 12 and 13) are described in Table B–16, "ASC and ASCQ Codes (sheet 1 of 3)" on page B–93.

Failover Event Sense Data Response

The Failover Control software component reports errors and other conditions encountered during redundant controller communications and failover operation via the Failover Event Sense Data Response (Table B–3).

- Instance Codes (byte offset 8-11) are described in Table B-11, "Instance Codes (sheet 1 of 31)" on page B-23.
- Last Failure Codes (byte offset 104-107) are described in Table B–12, "Last Failure Codes (sheet 1 of 28)" on page B–54.
- ASC and ASCQ codes (byte offsets 12 and 13) are described in Table B–16, "ASC and ASCQ Codes (sheet 1 of 3)" on page B–93.

B-4 Service Manual

Nonvolatile Parameter Memory Component Event Sense Data Response

The Executive software component reports errors detected while accessing a Nonvolatile Parameter Memory Component via the Nonvolatile Parameter Memory Component Event Sense Data Response (Table B–4).

- Instance Codes (byte offset 8-11) are described in Table B-11, "Instance Codes (sheet 1 of 31)" on page B-23.
- ASC and ASCQ codes (byte offsets 12 and 13) are described in Table B–16, "ASC and ASCQ Codes (sheet 1 of 3)" on page B–93.

Backup Battery Failure Event Sense Data Response

The Value Added Services software component reports backup battery failure conditions for the various hardware components that use a battery to maintain state during power failures via the Backup Battery Failure Event Sense Data Response (Table B–5).

- Instance Codes (byte offset 8-11) are described in Table B–11, "Instance Codes (sheet 1 of 31)" on page B–23.
- ASC and ASCQ codes (byte offsets 12 and 13) are described in Table B–16, "ASC and ASCQ Codes (sheet 1 of 3)" on page B–93.

Subsystem Built-In Self Test Failure Event Sense Data Response

The Subsystem Built-In Self Tests software component reports errors detected during test execution via the Subsystem Built-In Self Test Failure Event Sense Data Response (Table B–6).

- Instance Codes (byte offset 8-11) are described in Figure B-11, "Instance Codes (sheet 1 of 31)" on page B-23.
- ASC and ASCQ codes (byte offsets 12 and 13) are described in Table B–16, "ASC and ASCQ Codes (sheet 1 of 3)" on page B–93.

Memory System Failure Event Sense Data Response

The Memory Controller Event Analyzer software component and the Cache Manager, report the occurrence of memory errors via the Memory System Failure Event Sense Data Response (Table B–7).

- Instance Codes (byte offset 8-11) are described in Table B-11, "Instance Codes (sheet 1 of 31)" on page B-23.
- ASC and ASCQ codes (byte offsets 12 and 13) are described in Table B–16, "ASC and ASCQ Codes (sheet 1 of 3)" on page B–93.

Event Reporting: Templates and Codes B–5

Device Services Non-Transfer Error Event Sense Data Response

The Device Services software component reports errors detected while performing non-transfer work related to disk (including CD-ROM and optical memory) device operations via the Device Services Non-Transfer Event Sense Data Response (Table B–8).

- Instance Codes (byte offset 8-11) are described in Table B-11, "Instance Codes (sheet 1 of 31)" on page B-23.
- ASC and ASCQ codes (byte offsets 12 and 13) are described in Table B–16, "ASC and ASCQ Codes (sheet 1 of 3)" on page B–93.

Disk Transfer Error Event Sense Data Response

The Device Services and Value Added Services software components report errors detected while performing work related to disk, CD-ROM, or optical memory device transfer operations via the Disk Transfer Error Event Sense Data Response (Table B–9).

- Instance Codes (byte offset 8-11) are described in Table B-11, "Instance Codes (sheet 1 of 31)" on page B-23.
- ASC and ASCQ codes (byte offsets 12 and 13) are described in Table B–16, "ASC and ASCQ Codes (sheet 1 of 3)" on page B–93.

Instance Codes

An Instance Code is a number that uniquely identifies the event being reported. Figure B–1 outlines the structure of an instance code. By understanding its structure, you will be able to translate it yourself and bypass the fault management utility (FMU).

B-6 Service Manual

Callout	Description
1	Component ID Number
2	Repair Action
3	Event Number
4	Event Threshold

Instance Codes Format

The format of an Instance Code as it appears in Sense Data Responses is shown in the table that follows. The descriptions of the instance code format are contained in the paragraphs that follow the table.

off	bit →	7	6	5	4	3	2	1	0
{8}3	2		NR Threshold						
{9}3	3		Repair Action						
{10}	34		Error Number						
{11}	35		Component ID						

Note The offset values enclosed in braces ({ }) apply only to the passthrough device reset event sense data response format (Table B–10). The nonbraced offset values apply only to the logical device event sense data response formats shown in the templates that begin with Table B–1 on page B-11.

NR Threshold

Located at byte offset {8}32, the NR Threshold is the notification/ recovery threshold assigned to the event. This value is used during Symptom-Directed Diagnosis procedures to determine when notification/recovery action should be taken.

Repair Action

Located at byte offset {9}33, the Repair Action code identifies the recommended repair action assigned to the event. This value is used during Symptom-Directed Diagnosis procedures to determine what

Event Reporting: Templates and Codes B–7

notification/recovery action should be taken when the NR Threshold is reached. For more details about recommended repair actions, see "Repair Action Codes (sheet 1 of 10)," page B-82.

Event Number

Located at byte offset {10}34, the Event Number, when combined with the value contained in the Component ID field, uniquely identifies the reported event.

Component ID

Component Identifier Codes are embedded in Instance and Last Failure codes. A component ID is a number that uniquely identifies the software component that detected the event and is found at byte offset {11}35 (Table B–14, "Component Identifier Codes" on page B–92).

Instance Codes Listing

Table B–11 contains a listing of the instance codes, their descriptions, and the applicable template used.

ASC/ASCQ Codes

Table B–16 lists HSZ70-specific SCSI Additional Sense Code (ASC) and Additional Sense Code Qualifier (ASCQ) codes. These codes are Template-specific and appear at byte offsets 12 and 13.

Additional codes that are common to all SCSI devices can be found in the SCSI specification.

Event Threshold Codes

Table B–15 lists the classifications for event notification and recovery threshold values.

Recommended Repair Action Codes

Recommended Repair Action Codes are embedded in Instance and Last Failure codes. Refer to "Instance Codes," page B-5, and "Last Failure Codes," page B-8, for a more detailed description of the relationship between these codes.

Table B–13 contains the repair action codes assigned to each significant event in the system.

B-8 Service Manual

Last Failure Codes

A Last Failure Code is a number that uniquely-describes an unrecoverable condition. It is found at byte offset 104 to 107 and appears in:

- Table B–1, "Template 01: Last Failure Event Sense Data Response Format" on page B–11, and
- Table B–3, "Template 05: Failover Event Sense Data Response Format" on page B–13.

Figure B–2 shows the structure of a Last Failure Code. By understanding its structure, you will be able to translate it, bypassing the FMU.

Figure B-2 Structure of a Last Failure Code

Callout	Description
1	Component ID Number
2	Repair Action
3	Event Number
4	Parameter Count

Event Reporting: Templates and Codes B–9

Last Failure Codes Format

The format of a Last Failure Code is shown in the table that follows. The table codes are described in the following paragraphs.

offset	bit →	7	6	5	4	3	2	1	0	
104		HW	IW Restart Code			Parameter Code				
105		Repair	Repair Action							
106		Error N	Error Number							
107		Comp	Component ID							

Note Do not confuse the Last Failure Code with the Instance Code. They appear at different byte offsets and convey different information.

HW

This hardware/software flag is located at byte offset 104, bit 7:

- Bit = 1—The unrecoverable condition is due to a hardware-detected fault.
- Bit = 0—The unrecoverable condition is due to an inconsistency with the software, or an intentional restart or shutdown of the controller was requested.

Restart Code

Located at byte offset 104, bits 4-6, the Restart Code describes the actions taken to restart the controller after the unrecoverable condition was detected. The three restart codes are described in the following table:

Restart Code	Description
0	Full software restart
1	No restart
2	Automatic hardware restart

Parameter Count

The Parameter Count, located at byte offset 104, bits 0-3, indicates the number of Last Failure Parameters containing supplemental information supplied.

B-10 Service Manual

Repair Action

The Repair Action found at byte offset 105 indicates the recommended repair action code assigned to the event. This value is used during Symptom-Directed Diagnosis procedures to determine what notification/recovery action should be taken. For more details, see "Repair Action," page B-6.

Error Numbers

Located at byte offset 106, the Error Number, when combined with the value contained in the Component ID field, uniquely-identifies the condition detected.

Component IDs

A component ID uniquely identifies the software component that detected the event and is found at byte offset {11}35 (see "Component Identifier Codes," page B-92).

Table B–12 contains the last failure codes that can be issued by the controller fault-management software.

Event Reporting:	Templates	and Codes	B–11
------------------	-----------	-----------	------

Template and Code Tables

	offset	bit →	7	6	5	4	3	2	1	0		
	0		Unused			E	rror Cod	e				
	1					Unu	sed					
	2			Unu	ised			Sens	e Key			
	3-6 7			Unused								
	7		Additional Sense Length									
	8-11	1		Unused								
	12				Additio	onal Sens	se Code	(ASC)				
at	13 Additional Sense Code Qualifier (ASCQ) 14 Unused											
Drm	14 Unused											
ЪЧ	15-1	7				Unu	sed					
Data	18-3	1				Rese	erved					
e e	32-3	5		Instance Code								
ens	36		Template									
ا ا	37		Template Flags									
eve	38-5	3	Reserved									
ər L	54-6	9		Controller Board Serial Number								
rolle	70-7	3		Controller Software Revision Level								
ont	74-7	5				Rese	erved					
Õ	76	76 LUN Status										
	77-103 Reserved											
	104-1	07				Last Failu	ure Code)				
	108-1	11	Last Failure Parameter (0)									
	112-1	15		Last Failure Parameter (1)								
	116-1	19		Last Failure Parameter (2)								
	120-1	23			Last	Failure F	Paramete	er (3)				
	124-1	27			Last	Failure F	Paramete	er (4)				
	128-1	31			Last	Failure F	Paramete	er (5)				
	132-1	35			Last	Failure F	Paramete	er (6)				
	136-1	39			Last	Failure F	Paramete	er (7)				
	140-1	59		Reserved								

 Table B-1
 Template 01: Last Failure Event Sense Data Response Format

B-12 Service Manua	3-12	/ice Manual
--------------------	------	-------------

	offset	bit →	7	6	5	4	3	2	1	0
	0		Unused	Error Co	ode			•	•	
	1					Unu	ised			
	2			Unu	ised		Sense	Key		
	3-6	6				Unu	ised			
TotalTotalAdditional Sense Length8-11Unused12Additional Sense Code (ASC)										
						ised				
						onal Sen	se Code	(ASC)		
Dati	13			Additional Sense Code Qualifier (ASCQ)						
se	14-17		Unused							
sen:	18-26		Reserved							
e N	27		Failed Controller Target Number							
ē	28-3	31	Affected LUNs							
er L	32-3	35			Instance Code					
llo	36			Template						
Sont	37					Templat	e Flags			
0	38-5	53		C	ther Con	troller Bo	bard Seri	al Numb	er	
	54-6	59 		Controller Board Serial Number						
	70-7	'3		Controller Software Revision Level						
	74-7	′5				Rese	erved			
	76					LUNS	Status			
	77-1	59				Rese	erved			

 Table B-2
 Template 04: Multiple-Bus Failover Event Sense Data Response Format

Event Reporting:	Templates	and Codes	B–13
------------------	-----------	-----------	------

	offset	bit →	7	6	5	4	3	2	1	0			
	0		Unused	nused Error Code									
	1			Unused									
	2			Unu	used			Sens	e Key				
	3-6			Unused									
	7			Additional Sense Length									
	8-11		Unused										
	12		Additional Sense Code (ASC)										
at	13		Additional Sense Code Qualifier (ASCQ)										
orm	14			Unused									
a Fo	15-17			Unused									
Data	18-31			Reserved									
еП	32-35					Instanc	e Code						
ens	36					Tem	plate						
S N	37					Templat	te Flags						
ече	38-53					Rese	erved						
er L	54-69			Controller Board Serial Number									
olle	70-73	3		Controller Software Revision Level									
ontr	74-7	5	Reserved										
ŏ	76		LUN Status										
	77-10)3	Reserved										
	104-10	07		Last Failure Code									
	108-1	11			Last	Failure F	Paramete	er (0)					
	112-1 ⁻	15			Last	Failure F	Paramete	er (1)					
	116-1	19			Last	Failure F	Paramete	er (2)					
	120-12	23			Last	Failure F	Paramete	er (3)					
	124-12	27			Last	Failure F	Paramete	er (4)					
	128-13	31			Last	Failure F	Paramete	er (5)					
	132-13	35			Last	Failure F	Paramete	er (6)					
	136-13	39			Last	Failure F	Paramete	er (7)					
	140-1	59				Rese	erved						

 Table B-3
 Template 05: Failover Event Sense Data Response Format

B-14 Service Manual

	offset	bit →	7	6	5	4	3	2	1	0		
	0	е										
	1			Unused								
	2			Unu	sed		Sense k	Key				
	3-6		Unused									
	7		Additional Sense Length									
	8-11	1	Unused									
	12		Additional Sense Code (ASC)									
ਜ਼ 13 Additional Sense Code Qualifier (ASCQ)												
orm	Ě 14 Unused											
a Fo	15-1	7				Unu	sed					
Data	18-31					Rese	rved					
se [32-35					Instance	e Code					
ens	36					Temp	olate					
e S	37					Templat	e Flags					
eve	38-53		Reserved									
er L	54-6	9	Controller Board Serial Number									
rolle	70-7	3		Controller Software Revision Level								
onti	74-7	5				Rese	rved					
0	76					LUN S	Status					
	77-10)3				Rese	rved					
	104-1	07				Memory	Address					
	108-1	11				Byte C	Count					
	112-1	14			Nun	nber of Ti	mes Wri	tten				
	115	5				Unde	fined					
	116-1	59				Rese	rved					

Table B-4Template 11: Nonvolatile Parameter Memory Component Event
Sense Data Response Format

Event Reporting:	Templates	and Codes	B–15
------------------	-----------	-----------	------

	offset	bit →	7	6	5	4	3	2	1	0			
	0		Unused	Unused Error Code									
	1		Unused										
	2		Unused Sense Key										
	3-6		Unused										
	7		Additional Sense Length										
ata	8-11		Unused										
Ő	12			Additional Sense Code (ASC)									
sus(13			Additional Sense Code Qualifier (ASCQ)									
s	14					Unu	sed						
evel	15-17					Unu	sed						
ГĘ	18-31					Rese	rved						
olle	32-35			Instance Code									
ntre	36		Template										
ပိ	37		Template Flags										
	38-5	53	Reserved										
	54-6	69		Controller Board Serial Number									
	70-7	'3			Controlle	r Softwar	re Revisi	on Level					
	74-7	'5				Rese	rved						
	76					LUN S	Status						
	77-10	03				Rese	rved						
	104-1	07				Memory	Address						
	108-1	59				Rese	rved						

 Table B-5
 Template 12: Backup Battery Failure Event Sense Data Response Format

B–16	Service	Manual

	offset	bit →	7	6	5	4	3	2	1	0			
	0		Unused			E	rror Cod	е					
	1			Unused									
	2			Unused Sense Key									
lat	3-6	5				Unu	sed						
orm	7			Additional Sense Length									
а Е	8-1	1				Unu	sed						
Dat	12		Additional Sense Code (ASC)										
se	13			Additional Sense Code Qualifier (ASCQ)									
Sen	14			Unused									
el 0	15-1	7		Unused									
Lev	18-3	51				Rese	erved						
ler	32-3	5				Instanc	e Code						
trol	36					Tem							
Con	37	<u>.</u>		Template Flags									
0	38-0	0 0			Control	Rese	ervea	lumbor					
		19 '2			Controlle	r Softwa							
	7/-7	5 '5			Controlle	Rose	rved						
	76	0					Status						
	77-1	03		Reserved									
	105-1	05	Undefined										
	106	6		Header Type									
	107	7		Header Flags									
	108	3				Т	E						
	109)				Test N	umber						
	110)				Test Co	mmand						
	111					Test I	Flags						
	112-1	13				Error	Code						
	114-1	15				Return	Code						
	116-1	19				Address	of Error						
	120-1	23			E	xpected	Error Dat	a					
	124-1	27				Actual E	rror Data						
	128-1	31				Extra S	tatus 1						
	132-1	35				Extra S	tatus 2						
	136-1	39				Extra S	tatus 3						
	140-1	59				Rese	erved						

Table B-6 Template 13: Subsystem Built-in Self Test Failure Event Sense Data Response Format

Event Reporting:	Templates and Codes	B–17
------------------	---------------------	------

	offset	bit →	7	6	5	4	3	2	1	0			
	0	1	Unused			E	rror Cod	е					
	1			Unused									
	2			Unused Sense Key									
at	3-6					Unu	sed						
orm	7			Additional Sense Length									
a Fo	8-11			Unused									
Data	12			Additional Sense Code (ASC)									
se [13			Ad	ditional S	Sense Co	de Quali	fier (ASC	Q)				
ens	14-1	7				Unu	sed						
el S	18-3	1				Rese	erved						
eve	32-3	5				Instanc	e Code						
er L	36					Tem	olate						
rolle	37			Template Flags									
ont	38-53					Rese	erved						
0	54-69				Contro	ller Board	d Serial N	lumber					
	70-73				Controlle	er Softwa	re Revisi	on Level					
	74-7	5				Rese	erved						
	76		LUN Status										
	77-10)3	Reserved										
	104-1	07	Memory Address										
	108-1	11		Byte Count									
	112-1 ⁻	15				DS	SR						
	116-1 ⁻	19				CS	SR						
	120-1	23				DC	SR						
	124-1	27				DE	R						
	128-1	31				EA	٨R						
	132-1	35				ED	DR						
	136-1	39				EF	R						
	140-1	43				RS	SR						
	144-1	47				RD	R0						
	148-151	1				RD	R1						
	152-155	5				WD	R0						
	156-159	9				WD	R1						

 Table B-7
 Template 14: Memory System Failure Event Sense Data Response Format

	B–18	Service	Manual
--	------	---------	--------

, ,	offset	bit →	7	6	5	4	3	2	1	0		
	0		Unused	Inused Error Code								
	1		Unused									
	2			Unused Sense Key								
	3-6		Unused									
	7		Additional Sense Length									
ata	8-11		Unused									
Additional Sense Code (ASC)												
Additional Sense Code Qualifier (AS									Q)			
l Se	14			Unused								
eve	15-17					Unu	ised					
r Le	18-31					Rese	erved					
olle	32-35											
ontr	36		Template									
ő	37		Template Flags									
	38-5	3	Reserved									
	54-6	9			Contro	ller Board	d Serial N	lumber				
	70-7	3			Controlle	er Softwa	re Revisi	on Level				
	74-7	5				Rese	erved					
	76			LUN Status								
	77-10)3				Rese	erved					
]	104-1	07				Memory	Address					
	108-1	59				Rese	erved					

 Table B-8
 Template 41: Device Services Non-Transfer Error Event Sense Data Response Format

Event Reporting:	Templates	and Codes	B–19
------------------	-----------	-----------	------

	offset	bit →	7	6	5	4	3	2	1	0		
	0		Valid			L E	rror Cod	e		1		
eld	1					Segi	ment	-				
Ε	2		FM	FM EOM ILI Rsvd Sense Key								
Data	3-6		Information									
se [7				Ad	ditional S	ense Len	gth				
Sen	8-11			Command Specific Information								
20	12		Additional Sense Code (ASC)									
sci	13			Additional Sense Code Qualifier (ASCQ)								
Ind	14				Field	Replacea	able Unit	Code				
nda	15 SKSV											
Sta	16 Sense Key Specific											
	18-19 Reserved											
	20 T					otal Number of Errors						
	21					Total Ref	ry Count					
a	22					Most Red	cent ASC					
LSCG Ick	23				1	Most Rec	ent ASCO	ג				
SC/P Sta	24			Next Most Recent ASC								
<	25		Next Most Recent ASCQ									
e lo	26					Port A	ddress					
evic ocat	27					Target A	Address					
٦ï٢	28				Logi	cal Unit N	lumber (L	_UN)				
	29-3	1				Rese	erved					
	32-3	5				Instanc	e Code					
	36					Tem	olate					
	37		TM0			Rs	vd			HCE		
	38					Rese	erved					
	39					Comman	d OPcode	9				
	40 Sense Data Qualifi						er					
	41-5	0		Orig	jinal Com	mand De	scriptor E	Block (CE) ¹			
	51			Host ID ²								
	52-5	3				Rese	erved					
	54-6	9			Contro	ller Board	d Serial N	lumber				

 Table B-9
 Template 51a: Disk Transfer Error Event Sense Data Response Format (sheet 1 of 2)

B-20 Service Manua

	offset	bit →	7	6	5	4	3	2	1	0	
	70-73	3		Controller Software Revision Level							
	74-75		Reserved								
	76			LUN Status							
	77-78	8		Reserved							
	79-82		Device Software Revision Level								
	83-98			Device Product ID							
	99-100			Reserved							
	101		Device Type								
102-103 Reserved											
	104		Valid Error Code								
	105		Segment								
eld	106		FM	FM EOM ILI Rsvd Sense Key							
Ë	107-110		Information								
Data	111		Additional Sense Length								
e e	112-1	15		Command Specific Information							
ens	116			Additional Sense Code (ASC)							
م	117		Additional Sense Code Qualifier (ASCQ)								
<i ci<="" td=""><td>118</td><th></th><td colspan="7">Field Replaceable Unit Code</td><td></td></i>	118		Field Replaceable Unit Code								
De	119		SKSV	SV							
	120				5	Sense Ke	y Specifi	C			
	121										
	122-159					Rese	erved				

Table B-9 Template 51a: Disk Transfer Error Event Sense Data Response Format (sheet 2 of 2)

¹ Host ID Field: If the HCE (offset 37, Bit 0) field is set to one, then the SCSI ID of the host appears here; If the HCE field is set to zero, then this field is undefined.

² CDB Field: If the HCE (offset 37, Bit 0) field is set to one, then the original command descriptor block appears here; If the HCE field is set to zero, then this field is undefined.

Event Reporting:	Templates and Codes	B–21
------------------	---------------------	------

I	offset	bit →	7	6	5	4	3	2	1	0	
σ	0		Valid Error Code								
Fiel	1		Segment								
ata	2		FM EOM ILI Rsvd Sense Key								
Ö	3-6		Information								
sue	7		Additional Sense Length								
Š	8-11		Instance Code								
vice	12		Additional Sense Code (ASC)								
De	13		Additional Sense Code Qualifier (ASCQ)								
чbг	14		Field Replaceable Unit Code								
asthro	15		SKSV								
	16				S	Sense Key	/ Specific	; ³			
Ра	17										
Ī	18-19		Reserved								
	20		Total Number of Errors								
Ĩ	21		Total Retry Count								
a	22		Most Recent ASC								
c S S S S S S S S S S S S S S S S S S S	23		Most Recent ASCQ								
SC/A Sta	24		Next Most Recent ASC								
Ϋ́	25		Next Most Recent ASCQ								
8 2 T	26		Port Address								
evic scat	27		Target Address								
	28		Logical Unit Number (LUN)								
	29-3	1	Reserved								
Ī	32-3	5	Instance Code								
Ī	36		Template								
	37		TM0			Rs	svd			HCE	
Ĩ	38		Reserved								
Ĩ	39		Command OPcode								
Ĩ	40				Ş	Sense Dat	ta Qualifi	er			
	41-5	0		Oriç	ginal Con	nmand De	scriptor I	Block (CI	DB) ¹		
Ī	51					Host	t ID ²				
ľ	52-53		Reserved								

 Table B–10
 Template 51b: Passthrough Device Reset Event Sense Data Response Format (sheet 1 of 2)

	offset	bit →	7	6	5	4	3	2	1	0		
	54-69		Controller Board Serial Number									
	70-73		Controller Software Revision level									
	74-7	5		Reserved								
	76			LUN Status								
	77-7	8		Reserved								
	79-82		Device Software Revision Level									
	83-98			Device Product ID								
	99-100		Reserved									
	101		Device Type									
	102-103 Reserved											
	104		Valid Error Code									
	105		Segment									
eld	106	5	FM	EOM	ILI	Rsvd		Sens	e Key			
Е С	107-1	10		Information								
Dati	111			Additional Sense Length								
se [112-1	15		Command Specific Information								
ens	116			Additional Sense Code (ASC)								
e N	117	,		Additional Sense Code Qualifier (ASCQ)								
ŝvic	118			Field Replaceable Unit Code								
ă	119		SKSV									
	120)				Sense Ke	ey Specifi	с				
	121			·								
	122-1	59				Rese	erved					

 Table B-10
 Template 51b: Passthrough Device Reset Event Sense Data Response Format (sheet 2 of 2)

¹ CDB Field: If the HCE (offset 37, Bit 0) field is set to one, then the original command descriptor block appears here; If the HCE field is set to zero, then this field is undefined.

² Host ID Field: If the HCE (offset 37, Bit 0) field is set to one, then the SCSI ID of the host appears here; If the HCE field is set to zero, then this field is undefined.

³ Events reported by passthrough devices during host/device operations are conveyed directly to the host system without intervention or interpretation by the HSZ70controller, with the exception of device sense data that is truncated to 160 bytes when it exceeds 160 bytes.

Event Reporting:	Templates and Codes	B–23

Table B-11 Instance Codes (sheet 1 of 31)

Instance Code	Description	Template
01010302	An unrecoverable hardware fault occurred.	01
0102030A	An unrecoverable firmware inconsistency was detected or an intentional restart or shutdown of controller operation was requested.	01
01032002	An EDC check failed in the Nonvolatile parameter memory component; content of the component reset to default settings.	11
0121370A	 Memory System Error Analysis is indicated in the information preserved during a previous last failure: No error conditions are indicated in the available DRAB registers. The Master DRAB registers content is supplied. 	14
0122330A	An error condition detected by one of the CACHE DRABs that requires supplemental information has been reported in another event report. This event report contains the Master DRAB and Diagnostic registers	14
	content associated with that initial event report.	
01292602	The Master DRAB detected a Cache Timeout condition during an access attempt to a CACHEA0, CACHEA1, CACHEB0, or CACHEB1 DRAB registers region or memory region. The addressed region failed to respond.	14
012A3702	The CACHEA0 DRAB unexpectedly reported a Cache Timeout condition.	14
012B3702	The CACHEA1 DRAB unexpectedly reported a Cache Timeout condition.	14
012C3702	The CACHEB0 DRAB unexpectedly reported a Cache Timeout condition.	14
012D3702	The CACHEB1 DRAB unexpectedly reported a Cache Timeout condition.	14
012E2702	The Master DRAB detected an Nbus Transfer Error Acknowledge (TEA) condition – the TEA signal was asserted by an Nbus device during an i960 to Nbus device transaction.	14
012F3702	The Master DRAB unexpectedly reported an Nbus Transfer Error Acknowledge condition.	14
01303702	The CACHEA0 DRAB unexpectedly reported an Nbus Transfer Error Acknowledge condition.	14
01313702	The CACHEA1 DRAB unexpectedly reported an Nbus Transfer Error Acknowledge condition.	14
01323702	The CACHEB0 DRAB unexpectedly reported an Nbus Transfer Error Acknowledge condition.	14
01333702	The CACHEB1 DRAB unexpectedly reported an Nbus Transfer Error Acknowledge condition.	14

B–24	Service	Manual
D 27	0011100	manual

Table B-11 Instance Codes (sheet 2 of 31)

Instance Code	Description	Template
01342802	A Multiple-bit ECC error was detected during a memory refresh attempt by the Master DRAB.	14
01352902	A Multiple-bit ECC error was detected during a memory refresh attempt by the CACHEA0 DRAB.	14
01362902	A Multiple-bit ECC error was detected during a memory refresh attempt by the CACHEA1 DRAB.	14
01372A02	A Multiple-bit ECC error was detected during a memory refresh attempt by the CACHEB0 DRAB.	14
01382A02	A Multiple-bit ECC error was detected during a memory refresh attempt by the CACHEB1 DRAB.	14
01392802	The Master DRAB detected a Multiple-bit ECC error during an FX attempt to read buffer memory.	14
013A2802	The Master DRAB detected a Multiple-bit ECC error during a Host Port attempt to read buffer memory.	14
013B2802	The Master DRAB detected a Multiple-bit ECC error during a Device Port attempt to read buffer memory.	14
013C2802	The Master DRAB detected a Multiple-bit ECC error during an i960 attempt to read buffer memory.	14
013D2902	The CACHEA0 DRAB detected a Multiple-bit ECC error during an FX attempt to read CACHEA0 memory.	14
013E2902	The CACHEA0 DRAB detected a Multiple-bit ECC error during a Host Port attempt to read CACHEA0 memory.	14
013F2902	The CACHEA0 DRAB detected a Multiple-bit ECC error during a Device Port attempt to read CACHEA0 memory.	14
01402902	The CACHEA0 DRAB detected a Multiple-bit ECC error during an i960 attempt to read CACHEA0 memory.	14
01412902	The CACHEA1 DRAB detected a Multiple-bit ECC error during an FX attempt to read CACHEA1 memory.	14
01422902	The CACHEA1 DRAB detected a Multiple-bit ECC error during a Host Port attempt to read CACHEA1 memory.	14
01432902	The CACHEA1 DRAB detected a Multiple-bit ECC error during a Device Port attempt to read CACHEA1 memory.	14
01442902	The CACHEA1 DRAB detected a Multiple-bit ECC error during an i960 attempt to read CACHEA1 memory.	14

Event Reporting:	Templates and Codes	B–25

Table B-11 Instance Codes (sheet 3 of 31)

Instance Code	Description	Template
01452A02	The CACHEB0 DRAB detected a Multiple-bit ECC error during an FX attempt to read CACHEB0 memory.	14
01462A02	The CACHEB0 DRAB detected a Multiple-bit ECC error during a Host Port attempt to read CACHEB0 memory.	14
01472A02	The CACHEB0 DRAB detected a Multiple-bit ECC error during a Device Port attempt to read CACHEB0 memory.	14
01482A02	The CACHEB0 DRAB detected a Multiple-bit ECC error during an i960 attempt to read CACHEB0 memory.	14
01492A02	The CACHEB1 DRAB detected a Multiple-bit ECC error during an FX attempt to read CACHEB1 memory.	14
014A2A02	The CACHEB1 DRAB detected a Multiple-bit ECC error during a Host Port attempt to read CACHEB1 memory.	14
014B2A02	The CACHEB1 DRAB detected a Multiple-bit ECC error during a Device Port attempt to read CACHEB1 memory.	14
014C2A02	The CACHEB1 DRAB detected a Multiple-bit ECC error during an i960 attempt to read CACHEB1 memory.	14
014D3702	The Master DRAB unexpectedly reported a Multiple-bit ECC error.	14
014E3702	The CACHEA0 DRAB unexpectedly reported a Multiple-bit ECC error.	14
014F3702	The CACHEA1 DRAB unexpectedly reported a Multiple-bit ECC error.	14
01503702	The CACHEB0 DRAB unexpectedly reported a Multiple-bit ECC error.	14
01513702	The CACHEB1 DRAB unexpectedly reported a Multiple-bit ECC error.	14
01522B02	The Master DRAB detected an Ibus to Nbus Timeout condition during an i960 to Nbus device transaction (the Nbus device failed to respond).	14
01533702	The CACHEA0 DRAB unexpectedly reported an Ibus to Nbus Timeout condition.	14
01543702	The CACHEA1 DRAB unexpectedly reported an Ibus to Nbus Timeout condition.	14
01553702	The CACHEB0 DRAB unexpectedly reported an Ibus to Nbus Timeout condition.	14
01563702	The CACHEB1 DRAB unexpectedly reported an Ibus to Nbus Timeout condition.	14
01572C02	The Master DRAB detected a Nonexistent Memory Error condition during an FX attempt to write buffer memory.	14

B–26	Service	Manual
------	---------	--------

Table B-11 Instance Codes (sheet 4 of 31)

Instance Code	Description		
01582C02	The Master DRAB detected a Nonexistent Memory Error condition during an FX attempt to write a byte to buffer memory.	14	
01592C02	The Master DRAB detected a Nonexistent Memory Error condition during an FX attempt to read buffer memory.	14	
015A2C02	The Master DRAB detected a Nonexistent Memory Error condition during a Host Port attempt to write buffer memory.	14	
015B2C02	The Master DRAB detected a Nonexistent Memory Error condition during a Host Port attempt to write a byte to buffer memory.	14	
015C2C02	The Master DRAB detected a Nonexistent Memory Error condition during a Host Port attempt to read buffer memory.	14	
015D2C02	The Master DRAB detected a Nonexistent Memory Error condition during a Device Port attempt to write buffer memory.	14	
015E2C02	The Master DRAB detected a Nonexistent Memory Error condition during a Device Port attempt to write a byte to buffer memory.	14	
015F2C02	The Master DRAB detected a Nonexistent Memory Error condition during a Device Port attempt to read buffer memory.	14	
01602C02	The Master DRAB detected a Nonexistent Memory Error condition during an i960 attempt to write buffer memory.	14	
01612C02	The Master DRAB detected a Nonexistent Memory Error condition during an i960 attempt to write a byte to buffer memory.	14	
01622C02	The Master DRAB detected a Nonexistent Memory Error condition during an i960 attempt to read buffer memory.	14	
01632D02	The CACHEA0 DRAB detected a Nonexistent Memory Error condition during an FX attempt to write CACHEA0 memory.	14	
01642D02	The CACHEA0 DRAB detected a Nonexistent Memory Error condition during an FX attempt to write a byte to CACHEA0 memory.	14	
01652D02	The CACHEA0 DRAB detected a Nonexistent Memory Error condition during an FX attempt to read CACHEA0 memory.	14	
01662D02	The CACHEA0 DRAB detected a Nonexistent Memory Error condition during a Host Port attempt to write CACHEA0 memory.	14	
01672D02	The CACHEA0 DRAB detected a Nonexistent Memory Error condition during a Host Port attempt to write a byte to CACHEA0 memory.	14	
01682D02	The CACHEA0 DRAB detected a Nonexistent Memory Error condition during a Host Port attempt to read CACHEA0 memory.	14	
Event Reporting:	Templates	and Codes	B–27
------------------	-----------	-----------	------
------------------	-----------	-----------	------

Table B–11	Instance Codes	(sheet 5 of 31)

Instance Code	Description	
01692D02	The CACHEA0 DRAB detected a Nonexistent Memory Error condition during a Device Port attempt to write CACHEA0 memory.	14
016A2D02	The CACHEA0 DRAB detected a Nonexistent Memory Error condition during a Device Port attempt to write a byte to CACHEA0 memory.	14
016B2D02	The CACHEA0 DRAB detected a Nonexistent Memory Error condition during a Device Port attempt to read CACHEA0 memory.	14
016C2D02	The CACHEA0 DRAB detected a Nonexistent Memory Error condition during an i960 attempt to write CACHEA0 memory.	14
016D2D02	The CACHEA0 DRAB detected a Nonexistent Memory Error condition during an i960 attempt to write a byte to CACHEA0 memory.	14
016E2D02	The CACHEA0 DRAB detected a Nonexistent Memory Error condition during an i960 attempt to read CACHEA0 memory.	14
016F2D02	The CACHEA1 DRAB detected a Nonexistent Memory Error condition during an FX attempt to write CACHEA1 memory.	14
01702D02	The CACHEA1 DRAB detected a Nonexistent Memory Error condition during an FX attempt to write a byte to CACHEA1 memory.	14
01712D02	The CACHEA1 DRAB detected a Nonexistent Memory Error condition during an FX attempt to read CACHEA1 memory.	14
01722D02	The CACHEA1 DRAB detected a Nonexistent Memory Error condition during a Host Port attempt to write CACHEA1 memory.	14
01732D02	The CACHEA1 DRAB detected a Nonexistent Memory Error condition during a Host Port attempt to write a byte to CACHEA1 memory.	14
01742D02	The CACHEA1 DRAB detected a Nonexistent Memory Error condition during a Host Port attempt to read CACHEA1 memory.	14
01752D02	The CACHEA1 DRAB detected a Nonexistent Memory Error condition during a Device Port attempt to write CACHEA1 memory.	14
01762D02	The CACHEA1 DRAB detected a Nonexistent Memory Error condition during a Device Port attempt to write a byte to CACHEA1 memory.	14
01772D02	The CACHEA1 DRAB detected a Nonexistent Memory Error condition during a Device Port attempt to read CACHEA1 memory.	14
01782D02	The CACHEA1 DRAB detected a Nonexistent Memory Error condition during an i960 attempt to write CACHEA1 memory.	14
01792D02	The CACHEA1 DRAB detected a Nonexistent Memory Error condition during an i960 attempt to write a byte to CACHEA1 memory.	14

Service N	lanual
	Service N

Table B-11 Instance Codes (sheet 6 of 31)

Instance Code	Description	Template
017A2D02	The CACHEA1 DRAB detected a Nonexistent Memory Error condition during an i960 attempt to read CACHEA1 memory.	14
017B2E02	The CACHEB0 DRAB detected a Nonexistent Memory Error condition during an FX attempt to write CACHEB0 memory.	14
017C2E02	The CACHEB0 DRAB detected a Nonexistent Memory Error condition during an FX attempt to write a byte to CACHEB0 memory.	14
017D2E02	The CACHEB0 DRAB detected a Nonexistent Memory Error condition during an FX attempt to read CACHEB0 memory.	14
017E2E02	The CACHEB0 DRAB detected a Nonexistent Memory Error condition during a Host Port attempt to write CACHEB0 memory.	14
017F2E02	The CACHEB0 DRAB detected a Nonexistent Memory Error condition during a Host Port attempt to write a byte to CACHEB0 memory.	14
01802E02	The CACHEB0 DRAB detected a Nonexistent Memory Error condition during a Host Port attempt to read CACHEB0 memory.	14
01812E02	The CACHEB0 DRAB detected a Nonexistent Memory Error condition during a Device Port attempt to write CACHEB0 memory.	14
01822E02	The CACHEB0 DRAB detected a Nonexistent Memory Error condition during a Device Port attempt to write a byte to CACHEB0 memory.	14
01832E02	The CACHEB0 DRAB detected a Nonexistent Memory Error condition during a Device Port attempt to read CACHEB0 memory.	14
01842E02	The CACHEB0 DRAB detected a Nonexistent Memory Error condition during an i960 attempt to write CACHEB0 memory.	14
01852E02	The CACHEB0 DRAB detected a Nonexistent Memory Error condition during an i960 attempt to write a byte to CACHEB0 memory.	14
01862E02	The CACHEB0 DRAB detected a Nonexistent Memory Error condition during an i960 attempt to read CACHEB0 memory.	14
01872E02	The CACHEB1 DRAB detected a Nonexistent Memory Error condition during an FX attempt to write CACHEB1 memory.	14
01882E02	The CACHEB1 DRAB detected a Nonexistent Memory Error condition during an FX attempt to write a byte to CACHEB1 memory.	14
01892E02	The CACHEB1 DRAB detected a Nonexistent Memory Error condition during an FX attempt to read CACHEB1 memory.	14
018A2E02	The CACHEB1 DRAB detected a Nonexistent Memory Error condition during a Host Port attempt to write CACHEB1 memory.	14

Event Reporting:	Templates and Codes	B–29

Table B-11 Instance Codes (sheet 7 of 31)

Instance Code	Description	Template
018B2E02	The CACHEB1 DRAB detected a Nonexistent Memory Error condition during a Host Port attempt to write a byte to CACHEB1 memory.	14
018C2E02	The CACHEB1 DRAB detected a Nonexistent Memory Error condition during a Host Port attempt to read CACHEB1 memory.	14
018D2E02	The CACHEB1 DRAB detected a Nonexistent Memory Error condition during a Device Port attempt to write CACHEB1 memory.	14
018E2E02	The CACHEB1 DRAB detected a Nonexistent Memory Error condition during a Device Port attempt to write a byte to CACHEB1 memory.	14
018F2E02	The CACHEB1 DRAB detected a Nonexistent Memory Error condition during a Device Port attempt to read CACHEB1 memory.	14
01902E02	The CACHEB1 DRAB detected a Nonexistent Memory Error condition during an i960 attempt to write CACHEB1 memory.	14
01912E02	The CACHEB1 DRAB detected a Nonexistent Memory Error condition during an i960 attempt to write a byte to CACHEB1 memory.	14
01922E02	The CACHEB1 DRAB detected a Nonexistent Memory Error condition during an i960 attempt to read CACHEB1 memory.	14
01933702	The Master DRAB unexpectedly reported a Nonexistent Memory Error condition.	14
01943702	The CACHEA0 DRAB unexpectedly reported a Nonexistent Memory Error condition.	14
01953702	The CACHEA1 DRAB unexpectedly reported a Nonexistent Memory Error condition.	14
01963702	The CACHEB0 DRAB unexpectedly reported a Nonexistent Memory Error condition.	14
01973702	The CACHEB1 DRAB unexpectedly reported a Nonexistent Memory Error condition.	14
01982F02	An Address Parity error was detected during a memory refresh attempt by the Master DRAB.	14
01993002	An Address Parity error was detected during a memory refresh attempt by the CACHEA0 DRAB.	14
019A3002	An Address Parity error was detected during a memory refresh attempt by the CACHEA1 DRAB.	14
019B3102	An Address Parity error was detected during a memory refresh attempt by the CACHEB0 DRAB.	14

Service	Manual
	Service

Table B-11 Instance Codes (sheet 8 of 31)

Instance Code	Description	Template
019C3102	An Address Parity error was detected during a memory refresh attempt by the CACHEB1 DRAB.	14
019D2F02	The Master DRAB detected an Address Parity error during an FX attempt to read buffer memory.	14
019E2F02	The Master DRAB detected an Address Parity error during a Host Port attempt to read buffer memory.	14
019F2F02	The Master DRAB detected an Address Parity error during a Device Port attempt to read buffer memory.	14
01A02F02	The Master DRAB detected an Address Parity error during an i960 attempt to read buffer memory.	14
01A13002	The CACHEA0 DRAB detected an Address Parity error during an FX attempt to read CACHEA0 memory.	14
01A23002	The CACHEA0 DRAB detected an Address Parity error during a Host Port attempt to read CACHEA0 memory.	14
01A33002	The CACHEA0 DRAB detected an Address Parity error during a Device Port attempt to read CACHEA0 memory.	14
01A43002	The CACHEA0 DRAB detected an Address Parity error during an i960 attempt to read CACHEA0 memory.	14
01A53002	The CACHEA1 DRAB detected an Address Parity error during an FX attempt to read CACHEA1 memory.	14
01A63002	The CACHEA1 DRAB detected an Address Parity error during a Host Port attempt to read CACHEA1 memory.	14
01A73002	The CACHEA1 DRAB detected an Address Parity error during a Device Port attempt to read CACHEA1 memory.	14
01A83002	The CACHEA1 DRAB detected an Address Parity error during an i960 attempt to read CACHEA1 memory.	14
01A93102	The CACHEB0 DRAB detected an Address Parity error during an FX attempt to read CACHEB0 memory.	14
01AA3102	The CACHEB0 DRAB detected an Address Parity error during a Host Port attempt to read CACHEB0 memory.	14
01AB3102	The CACHEB0 DRAB detected an Address Parity error during a Device Port attempt to read CACHEB0 memory.	14
01AC3102	The CACHEB0 DRAB detected an Address Parity error during an i960 attempt to read CACHEB0 memory.	14

Event toporting. Templatee and eedee D e	Event Reporting:	Templates	and Codes	B–31
--	------------------	-----------	-----------	------

Table B-11 Instance Codes (sheet 9 of 31)

Instance Code	Description	Template
01AD3102	The CACHEB1 DRAB detected an Address Parity error during an FX attempt to read CACHEB1 memory.	14
01AE3102	The CACHEB1 DRAB detected an Address Parity error during a Host Port attempt to read CACHEB1 memory.	14
01AF3102	The CACHEB1 DRAB detected an Address Parity error during a Device Port attempt to read CACHEB1 memory.	14
01B03102	The CACHEB1 DRAB detected an Address Parity error during an i960 attempt to read CACHEB1 memory.	14
01B13702	The Master DRAB unexpectedly reported an Address Parity error.	14
01B23702	The CACHEA0 DRAB unexpectedly reported an Address Parity error.	14
01B33702	The CACHEA1 DRAB unexpectedly reported an Address Parity error.	14
01B43702	The CACHEB0 DRAB unexpectedly reported an Address Parity error.	14
01B53702	The CACHEB1 DRAB unexpectedly reported an Address Parity error.	14
01B63202	The Master DRAB detected an Ibus Parity Error during an i960 ID/Cache access attempt.	14
01B73202	The Master DRAB detected an Ibus Parity Error during an i960 buffer memory access attempt.	14
01B83202	The Master DRAB detected an Ibus Parity Error during an i960 buffer memory access attempt with a simultaneous but unrelated CACHExn memory access.	14
01B93202	The Master DRAB detected an Ibus Parity Error during an i960 CACHEA memory access with a simultaneous but unrelated buffer memory access.	14
01BA3202	The Master DRAB detected an Ibus Parity Error during an i960 CACHEB memory access with a simultaneous but unrelated buffer memory access.	14
01BB3202	The Master DRAB detected an Ibus Parity Error during an i960 CACHEA Control and Status Register access with a simultaneous but unrelated buffer memory access.	14
01BC3202	The Master DRAB detected an Ibus Parity Error during an i960 CACHEB Control and Status Register access with a simultaneous but unrelated buffer memory access.	14
01BD3702	The Master DRAB unexpectedly reported an Ibus Parity error.	14
01BE3702	The CACHEA0 DRAB unexpectedly reported an Ibus Parity error.	14
01BF3702	The CACHEA1 DRAB unexpectedly reported an Ibus Parity error.	14

B–32	Service	Manual
0 02	0011100	manaa

Table B-11 Instance Codes (sheet 10 of 31)

Instance Code	Description	Template
01C03702	The CACHEB0 DRAB unexpectedly reported an Ibus Parity error.	14
01C13702	The CACHEB1 DRAB unexpectedly reported an Ibus Parity error.	14
01C22F02	The Master DRAB detected a Write Data Parity error during an FX attempt to write buffer memory.	14
01C32F02	The Master DRAB detected a Write Data Parity error during an FX attempt to write a byte to buffer memory.	14
01C42F02	The Master DRAB detected a Write Data Parity error during a Host Port attempt to write buffer memory.	14
01C52F02	The Master DRAB detected a Write Data Parity error during a Host Port attempt to write a byte to buffer memory.	14
01C62F02	The Master DRAB detected a Write Data Parity error during a Device Port attempt to write buffer memory.	14
01C72F02	The Master DRAB detected a Write Data Parity error during a Device Port attempt to write a byte to buffer memory.	14
01C82F02	The Master DRAB detected a Write Data Parity error during an i960 attempt to write buffer memory.	14
01C92F02	The Master DRAB detected a Write Data Parity error during an i960 attempt to write a byte to buffer memory.	14
01CA3002	The CACHEA0 DRAB detected a Write Data Parity error during an FX attempt to write CACHEA0 memory.	14
01CB3002	The CACHEA0 DRAB detected a Write Data Parity error during an FX attempt to write a byte to CACHEA0 memory.	14
01CC3002	The CACHEA0 DRAB detected a Write Data Parity error during a Host Port attempt to write CACHEA0 memory.	14
01CD3002	The CACHEA0 DRAB detected a Write Data Parity error during a Host Port attempt to write a byte to CACHEA0 memory.	14
01CE3002	The CACHEA0 DRAB detected a Write Data Parity error during a Device Port attempt to write CACHEA0 memory.	14
01CF3002	The CACHEA0 DRAB detected a Write Data Parity error during a Device Port attempt to write a byte to CACHEA0 memory.	14
01D03002	The CACHEA0 DRAB detected a Write Data Parity error during an i960 attempt to write CACHEA0 memory.	14
01D13002	The CACHEA0 DRAB detected a Write Data Parity error during an i960 attempt to write a byte to CACHEA0 memory.	14

Event Reporting:	Templates and Codes	B–33

 Table B-11
 Instance Codes (sheet 11 of 31)

Instance Code	Description	Template
01D23002	The CACHEA1 DRAB detected a Write Data Parity error during an FX attempt to write CACHEA1 memory.	14
01D33002	The CACHEA1 DRAB detected a Write Data Parity error during an FX attempt to write a byte to CACHEA1 memory.	14
01D43002	The CACHEA1 DRAB detected a Write Data Parity error during a Host Port attempt to write CACHEA1 memory.	14
01D53002	The CACHEA1 DRAB detected a Write Data Parity error during a Host Port attempt to write a byte to CACHEA1 memory.	14
01D63002	The CACHEA1 DRAB detected a Write Data Parity error during a Device Port attempt to write CACHEA1 memory.	14
01D73002	The CACHEA1 DRAB detected a Write Data Parity error during a Device Port attempt to write a byte to CACHEA1 memory.	14
01D83002	The CACHEA1 DRAB detected a Write Data Parity error during an i960 attempt to write CACHEA1 memory.	14
01D93002	The CACHEA1 DRAB detected a Write Data Parity error during an i960 attempt to write a byte to CACHEA1 memory.	14
01DA3102	The CACHEB0 DRAB detected a Write Data Parity error during an FX attempt to write CACHEB0 memory.	14
01DB3102	The CACHEB0 DRAB detected a Write Data Parity error during an FX attempt to write a byte to CACHEB0 memory.	14
01DC3102	The CACHEB0 DRAB detected a Write Data Parity error during a Host Port attempt to write CACHEB0 memory.	14
01DD3102	The CACHEB0 DRAB detected a Write Data Parity error during a Host Port attempt to write a byte to CACHEB0 memory.	14
01DE3102	The CACHEB0 DRAB detected a Write Data Parity error during a Device Port attempt to write CACHEB0 memory.	14
01DF3102	The CACHEB0 DRAB detected a Write Data Parity error during a Device Port attempt to write a byte to CACHEB0 memory.	14
01E03102	The CACHEB0 DRAB detected a Write Data Parity error during an i960 attempt to write CACHEB0 memory.	14
01E13102	The CACHEB0 DRAB detected a Write Data Parity error during an i960 attempt to write a byte to CACHEB0 memory.	14
01E23102	The CACHEB1 DRAB detected a Write Data Parity error during an FX attempt to write CACHEB1 memory.	14

B–34	Service	Manual

Table B-11 Instance Codes (sheet 12 of 31)

Instance Code	Description	Template
01E33102	The CACHEB1 DRAB detected a Write Data Parity error during an FX attempt to write a byte to CACHEB1 memory.	14
01E43102	The CACHEB1 DRAB detected a Write Data Parity error during a Host Port attempt to write CACHEB1 memory.	14
01E53102	The CACHEB1 DRAB detected a Write Data Parity error during a Host Port attempt to write a byte to CACHEB1 memory.	14
01E63102	The CACHEB1 DRAB detected a Write Data Parity error during a Device Port attempt to write CACHEB1 memory.	14
01E73102	The CACHEB1 DRAB detected a Write Data Parity error during a Device Port attempt to write a byte to CACHEB1 memory.	14
01E83102	The CACHEB1 DRAB detected a Write Data Parity error during an i960 attempt to write CACHEB1 memory.	14
01E93102	The CACHEB1 DRAB detected a Write Data Parity error during an i960 attempt to write a byte to CACHEB1 memory.	14
01EA3702	The Master DRAB unexpectedly reported a Write Data Parity error.	14
01EB3702	The CACHEA0 DRAB unexpectedly reported a Write Data Parity error.	14
01EC3702	The CACHEA1 DRAB unexpectedly reported a Write Data Parity error.	14
01ED3702	The CACHEB0 DRAB unexpectedly reported a Write Data Parity error.	14
01EE3702	The CACHEB1 DRAB unexpectedly reported a Write Data Parity error.	14
02020064	A Disk Bad Block Replacement attempt was completed for a write operation within the user data area of the disk.	51
	Information on the actual replacement blocks is not available to the controller and is therefore not included in the event report due to the manner in which Bad Block Replacement is performed on SCSI disk drives.	
02032001	A journal SRAM backup battery failure was detected during a system restart.	12
	The Memory Address field contains the starting physical address of the Journal SRAM.	
02042001	A journal SRAM backup battery failure was detected during a periodic check.	12
	The Memory Address field contains the starting physical address of the Journal SRAM.	

Event Reporting:	Templates and Codes	B–35

Fable B-11	Instance	Codes	(sheet	13	of 31)
------------	----------	-------	--------	----	-------	---

Instance Code	Description	Template
02052301	A processor interrupt was generated by the CACHE Dynamic Ram controller and ArBitration engine (DRAB) with an indication that the CACHE backup battery has failed or is low (needs charging).	12
	The Memory Address field contains the starting physical address of the CACHEA0 memory.	
02062301	The CACHE backup battery has been declared bad.	12
	Either it failed testing performed by the Cache Diagnostics during system start-up or it was low (insufficiently charged) for longer than the expected duration.	
	The Memory Address field contains the starting physical address of the CACHEA0 memory.	
02072201	The CACHE Dynamic Ram controller and ArBitration engine 0 (DRAB0) failed testing performed by the Cache Diagnostics.	14
	The Memory Address field contains the starting physical address of the CACHEA0 memory.	
02082201	The CACHE Dynamic Ram controller and ArBitration engine 1 (DRAB1) failed testing performed by the Cache Diagnostics.	14
	The Memory Address field contains the starting physical address of the CACHEA1 memory.	
02090064	A data compare error was detected during the execution of a compare modified READ or WRITE command.	51
020B2201	Failed read test of a write-back metadata page residing in cache.	14
	Dirty write-back cached data exists and cannot be flushed to media (the dirty data is lost).	
	The Memory Address field contains the starting physical address of the CACHEA0 memory.	
020C2201	Cache Diagnostics have declared the cache bad during testing.	14
	The Memory Address field contains the starting physical address of the CACHEA0 memory.	
020D2401	The wrong write cache module is configured.	14
	The serial numbers do not match. Either the existing or the expected cache contains dirty write-back cached data.	
	The Memory Address, Byte Count, DRAB register, and Diagnostic register fields are undefined.	

Table B-11 Instance Codes (sheet 14 of 31)

Instance Code	Description	Template
020E2401	The write cache module is missing.	14
	A cache is expected to be configured and contains dirty write-back cached data.	
	The Memory Address, Byte Count, DRAB register, and Diagnostic register fields are undefined.	
020F2401	The write cache modules are not configured properly for a dual-redundant configuration.	14
	One of the write cache modules is not present to perform cache failover of dirty write-back cached data.	
	The Memory Address, Byte Count, DRAB register, and Diagnostic register fields are undefined.	
02102401	The write cache modules are not configured properly for a dual-redundant configuration.	14
	One of the cache modules is not the same size to perform cache failover of dirty write-back cached data.	
	The Memory Address, Byte Count, DRAB register, and Diagnostic register fields are undefined.	
02110064	Disk Bad Block Replacement attempt completed for a read within the user data area of the disk.	51
	Information on the actual replacement blocks is not available to the controller and is therefore not included in the event report due to the manner in which Bad Block Replacement is performed on SCSI disk drives.	
02192401	The cache modules are not configured properly for a dual-redundant configuration.	14
	One of the cache modules is not the same type (both write cache) to perform cache failover of dirty write-back cached data.	
	The Memory Address, Byte Count, DRAB register, and Diagnostic register fields are undefined.	
021A0064	Disk Bad Block Replacement attempt completed for a write of controller metadata to a location outside the user data area of the disk.	41
	Information on the actual replacement blocks is not available to the controller and is therefore not included in the event report due to the way Bad Block Replacement is performed on SCSI disk drives.	

Event Reporting:	Templates a	nd Codes	B–37
------------------	-------------	----------	------

Table B-11 Instance Codes (sheet 15 of 31)

Instance Code	Description	Template
021B0064	Disk Bad Block Replacement attempt completed for a read of controller metadata from a location outside the user data area of the disk.	41
	Information on the actual replacement blocks is not available to the controller and is therefore not included in the event report due to the way Bad Block Replacement is performed on SCSI disk drives.	
021D0064	Unable to lock the other controller's cache in a write-cache failover attempt.	14
	Either a latent error could not be cleared on the cache or the other controller did not release its cache.	
	The Memory Address, Byte Count, DRAB register, and Diagnostic register fields are undefined.	
021E0064	The device specified in the Device Locator field has been added to the RAIDset associated with the logical unit.	51
	The RAIDset is now in Reconstructing state.	
02280064	The device specified in the Device Locator field has been added to the Mirrorset associated with the logical unit.	51
	The new Mirrorset member is now in Copying state.	
022C0064	The device specified in the Device Locator has transitioned from Copying or Normalizing state to Normal state.	51
022E0064	The device specified in the Device Locator field has been converted to a Mirrorset associated with the logical unit.	51
022F0064	The mirrored device specified in the Device Locator field has been converted to a single device associated with the logical unit.	51
02382201	The Cache Dynamic Ram Controller and Arbitration Engine 1 (DRAB1), which resides on the other cache module, failed testing performed by the cache diagnostics.	14
	This is the mirrored cache DRAB. The Memory Address field contains the starting physical address of the CACHEB0 memory.	
02392201	Both the Cache Dynamic Ram Controller and Arbitration Engine 0 (DRAB0) and 1 (DRAB1), which resides on the other cache module, failed testing performed by the cache diagnostics.	14
	Data cannot be accessed in the primary cache or the mirror cache.	
	The Memory Address field contains the starting physical address of the CACHEA0 memory.	

B-38 Service Manual

Table B-11 Instance Codes (sheet 16 of 31)

Instance Code	Description	Template
023E2401	Metadata residing on the two cache modules disagree as to the mirror mode.	14
	The Memory Address, Byte Count, DRAB register, and Diagnostic register fields are undefined.	
023F2301	The CACHE B backup battery covering the mirror cache is insufficiently charged.	12
	The Memory Address field contains the starting physical address of the CACHEB1 memory	
02402301	The CACHE B backup battery covering the mirror cache has been declared bad.	12
	Either it failed testing performed by the Cache Diagnostics during system start-up or it was low (insufficiently charged) for longer than the expected duration.	
	The Memory Address field contains the starting physical address of the CACHEB1 memory.	
02412401	Mirrored cache writes have been disabled.	14
	Either the primary or the mirror cache has been declared bad or invalid and will not be used.	
	The Memory Address, Byte Count, DRAB register, and Diagnostic register fields are undefined.	
02422464	Cache failover attempt failed because the other cache was illegally configured with SIMMs.	14
	The Memory Address, Byte Count, DRAB register, and Diagnostic register fields are undefined.	
02432201	The Cache Dynamic Ram controller and Arbitration Engine 0 (DRAB0) failed Cache Diagnostics testing performed on Cache B (other cache) during a cache failover attempt.	14
	The Memory Address field contains the starting physical address of the CACHEB0 memory.	
02442201	The Cache Dynamic Ram controller and Arbitration Engine 1 (DRAB1) failed Cache Diagnostics testing performed on Cache B (other cache) during a cache failover attempt.	14
	The Memory Address field contains the starting physical address of the CACHEB1 memory.	

Event Reporting:	Templates and Codes	B–39
------------------	---------------------	------

Instance Code	Description	Template
02452201	The Cache Dynamic Ram controller and Arbitration Engine 0 and 1(DRAB0 and DRAB1) failed Cache Diagnostics testing performed on Cache B (other cache) during a cache failover attempt.	14
	The Memory Address field contains the starting physical address of the CACHEB0 memory.	
02492401	The write cache module which is the mirror for the primary cache is not present (missing).	14
	A cache is expected to be configured and it may contain dirty write cached data.	
	The Memory Address, Byte Count, DRAB register, and Diagnostic register fields are undefined.	
024A2401	Mirroring is enabled and the primary write cache module is not present (missing).	14
	A cache is expected to be configured and it may contain dirty write cached data.	
	The Memory Address, Byte Count, DRAB register, and Diagnostic register fields are undefined.	
024B2401	Write-back caching has been disabled either due to a cache or battery- related problem.	14
	The exact nature of the problem is reported by other instance codes.	
	The Memory Address, Byte Count, DRAB register, and Diagnostic register fields are undefined.	
024F2401	This cache module is populated with SIMMs incorrectly.	14
	Cache metadata resident in the cache module indicates that unflushed write cache data exists for a cache size different than what is found present.	
	The Memory Address, Byte Count, DRAB register, and Diagnostic register fields are undefined.	
0251000A	This command failed because the target unit is not online to the controller.	51
	The Information field of the Device Sense Data contains the block number of the first block in error.	

B-40 Service Manual

Table B-11 Instance Codes (sheet 18 of 31)

Instance Code	Description	Template
0252000A	The last block of data returned contains a forced error.	51
	A forced error occurs when a disk block is successfully reassigned, but the data in that block is lost. Re-writing the disk block will clear the forced error condition.	
	The Information field of the Device Sense Data contains the block number of the first block in error.	
0253000A	The data supplied from the host for a data compare operation differs from the data on the disk in the specified block.	51
	The Information field of the Device Sense Data contains the block number of the first block in error.	
0254000A	The command failed due to a host data transfer failure.	51
	The Information field of the Device Sense Data contains the block number of the first block in error.	
0255000A	The controller was unable to successfully transfer data to the target unit.	51
	The Information field of the Device Sense Data contains the block number of the first block in error.	
0256000A	The write operation failed because the unit is Data Safety Write Protected.	51
	The Information field of the Device Sense Data contains the block number of the first block in error.	
0257000A	An attempt to reassign a bad disk block failed.	51
	The contents of the disk block is lost. The Information field of the Device Sense Data contains the block number of the first block in error.	
0258000A	This command was aborted prior to completion.	51
	The Information field of the Device Sense Data contains the block number of the first block in error.	
0259000A	The write operation failed because the unit is hardware write protected.	51
	The Information field of the Device Sense Data contains the block number of the first block in error.	
025A000A	The command failed because the unit became inoperative prior to command completion.	51
	The Information field of the Device Sense Data contains the block number of the first block in error.	

Event Reporting:	Templates and C	odes B-41

Table B-11 Instance Codes (sheet 19 of 31)

Instance Code	Description	Template
025B000A	The command failed because the unit became unknown to the controller prior to command completion.	51
	The Information field of the Device Sense Data contains the block number of the first block in error.	
025C000A	The command failed because of a unit media format error.	51
	The Information field of the Device Sense Data contains the block number of the first block in error.	
025D000A	The command failed for an unknown reason.	51
	The Information field of the Device Sense Data contains the block number of the first block in error.	
025F2201	Memory diagnostics performed during controller initialization detected an excessive number of memory errors (512 pages or more) detected on the primary cache memory.	14
	Diagnostics have not declared the cache failed, due to the isolated bad memory regions, but this is a warning to replace the cache as soon as possible in case of further degradation.	
	The firmware performed the necessary error recovery as appropriate.	
	The Memory Address and Byte Count fields are undefined.	
02602201	Memory diagnostics performed during controller initialization detected an excessive number of memory errors (512 pages or more) detected on mirrored cache memory.	14
	Diagnostics has not declared the cache failed, due to the isolated bad memory regions, but this is a warning to replace the cache as soon as possible in case of further degradation.	
	The firmware performed the necessary error recovery as appropriate.	
	The Memory Address, Byte Count fields are undefined.	
02613801	Memory diagnostics performed during controller initialization detected that the SIMM in location 1 failed on the cache module.	14
	The Byte Count field is undefined.	
02623801	Memory diagnostics performed during controller initialization detected that the SIMM in location 2 failed on the cache module.	14
	The Byte Count field is undefined.	

B-42 Service Manual

Table B-11 Instance Codes (sheet 20 of 31)

Instance Code	Description	Template
02633801	Memory diagnostics performed during controller initialization detected that the SIMM in location 3 failed on the cache module.	14
	The Byte Count field is undefined.	
02643801	Memory diagnostics performed during controller initialization detected that the SIMM in location 4 failed on the cache module.	14
	The Byte Count field is undefined.	
02653801	 Memory diagnostics performed during controller initialization detected that the SIMM in location 3 on the "other controller" cache module (on mirrored cache) failed: Mirroring has been disabled. The Byte Count field is undefined. 	14
02663801	 Memory diagnostics performed during controller initialization detected that the SIMM in location 4 on the "other controller" cache module (on mirrored cache) failed: Mirroring has been disabled. The Byte Count field is undefined. 	14
02675201	 The device specified in the Device Locator field has been removed from the RAIDset associated with the logical unit: The removed device is now in the failedset. The RAIDset is now in Reduced state. 	51
0268530A	The device specified in the Device Locator field failed to be added to the RAIDset associated with the logical unit. The device remains in the Spareset.	51
02695401	The device specified in the Device Locator field failed to be added to the RAIDset associated with the logical unit. The failed device has been moved to the Failedset.	51
026A5001	The RAIDset associated with the logical unit has gone inoperative.	51
026B0064	The RAIDset associated with the logical unit has transitioned from the Normal state to the Reconstructing state.	51
026C0064	The RAIDset associated with the logical unit has transitioned from the Reconstructing state to the Normal state.	51
026D5201	The device specified in the Device Locator field has been removed from the Mirrorset associated with the logical unit.	51
	The removed device is now in the Failedset.	

Event Reporting:	Templates	and Codes	B–43
------------------	-----------	-----------	------

Table B-11 Instance Codes (sheet 21 of 31)

Instance Code	Description	Template
026E0001	 The device specified in the Device Locator field has been reduced from the Mirrorset associated with the logical unit: The nominal number of members in the mirrorset decreased by one. The reduced device is now available for use. 	51
026F530A	The device specified in the Device Locator field failed to be added to the mirrorset associated with the logical unit.	51
	The device remains in the spareset.	
02705401	The device specified in the Device Locator field failed to be added to the mirrorset associated with the logical unit.	51
	The failed device was moved to the Failedset.	
02710064	The mirrorset associated with the logical unit has had its nominal membership changed.	51
	The new nominal number of members for the mirrorset is specified in the Device Sense Data Information field.	
02725101	The Mirrorset associated with the logical unit has gone inoperative.	51
02730001	The device specified in the Device Locator field had a read error which has been repaired with data from another mirrorset member.	51
02745A0A	The device specified in the Device Locator field had a read error.	51
	Attempts to repair the error with data from another mirrorset member failed due to lack of alternate error-free data source.	
02755601	 The device specified in the Device Locator field had a read error: Attempts to repair the error with data from another mirrorset member failed due to a write error on the original device. The original device will be removed from the mirrorset. 	51
03010101	No command control structures are available for a disk operation.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	
03022002	A SCSI interface chip command timeout occurred during a disk operation.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	
03034002	A byte transfer timeout occurred during a disk operation.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	

B-44 Service Manual

Table B-11 Instance Codes (sheet 22 of 31)

Instance Code	Description	Template
03044402	SCSI bus errors were detected during a disk operation.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	
03052002	The device port SCSI chip reported a gross error during a disk operation.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	
03062002	A non-SCSI bus parity error occurred during a disk operation.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	
03070101	A source driver programming error was encountered during a disk operation.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	
03080101	A miscellaneous SCSI Port Driver coding error was detected during a disk operation.	41
	The Associated Additional Sense Code and Associated Additional Sense Code Qualifier fields are undefined.	
03094002	An unrecoverable disk drive error was encountered while performing work related to disk unit operations.	51
030C4002	A Drive failed because a Test Unit Ready command or a Read Capacity command failed.	51
030D000A	Drive was failed by a Mode Select command received from the host.	51
030E4002	Drive failed due to a deferred error reported by drive.	51
030F4002	Unrecovered Read or Write error.	51
03104002	No response from one or more drives.	51
0311430A	Nonvolatile memory and drive metadata indicate conflicting drive configurations.	51
0312430A	The Synchronous Transfer Value differs between drives in the same storageset.	51
03134002	The Maximum number of errors for this data transfer operation was exceeded.	51
03144002	Drive reported recovered error without transferring all data.	51
03154002	Data returned from drive is invalid.	51

Event Reporting:	Templates	and Codes	B–45

Table B-11 Instance Codes (sheet 23 of 31)

Instance Code	Description	Template
03164002	Request Sense command to drive failed.	51
03170064	Illegal command for pass-through mode.	51
03180064	Data transfer request error.	51
03194002	Premature completion of a drive command.	51
031A4002	Command timeout.	51
031B0101	Watchdog timer timeout.	51
031C4002	Disconnect timeout.	51
031D4002	Unexpected bus phase.	51
031E4002	Disconnect expected.	51
031F4002	ID Message not sent by drive.	51
03204002	Synchronous negotiation error.	51
03214002	The drive unexpectedly disconnected from the SCSI bus.	51
03224002	Unexpected message.	51
03234002	Unexpected Tag message.	51
03244002	Channel busy.	51
03254002	A Message Reject was received on a valid message.	51
0326450A	The disk device reported Vendor Unique SCSI Sense Data.	51
03270101	A disk-related error code was reported which was unknown to the Fault Management firmware.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	
0328450A	The disk device reported standard SCSI Sense Data.	51
03324002	SCSI bus selection timeout.	
03330002	Device power on reset.	
03344002	A target assertion of REQ occurred after a WAIT DISCONNECT.	
03354002	A Test Unit Ready command or a Read Capacity command to the device failed during device initialization.	
03364002	The device reported a deferred error during device initialization.	

B–46	Service	Manual

Table B-11 Instance Codes (sheet 24 of 31)

Instance Code	Description	Template
03374002	The maximum number of errors for a data transfer operation was exceeded during device initialization.	
03384002	A Request Sense command to the device failed.	
03394002	A command timeout occurred.	
033A4002	A disconnect timeout occurred.	
033B4002	Unexpected bus phase.	
033C4002	The device unexpectedly disconnected from the SCSI bus.	
033D4002	Unexpected message.	
033E4002	A Message Reject was received on a valid message.	
033F0101	No command control structures are available for passthrough device operation.	
03402002	The device port SCSI chip reported a gross error.	
03410101	The miscellaneous SCSI Port Driver encountered a coding error.	
03420101	A passthrough device-related internal error code was reported which is not recognized by the Fault Management firmware.	
03434002	During device initialization, the device reported unexpected standard SCSI Sense Data.	
03C80101	No command control structures are available for operation to a device which is unknown to the controller.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	
03C92002	A SCSI interface chip command timeout occurred during operation to a device which is unknown to the controller.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	
03CA4002	A byte transfer timeout occurred during operation to a device which is unknown to the controller.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	

Event Reporting:	Templates	and Codes	B–47

 Table B-11
 Instance Codes (sheet 25 of 31)

Instance Code	Description	Template
03CB0101	A miscellaneous SCSI Port Driver coding error was detected during operation to a device which is unknown to the controller.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	
03CC0101	An error code was reported which was unknown to the Fault Management firmware.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	
03CD2002	The device port SCSI chip reported a gross error during operation to a device which is unknown to the controller.	41
	The Associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	
03CE2002	A Non-SCSI bus parity error was detected during operation to a device which is unknown to the controller.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	
03CF0101	A source driver programming error was encountered during operation to a device which is unknown to the controller.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	
03D04002	A failure occurred while attempting a SCSI Test Unit Ready or Read Capacity command to a device (the actual device type is unknown to the controller).	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	
03D14002	The identification of a device does not match the organization information (the actual device type is unknown to the controller).	41
	The associated Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined.	
03D24402	SCSI bus errors were detected during device operation. The device type is unknown to the controller.	41
	The associated Additional Sense Code and Additional Sense Code Qualifier fields are undefined.	

B-48 Service Manual

Table B-11 Instance Codes (sheet 26 of 31)

Instance Code	Description	Template
03D3450A	During device initialization, the device reported the SCSI Sense Key NO SENSE.	41
	This indicates that there is no specific sense key information to be reported for the designated logical unit—this would be the case for a successful command or a command that received CHECK CONDITION or COMMAND TERMINATED status because one of the FM, EOM, or ILI bits is set to one in the sense data flags field.	
03D4450A	During device initialization, the device reported the SCSI Sense Key RECOVERED ERROR.	41
	This indicates the last command completed successfully with some recovery action performed by the target.	
03D5450A	During device initialization, the device reported the SCSI Sense Key NOT READY.	41
	This indicates that:	
	 Operator intervention may be required to correct this condition. 	
03D6450A	During device initialization, the device reported the SCSI Sense Key MEDIUM ERROR.	41
	This indicates that the command terminated with a non-recovered error condition that was probably caused by a flaw in the medium or an error in the recorded data.	
	The MEDIUM ERROR sense key may also be returned if the target is unable to distinguish between a flaw in the medium and a specific hardware failure (HARDWARE ERROR sense key).	
03D7450A	During device initialization, the device reported the SCSI Sense Key HARDWARE ERROR.	41
	This indicates that the target detected a non-recoverable hardware failure (for example, controller failure, device failure, parity error, etc.) while performing the command or during a self test.	

Event Reporting:	Templates and Codes	B–49

Table B–11	Instance Codes	(sheet 27 d	of 31)
		(511000	/= = _ /

Instance Code	Description	Template
03D8450A	During device initialization, the device reported the SCSI Sense Key ILLEGAL REQUEST.	41
	 This indicates that: There was an illegal parameter in the command descriptor block, or There was an illegal parameter in the additional parameters supplied as data for some commands (FORMAT UNIT, SEARCH DATA, etc.). 	
	If the target detects an invalid parameter in the command descriptor block, then it terminates the command without altering the medium.	
	If the target detects an invalid parameter in the additional parameters supplied as data, then the target may have already altered the medium.	
	This sense key may also indicate that an invalid IDENTIFY message was received.	
03D9450A	During device initialization, the device reported the SCSI Sense Key UNIT ATTENTION. This indicates that the removable medium may have been changed or the target has been reset.	41
03DA450A	During device initialization, the device reported the SCSI Sense Key DATA PROTECT.	41
	 This indicates that: A command that reads or writes the medium was attempted on a block that is protected from this operation. The read or write operation is not performed. 	
03DB450A	During device initialization, the device reported the SCSI Sense Key BLANK CHECK.	41
	 This indicates that: A write-once device encountered blank medium, or Format-defined end-of-data indication while reading, or A write-once device encountered a non-blank medium while writing. 	
03DC450A	During device initialization, the device reported a SCSI Vendor Specific Sense Key. This sense key is available for reporting vendor specific conditions.	41
03DD450A	During device initialization, the device reported the SCSI Sense Key COPY ABORTED (a COPY, COMPARE, or COPY AND VERIFY command was aborted due to an error condition on the source device, the destination device, or both).	41

B-50 Service Manual

Table B-11 Instance Codes (sheet 28 of 31)

Instance Code	Description	Template
03DE450A	During device initialization, the device reported the SCSI Sense Key ABORTED COMMAND: The target aborted the command.	41
	The initiator may be able to recover by trying the command again.	
03DF450A	During device initialization, the device reported the SCSI Sense Key EQUAL (a SEARCH DATA command has satisfied an equal comparison).	41
03E0450A	 During device initialization, the device reported the SCSI Sense Key VOLUME OVERFLOW: A buffered peripheral device has reached the end-of-partition Data may remain in the buffer that has not been written to the medium. A RECOVER BUFFERED DATA command(s) may be issued to read the unwritten data from the buffer. 	41
03E1450A	During device initialization, the device reported the SCSI Sense Key MISCOMPARE (the source data did not match the data read from the medium).	41
03E2450A	During device initialization, the device reported a reserved SCSI Sense Key.	41
03EE0064	The EMU for the cabinet indicated by the Associated Port field has become available. The associated Target, Additional Sense Code, and the Additional Sense Code Qualifier fields are undefined.	41
03EF8301	The EMU for the cabinet indicated by the Associated Port field has become unavailable. The associated Target, Additional Sense Code, and the Additional Sense Code Qualifier fields are undefined.	41
03F10502	 The SWAP interrupt from the device port indicated by the Associated Port field can not be cleared: All SWAP interrupts from all ports are disabled until corrective action is taken. When SWAP interrupts are disabled, both controller front panel button presses and removal/insertion of devices are not detected by the controller. The associated Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined. 	41
03F20064	The SWAP interrupts have been cleared and re-enabled for all device ports. The associated Port, Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined.	41

Event Reporting:	Templates	and Codes	B–51
------------------	-----------	-----------	------

Table B–11	Instance	Codes	(sheet 29 of 31))

Instance Code	Description	Template
03F30064	 An asynchronous SWAP interrupt was detected by the controller for the device port indicated by the Associated Port field. Possible reasons for this occurrence include: Device insertion or removal Shelf power failure SWAP interrupts re-enabled 	41
	The associated Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined.	
03F40064	Device services had to reset the port to clear a bad condition.	41
	The associated Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined.	
03F60402	 The controller shelf is reporting a problem. This could mean one or both of the following: One of the dual power supplies has failed. One of the shelf cooling fans has failed. 	41
	The associated Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined.	
03F70401	 The shelf indicated by the Associated Port field is reporting a problem. This could mean one or both of the following: One of the dual power supplies has failed. One of the shelf cooling fans has failed. 	41
	The associated Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined.	
03F80701	The EMU has detected one or more bad power supplies.	41
	The associated Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined.	
03F90601	The EMU has detected one or more bad fans.	41
	The associated Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined.	
03FA0D01	The EMU has detected an elevated temperature condition.	41
	The associated Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined.	

B-52 Service Manual

Table B-11 Instance Codes (sheet 30 of 31)

Instance Code	Description	Template
03FB0E01	The EMU has detected an external air sense fault.	41
	The associated Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined.	
03FC0F01	The EMU-detected power supply fault is now fixed.	41
	The associated Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined.	
03FD0F01	The EMU-detected bad-fan fault is now fixed.	41
	The associated Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined.	
03FE0F01	The EMU-detected elevated temperature fault is now fixed.	41
	The associated Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined.	
03FF0F01	The EMU-detected external air sense fault is now fixed.	41
	The associated Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined.	
03EF8301	The EMU for the cabinet indicated by the Associated Port field has become available.	41
	The associated Target, Additional Sense Code, and Additional Sense Code Qualifier fields are undefined.	
07030B0A	Failover Control detected a receive packet sequence number mismatch. The controllers are out of synchronization with each other and are unable to communicate.	05
	The Last Failure Code and Last Failure Parameters fields are undefined.	
07040B0A	Failover Control detected a transmit packet sequence number mismatch. The controllers are out of synchronization with each other and are unable to communicate.	05
	The Last Failure Code and Last Failure Parameters fields are undefined.	
07050064	Failover Control received a Last Gasp message from the "other controller".	05
	The "other controller" is expected to restart itself within a given time period. If it does not, it will be held reset with the "Kill" line.	

Event Reporting:	Templates and Codes	B–53
1 3		

Table B–11	Instance	Codes	(sheet 31	of 31)
------------	----------	-------	-----------	--------

Instance Code	Description	Template
07060C01	Failover Control detected that both controllers are using the identification of SCSI ID 6. It is unknown which controller is the real SCSI ID 6 (IDs are determined by hardware).	05
	The Last Failure Code and Last Failure Parameters fields are undefined.	
07070C01	Failover Control detected that both controllers are using the identification of SCSI ID 7. It is unknown which controller is the real SCSI ID 7 (IDs are determined by hardware).	05
	The Last Failure Code and Last Failure Parameters fields are undefined.	
07080B0A	Failover Control was unable to send keepalive communication to the other controller—It is assumed that the other controller is hung or not started.	05
	The Last Failure Code and Last Failure Parameters fields are undefined.	
43010064	Host Port Protocol component has detected that the "other controller" has failed and that "this controller" has taken over the units specified in the extended sense data.	04
43020064	Host Port Protocol component has detected that "this controller" has taken over (failed back) the units specified in the extended sense data.	04
82012002	 An unrecoverable error was detected during execution of the Device Port Subsystem Built-In Self Test: One or more of the device ports on the controller module has failed. Some/all of the attached storage is no longer accessible via this controller. 	13
82042002	A spurious interrupt was detected during the execution of a Subsystem Built- In Self Test.	13
82052002	An unrecoverable error was detected during execution of the HOST PORT Subsystem Test—the system will not be able to communicate with the host.	13
82062002	 An unrecoverable error was detected during execution of the UART/DUART Subsystem Test: The console is unusable. Failover communications fail. 	13
82072002	An unrecoverable error was detected during execution of the FX Subsystem Test.	13
82082002	An unrecoverable error was detected during execution of the Nbus init test.	13

B–54	Service	Manual

Table B-12 Last Failure Codes (sheet 1 of 28)

Code	Description
01000100	Memory allocation failure during executive initialization.
01010100	An interrupt without any handler was triggered.
01020100	Entry on timer queue was not of type AQ or BQ.
01030100	Memory allocation for a facility lock failed.
01040100	Memory initialization called with invalid memory type.
01050104	 The i960 reported a fault where: Last Failure Parameter[0] contains the PC value. Last Failure Parameter[1] contains the AC value. Last Failure Parameter[2] contains the fault type and subtype values. Last Failure Parameter[3] contains the address of the faulting instruction.
01070100	Timer chip setup failed.
01082004	 The core diagnostics reported a fault where: Last Failure Parameter[0] contains the error code value (OCP LEDs error code). Last Failure Parameter[1] contains the address of the fault. Last Failure Parameter[2] contains the actual data value. Last Failure Parameter[3] contains the expected data value.
01090105	 An NMI occurred during EXEC\$BUGCHECK processing where: Last Failure Parameter[0] contains the executive flags value. Last Failure Parameter[1] contains the RIP from the NMI stack. Last Failure Parameter[2] contains the read diagnostic register 0 value. Last Failure Parameter[3] contains the Master DRAB CSR value. Last Failure Parameter[4] contains the SIP last failure code value
010A2080	A single bit or a multi-single bit ECC error was detected.
	To prevent data corruption, the controller was reset. If this event occurs frequently, the controller module should be replaced.
010B2380	A processor interrupt was generated by the CACHEA Dynamic Ram controller and ArBitration engine (DRAB). The indication is that the CACHE backup battery has failed or is low (needs charging).
010C2380	A processor interrupt was generated by the CACHEB Dynamic Ram controller and ArBitration engine (DRAB).
	The indication is that the CACHE backup battery has failed or is low (needs charging).

Event Reporting. Template	es anu coues	D-00
---------------------------	--------------	------

Table B-12 Last Failure Codes (sheet 2 of 28)

Code	Description
010D0110	The System Information structure within the System Information Page has been reset to default settings.
	The only known cause for this event is an i960 processor hang caused by a reference to a memory region that is not implemented. When such a hang occurs, controller modules equipped with inactivity watchdog timer circuitry will spontaneously reboot after the watchdog timer expires (within seconds of the hang).
	Controller modules not so equipped will just hang as indicated by the green LED on the OCP remaining in a steady state.
010E0110	All structures contained in the System Information Page (SIP) and the Last Failure entries have been reset to their default settings.
	This is a normal occurrence for the first boot following manufacture of the controller module and during the transition from one firmware version to another if and only if the format of the SIP is different between the two versions.
	If this event is reported at any other time, follow the recommended repair action associated with this Last Failure code.
010F0110	All structures contained in the System Information Page and the Last Failure entries have been reset to their default settings as the result of certain controller manufacturing configuration activities.
	If this event is reported at any other time, follow the recommended repair action associated with this Last Failure code.
01100100	Non-maskable interrupt (NMI) was entered, but no Non-maskable interrupt is pending.
	This is typically caused by an indirect call to address 0.
01110106	A bugcheck occurred during EXEC\$BUGCHECK processing where:
	 Last Failure Parameter [1] contains the RIP from the bugcheck call stack.
	■ Last Failure Parameter [2] contains the first SIP last failure parameter value.
	Last Failure Parameter [3] contains the second SIP last failure.
	■ Last Failure Parameter [4] contains the SIP last failure code value.
	Last Failure Parameter [5] contains the EXEC\$BUGCHECK call last failure code value.
01150106	A bugcheck occurred before subsystem initialization completed where:
	Last Failure Parameter [1] contains the RIP from the bugcheck call stack.
	Last Failure Parameter [2] contains the first SIP last failure parameter value.
	■ Last Failure Parameter [3] contains the second SIP last failure
	■ Last Failure Parameter [4] contains the SIP last failure code value.
	■ Last Failure Parameter [5] contains the EXEC\$BUGCHECK call last failure code value.

B–56 Service Man	ual
------------------	-----

Table B-12 Last Failure Codes (sheet 3 of 28)

Code	Description
018000A0	A powerfail interrupt was detected.
018600A0	A processor interrupt was generated with an indication that the other controller in a dual controller configuration asserted the KILL line to disable this controller.
018700A0	A processor interrupt was generated with an indication that the RESET button (//) on the controller module was depressed.
018800A0	A processor interrupt was generated with an indication that the program card was removed.
018900A0	A processor interrupt was generated with an indication that the controller inactivity watch dog timer expired.
018C2580	A DRAB_INT interrupt was generated with an indication that a memory system problem occurred.
018D2580	The memory address range for which buffer SYSCOM was linked is not available
018E2582	 An NMI interrupt was generated with an indication that a memory system problem occurred where: Last Failure Parameter [0] contains the memory controller register address which encountered the error. Last Failure Parameter [1] contains the memory controller's Command Status Register value.
02000100	Initialization code was unable to allocate enough memory to setup the receive data descriptors.
02010100	Initialization code was unable to allocate enough memory to setup the send data descriptors.
02040100	Unable to allocate memory necessary for data buffers.
02050100	Unable to allocate memory for the Free Buffer Array.
02080100	A call to EXEC\$ALLOCATE_MEM_ZEROED failed to return memory when populating the disk read DWD stack.
02090100	A call to EXEC\$ALLOCATE_MEM_ZEROED failed to return memory when populating the disk write DWD stack.
020A0100	A call to EXEC\$ALLOCATE_MEM_ZEROED failed to return memory when populating the tape read DWD stack.
020B0100	A call to EXEC\$ALLOCATE_MEM_ZEROED failed to return memory when populating the tape write DWD stack.
020C0100	A call to EXEC\$ALLOCATE_MEM_ZEROED failed to return memory when populating the miscellaneous DWD stack.

	Event Reporting:	Templates	and Codes	B–57
--	------------------	-----------	-----------	------

Table B-12 Last Failure Codes (sheet 4 of 28)

Code	Description
02100100	A call to EXEC\$ALLOCATE_MEM_ZEROED failed to return memory when creating the device services state table.
02170100	Unable to allocate memory for the Free Node Array.
021D0100	Unable to allocate memory for the Free Buffer Array.
021F0100	Unable to allocate memory for WARPs and RMDs.
02210100	Invalid parameters in CACHE\$OFFER_META call.
02220100	No buffer found for CACHE\$MARK_META_DIRTY call.
02270104	A callback from DS on a transfer request has returned a bad or illegal DWD status where:
	 Last Failure Parameter [1] contains the DWD status. Last Failure Parameter [1] contains the DWD address.
	 Last Failure Parameter [2] contains the PUB address.
	Last Failure Parameter [3] contains the Device Port.
022C0100	A READ_LONG operation was requested for a Local Buffer Transfer (READ_LONG is not supported for Local Buffer Transfers).
022D0100	A WRITE_LONG operation was requested for a Local Buffer Transfer (WRITE_LONG is not supported for Local Buffer Transfers).
022E0102	 An invalid mapping type was specified for a logical unit where: Last Failure Parameter[0] contains the USB address. Last Failure Parameter[1] contains the Unit Mapping Type.
02392084	 A processor interrupt was generated by the controller's XOR engine (FX), with no bits set in the CSR to indicate a reason for the interrupt where: Last Failure Parameter[0] contains the FX Control and Status Register (CSR). Last Failure Parameter[1] contains the FX DMA Indirect List Pointer register (DILP). Last Failure Parameter[2] contains the FX DMA Page Address register (DADDR). Last Failure Parameter[3] contains the FX DMA Command and control register (DCMD).
023A2084	 A processor interrupt was generated by the controller XOR engine (FX), indicating an unrecoverable error condition where: Last Failure Parameter[0] contains the FX Control and Status Register (CSR). Last Failure Parameter[1] contains the FX DMA Indirect List Pointer register (DILP). Last Failure Parameter[2] contains the FX DMA Page Address register (DADDR). Last Failure Parameter[3] contains the FX DMA Command and control register (DCMD).

B–58	Service	Manual
------	---------	--------

Table B-12 Last Failure Codes (sheet 5 of 28)

Code	Description
02440100	The logical unit mapping type was detected invalid in va_set_disk_geometry()
02530102	 An invalid status was returned from CACHE\$LOOKUP_LOCK() where: Last Failure Parameter[0] contains the DD address. Last Failure Parameter[1] contains the invalid status.
02560102	 An invalid status was returned from CACHE\$LOOKUP_LOCK() where: Last Failure Parameter[0] contains the DD address. Last Failure Parameter[1] contains the invalid status.
02570102	 An invalid status was returned from VA\$XFER() during a operation where: Last Failure Parameter[0] contains the DD address. Last Failure Parameter[1] contains the invalid status.
025A0102	 An invalid status was returned from CACHE\$LOOKUP_LOCK() where: Last Failure Parameter[0] contains the DD address. Last Failure Parameter[1] contains the invalid status.
025B0102	 An invalid mapping type was specified for a logical unit where: Last Failure Parameter[0] contains the USB address. Last Failure Parameter[1] contains the Unit Mapping Type.
02620102	 An invalid status was returned from CACHE\$LOOKUP_LOCK() where: Last Failure Parameter[0] contains the DD address. Last Failure Parameter[1] contains the invalid status.
02690102	 An invalid status was returned from CACHE\$OFFER_WRITE_DATA() where: Last Failure Parameter[0] contains the DD address. Last Failure Parameter[1] contains the invalid status.
02790102	 An invalid status was returned from VA\$XFER() in a complex read operation where: Last Failure Parameter[0] contains the DD address. Last Failure Parameter[1] contains the invalid status.
027B0102	 An invalid status was returned from VA\$XFER() in a complex ACCESS operation where: Last Failure Parameter[0] contains the DD address. Last Failure Parameter[1] contains the invalid status.
027D0100	Unable to allocate memory for a Failover Control Block.
027E0100	Unable to allocate memory for a Failover Control Block.
027F0100	Unable to allocate memory for a Failover Control Block.
02800100	Unable to allocate memory for a Failover Control Block.
02840100	Unable to allocate memory for the XNode Array.

Event Reporting:	Templates	and Codes	B–59

Table B-12 Last Failure Codes (sheet 6 of 28)

Code	Description
02860100	Unable to allocate memory for the Fault Management Event Information Packet used by the Cache Manager in generating error logs to the host.
02880100	Invalid FOC Message in cmfoc_snd_cmd.
02890100	Invalid FOC Message in cmfoc_rcv_cmd.
028A0100	Invalid return status from DIAG\$CACHE_MEMORY_TEST.
028B0100	Invalid return status from DIAG\$CACHE_MEMORY_TEST.
028C0100	Invalid error status given to cache_fail.
028E0100	Invalid DCA state detected in init_crashover.
02910100	Invalid metadata combination detected in build_raid_node.
02920100	Unable to handle that many bad dirty pages (exceeded MAX_BAD_DIRTY). Cache memory is bad.
02930100	There was no free or freeable buffer to convert bad metadata or to borrow a buffer during failover of bad dirty.
02940100	A free Device Correlation Array entry could not be found during write-back cache failover.
02950100	Invalid DCA state detected in start_crashover.
02960100	Invalid DCA state detected in start_failover.
02970100	Invalid DCA state detected in init_failover.
02990100	A free RAID Correlation Array entry could not be found during write-back cache failover.
029A0100	Invalid cache buffer metadata detected while scanning the Buffer Metadata Array.
	Found a page containing dirty data but the corresponding Device Correlation Array entry does exist.
029D0100	Invalid metadata combination detected in build_bad_raid_node.
029F0100	The Cache Manager software has insufficient resources to handle a buffer request pending.
02A00100	VA change state is trying to change device affinity and the cache has data for this device.
02A10100	Pubs not one when transportable
02A20100	Pubs not one when transportable

Table B-12 Last Failure Codes (sheet 7 of 28)

Code	Description	
02A30100	No available data buffers.	
	If the cache module exists then this is true after testing the whole cache. Otherwise there were no buffers allocated from BUFFER memory on the controller module.	
02A40100	A call to EXEC\$ALLOCATE_MEM_ZEROED failed to return memory when allocating VAXDs.	
02A50100	A call to EXEC\$ALLOCATE_MEM_ZEROED failed to return memory when allocating DILPs.	
02A60100	A call to EXEC\$ALLOCATE_MEM_ZEROED failed to return memory when allocating Change State Work Items.	
02A70100	A call to EXEC\$ALLOCATE_MEM_ZEROED failed to return memory when allocating VA Request Items.	
02A90100	Too many pending FOC\$SEND requests by the Cache Manager.	
	Code is not designed to handle more than one FOC\$SEND to be pending because there's no reason to expect more than one pending.	
02AA0100	An invalid call was made to CACHE\$DEALLOCATE_CLD.	
	Either that device had dirty data or it was bound to a RAIDset.	
02AB0100	An invalid call was made to CACHE\$DEALLOCATE_SLD.	
	A RAIDset member either had dirty data or write-back already turned on.	
02AC0100	An invalid call was made to CACHE\$DEALLOCATE_SLD.	
	The RAIDset still has data (strip nodes).	
02AD0180	The FX detected a compare error for data that was identical.	
	This error has always previously occurred due to a hardware problem.	
02AE0100	The mirrorset member count and individual member states are inconsistent.	
	Discovered during a mirrorset write or erase.	
02AF0102	An invalid status was returned from vA\$XFER() in a write operation where:	
	 Last Failure Parameter[1] contains the invalid status. 	
02B10100	A mirrorset read operation was received and the round robin selection algorithm found no normal members in the mirrorset. Internal inconsistency.	

Event Reporting:	Templates	and Codes	B–61
------------------	-----------	-----------	------

Table B-12 Last Failure Codes (sheet 8 of 28)

Code	Description
02B20102	An invalid status was returned from CACHE\$LOCK_READ during a mirror copy operation where:
	■ Last Failure Parameter[0] contains the DD address.
	Last Failure Parameter[1] contains the invalid status.
02B30100	The CACHE\$CHANGE_MIRROR_MODE was invoked illegally (cache bad, dirty data still resident in the cache.)
02B52200	Cache A was declared bad during memory diagnostic testing of the metadata while in mirrored mode.
	A reboot is necessary to recover any dirty data from the mirror.
02B72200	Cache B which contains the mirror for Cache A was declared bad during memory diagnostic testing of the metada while in mirrored mode.
	A reboot is necessary to recover any dirty data from the primary cache.
02B90100	Invalid code loop count attempting to find the Cache ID Blocks.
02BC0100	A mirrorset read operation was received and the preferred member selection algorithm found no normal members in the mirrorset.
	Internal inconsistency.
02BD0100	A mirrorset metadata online operation found no normal members in the mirrorset. Internal inconsistency.
02BE0100	No free pages in the other cache.
	In performing mirror cache failover, a bad page was found and an attempt was made to recover the data from the good copy (primary/mirror), but no free good page was found on the other cache to copy the data to.
02BF0100	Report_error routine encountered an unexpected failure status returned from DIAG\$LOCK_AND_TEST_CACHE_B.
02C00100	Copy_buff_on_this routine expected the given page to be marked bad and it wasn't.
02C10100	Copy_buff_on_other routine expected the given page to be marked bad and it wasn't.
02C30100	CACHE\$CREATE_MIRROR was invoked by C_SWAP under unexpected conditions (other controller not dead, bad lock state).
02C42200	Cache A was declared bad during memory diagnostic testing of the metadata while in mirrored mode.
	A reboot is necessary to recover any dirty data from the mirror.

B-62 Service Manual

Table B-12 Last Failure Codes (sheet 9 of 28)

Code	Description		
02C52200	Cache B which contains the mirror for Cache A was declared bad during memory diagnostic testing of the metadata while in mirrored mode.		
	A reboot is necessary to recover any dirty data from the primary cache.		
02C60100	Mirroring transfer found CLD with writeback state OFF.		
02C70100	Bad BBR offsets for active shadowset, detected on write.		
02C80100	Bad BBR offsets for active shadowset, detected on read.		
02C90100	Illegal call made to CACHE\$PURGE_META when the storageset wasn't quiesced.		
02CA0100	Illegal call made to VA\$RAID5_META_READ when another read (of metadata) is already in progress on the same strip.		
02CB0000	A restore of the configuration has been done.		
	This cleans up and restarts with the new configuration.		
02CC0100	No freeable cache node was found on an attempt to allocate a cache node (which is not allowed to fail).		
02CE1010	Serial number mismatch was detected during an attempt to restore saved configuration information.		
02CF0100	An unsupported message type or terminal request was received by the VA_SAVE_CONFIG virtual terminal code from the CLI.		
02D00100	Not all alter_device requests from VA_SAVE_CONFIG completed within the timeout interval.		
02D30100	The controller has insufficient memory to allocate enough data structures used to manage metadata operations.		
02D50100	No resources are available to handle a new metadata work request.		
02D60100	An invalid storage set type was specified for metadata initialization.		
02D72390	Forced failover of devices due to a cache battery failure.		
	This was initiated because the dual partner was operational with a good battery and there is no host failover assistance.		
02D80100	Unable to allocate memory for Fast Buffers.		
	Code bug suspected rather than low buffer memory, because the code just checked for sufficient buffer memory.		
02D90100	Bad CLD pointer passed setwb routine.		
02DA0100	A fatal logic error occurred while trying to restart a stalled data transfer stream.		
Event Reporting:	Templates	and Codes	B–63
------------------	-----------	-----------	------
------------------	-----------	-----------	------

Table B-12 Last Failure Codes (sheet 10 of 28)

Code	Description
02DB0100	A call to EXEC\$ALLOCATE_MEM_ZEROED failed to return memory when populating the disk read PCX DWD stack.
02DC0100	A call to EXEC\$ALLOCATE_MEM_ZEROED failed to return memory when populating the disk write PCX DWD stack.
02DD0100	The VA state change deadman timer expired, and at least one VSI was still interlocked. Last Failure Parameter [0] contains the nv_index.
02DE0100	An attempt to allocate memory for a null pub failed to get the memory.
02DF0100	License identified in Last Failure Parameter [0] was not forced valid.
02E00180	Mirror functionality is broken.
02E11016	While attempting to restore a saved configuration, information was encountered for two unrelated controllers.
	The restore code is unable to determine which disk contains the correct information. The PTL information for the two disks is contained in the Last Failure Parameter list: Parameters 0, 1, and 2 contain the first disk's P, T, and L respectively.
	Parameters 3, 4, and 5 contain the second disk's P, T, and L respectively.
	Remove the disk that contains the incorrect configuration, restart the controller, then enter the SET THIS_CONTROLLER INITIAL_CONFIGURATION command.
	When the controller restarts, it will load the correct configuration from the disk.
02E20100	An attempt to allocate a va_cs_work item from the S_va_free_cs_work_queue failed.
02E30100	An attempt to allocate a free VAR failed.
02E40100	An attempt to allocate a free VAR failed.
O2E50100	An attempt to allocate a free VAR failed.
02E60100	An attempt to allocate a free VAR failed.
02E70100	An attempt to allocate a free VAR failed.
02E80100	An attempt to allocate a free VAR failed.
02E90100	An attempt to allocate a free VAR failed.
02EA0100	An attempt to allocate a free VAR failed.
02EE0102	A CLD is already allocated when it should be free. The Last Failure Parameter 0 contains the requesting entity; parameter 1 contains the CLD index.
02EF0102	A CLD is free when it should be allocated. The Last Failure Parameter 0 contains the requesting entity; parameter 1 contains the CLD index.

B–64	Service	Manual
------	---------	--------

Table B-12 Last Failure Codes (sheet 11 of 28)

Code	Description
02F60103	 An invalid modification to the no_interlock VSI flag was attempted where: Last Failure Parameter 0 = the nv_index of the configuration on which the problem was found.
	Last Failure Parameter 1 = the modification flag:
	Modification flag = 1, then an attempt was made to set the no_interlock flag, which was not clear at the time.
	Modification flag = 0, then an attempt was made to clear the no_interlock flag, which was clear (==1) at the time.
	Last Failure Parameter 2 = the current value of the no_interlock flag.
02F70100	Initialization diagnostics found one or more failed device ports
	The diagnostics may occasionally fail a good port. Restart the controller to ensure that the device ports were not falsely declared to be failed. If the port is actually failed, the diagnostics contain logic that will halt the controller during restart.
03010100	Failed request for port-specific scripts memory allocation.
03020101	Invalid SCSI direct-access device opcode in misc command DWD.
	Last Failure Parameter[0] contains the SCSI command opcode.
03040101	Invalid SCSI CDROM device opcode in misc command DWD.
	Last Failure Parameter[0] contains the SCSI command opcode.
03060101	Invalid SCSI device type in PUB.
03070101	Invalid CDB Group Code detected during create of misc cmd DWD where: ■ Last Failure Parameter[0] contains the SCSI device type. ■ Last Failure Parameter[0] contains the SCSI command opcode.
03080101	
03000101	
	Last Failure Parameter[0] contains the SCSI command opcode.
030A0100	Error DWD not found in port in_proc_q.

Event Reportir	g: Templates	and Codes	B–65
----------------	--------------	-----------	------

Table B-12 Last Failure Codes (sheet 12 of 28)

Code	Description
030B0188	 A dip error was detected when pcb_busy was set where: Last Failure Parameter[0] contains the PCB port_ptr value. Last Failure Parameter[1] contains the new info NULL - SSTAT0 - DSTAT - ISTAT. Last Failure Parameter[2] contains the PCB copy of the device port DBC register. Last Failure Parameter[3] contains the PCB copy of the device port DNAD register. Last Failure Parameter[4] contains the PCB copy of the device port DSP register. Last Failure Parameter[5] contains the PCB copy of the device port DSP register. Last Failure Parameter[5] contains the PCB copy of the device port DSPs register. Last Failure Parameter[6] contains the PCB copies of the device port SSTAT2/SSTAT1/SSTAT0/DSTAT registers. Last Failure Parameter[7] contains the PCB copies of the device port LCRC/RESERVED/ISTAT/DFIFO registers.
03150100	More DBDs than allowed for in mask.
031E0100	Can't find in_error dwd on in-process queue.
031F0100	Either DWD_ptr is null or bad value in dsps.
03280100	SCSI CDB contains an invalid group code for a transfer command.
03290100	The required Event Information Packet (EIP) or device work descriptor (DWD) were not supplied to the Device Services error logging code.
032B0100	A Device Work Descriptor (DWD) was supplied with a NULL Physical Unit Block (PUB) pointer.
03320101	An invalid code was passed to the error recovery thread in the error_stat field of the PCB. Last Failure Parameter[0] contains the PCB error_stat code.
03330188	 A parity error was detected by a device port while sending data out onto the SCSI bus where Last Failure Parameter[0] contains the PCB port_ptr value. Last Failure Parameter[1] contains the PCB copy of the device port Last Failure Parameter[2] contains the PCB copy of the device port DBC register. Last Failure Parameter[3] contains the PCB copy of the device port DNAD register. Last Failure Parameter[4] contains the PCB copy of the device port DSP register. Last Failure Parameter[5] contains the PCB copy of the device port DSP register. Last Failure Parameter[5] contains the PCB copy of the device port DSPs register. Last Failure Parameter[6] contains the PCB copies of the device port SSTAT2/SSTAT1/SSTAT0/DSTAT registers. Last Failure Parameter[7] contains the PCB copies of the device port LCRC/RESERVED/ISTAT/DFIFO registers.

B–66	Service	Manual
------	---------	--------

Table B-12 Last Failure Codes (sheet 13 of 28)

Code	Description
03350188	 The TEA (bus fault) signal was asserted into a device port where: Last Failure Parameter[0] contains the PCB port_ptr value. Last Failure Parameter[1] contains the PCB copy of the device port TEMP register. Last Failure Parameter[2] contains the PCB copy of the device port DBC register. Last Failure Parameter[3] contains the PCB copy of the device port DNAD register. Last Failure Parameter[4] contains the PCB copy of the device port DSP register. Last Failure Parameter[4] contains the PCB copy of the device port DSP register. Last Failure Parameter[5] contains the PCB copy of the device port DSPs register. Last Failure Parameter[6] contains the PCB copies of the device port SSTAT2/SSTAT1/SSTAT0/DSTAT registers. Last Failure Parameter[7] contains the PCB copies of the device port LCRC/RESERVED/ISTAT/DFIFO registers.
03360188	 A device port host bus watchdog timer expired where: Last Failure Parameter[0] contains the PCB port_ptr value. Last Failure Parameter[1] contains the PCB copy of the device port TEMP register. Last Failure Parameter[2] contains the PCB copy of the device port DBC register. Last Failure Parameter[3] contains the PCB copy of the device port DNAD register. Last Failure Parameter[4] contains the PCB copy of the device port DSP register. Last Failure Parameter[4] contains the PCB copy of the device port DSP register. Last Failure Parameter[5] contains the PCB copy of the device port DSPs register. Last Failure Parameter[6] contains the PCB copies of the device port SSTAT2/SSTAT1/SSTAT0/DSTAT registers. Last Failure Parameter[7] contains the PCB copies of the device port LCRC/RESERVED/ISTAT/DFIFO registers.
03370108	 A device port detected an illegal script instruction where: Last Failure Parameter[0] contains the PCB port_ptr value. Last Failure Parameter[1] contains the PCB copy of the device port TEMP register. Last Failure Parameter[2] contains the PCB copy of the device port DBC register. Last Failure Parameter[3] contains the PCB copy of the device port DNAD register. Last Failure Parameter[4] contains the PCB copy of the device port DSP register. Last Failure Parameter[4] contains the PCB copy of the device port DSP register. Last Failure Parameter[5] contains the PCB copy of the device port DSPS register. Last Failure Parameter[6] contains the PCB copies of the device port SSTAT2/SSTAT1/SSTAT0/DSTAT registers. Last Failure Parameter[7] contains the PCB copies of the device port LCRC/RESERVED/ISTAT/DFIFO registers.

Event Reporting:	Templates	and Codes	B–67
------------------	-----------	-----------	------

Table B-12 Last Failure Codes (sheet 14 of 28)

Code	Description
03380188	 A device port DSTAT register contains multiple asserted bits, or an invalidly asserted bit, or both where: Last Failure Parameter[0] contains the PCB port_ptr value. Last Failure Parameter[1] contains the PCB copy of the device port TEMP register. Last Failure Parameter[2] contains the PCB copy of the device port DBC register. Last Failure Parameter[3] contains the PCB copy of the device port DBC register. Last Failure Parameter[3] contains the PCB copy of the device port DBC register. Last Failure Parameter[4] contains the PCB copy of the device port DSP register. Last Failure Parameter[5] contains the PCB copy of the device port DSPs register. Last Failure Parameter[6] contains the PCB copies of the device port SSTAT2/SSTAT1/SSTAT0/DSTAT registers. Last Failure Parameter[7] contains the PCB copies of the device port LCRC/RESERVED/ISTAT/DFIFO registers.
03390108	 An unknown interrupt code was found in a device port DSPS register where: Last Failure Parameter[0] contains the PCB port_ptr value. Last Failure Parameter[1] contains the PCB copy of the device port TEMP register. Last Failure Parameter[2] contains the PCB copy of the device port DBC register. Last Failure Parameter[3] contains the PCB copy of the device port DBC register. Last Failure Parameter[3] contains the PCB copy of the device port DNAD register. Last Failure Parameter[4] contains the PCB copy of the device port Last Failure Parameter[5] contains the PCB copy of the device port DSPS register. Last Failure Parameter[6] contains the PCB copies of the device port SSTAT2/SSTAT1/SSTAT0/DSTAT registers. Last Failure Parameter[7] contains the PCB copies of the device port LCRC/RESERVED/ISTAT/DFIFO registers.
033C0101	An invalid code was seen by the error recovery thread in the er_funct_step field of the PCB.
	Last Failure Parameter[0] contains the PCB er_funct_step code.

B-68 Service Manua

Table B-12 Last Failure Codes (sheet 15 of 28)

Code	Description
033E0108	 An attempt was made to restart a device port at the SDP DBD: Last Failure Parameter[0] contains the PCB port_ptr value. Last Failure Parameter[1] contains the PCB copy of the device port TEMP register. Last Failure Parameter[2] contains the PCB copy of the device port DBC register. Last Failure Parameter[3] contains the PCB copy of the device port DBC register. Last Failure Parameter[4] contains the PCB copy of the device port DSP register. Last Failure Parameter[4] contains the PCB copy of the device port DSP register. Last Failure Parameter[5] contains the PCB copy of the device port DSP register. Last Failure Parameter[6] contains the PCB copies of the device port SSTAT2/SSTAT1/SSTAT0/DSTAT registers. Last Failure Parameter[7] contains the PCB copies of the device port LCRC/RESERVED/ISTAT/DFIFO registers.
033F0108	 An EDC error was detected on a read of a soft-sectored device-path not yet implemented: Last Failure Parameter[0] contains the PCB port_ptr value. Last Failure Parameter[1] contains the PCB copy of the device port TEMP register. Last Failure Parameter[2] contains the PCB copy of the device port DBC register. Last Failure Parameter[3] contains the PCB copy of the device port DNAD register. Last Failure Parameter[4] contains the PCB copy of the device port DSP register. Last Failure Parameter[5] contains the PCB copy of the device port DSP register. Last Failure Parameter[5] contains the PCB copy of the device port DSP register. Last Failure Parameter[6] contains the PCB copies of the device port SSTAT2/SSTAT1/SSTAT0/DSTAT registers. Last Failure Parameter[7] contains the PCB copies of the device port LCRC/RESERVED/ISTAT/DFIFO registers.
03410101	Invalid SCSI device type in PUB. Last Failure Parameter[0] contains the PUB SCSI device type.

Event Reporting:	Templates	and Codes	B–69
------------------	-----------	-----------	------

Table B-12 Last Failure Codes (sheet 16 of 28)

Code	Description		
03420188	A UDC interrupt could not be associated with either a DWD or the non-callable scripts		
	 Last Failure Parameter[0] contains the PCB port_ptr value. Last Failure Parameter[1] contains the PCB copy of the device port TEMP register. Last Failure Parameter[2] contains the PCB copy of the device port DBC register. Last Failure Parameter[3] contains the PCB copy of the device port DNAD register. Last Failure Parameter[4] contains the PCB copy of the device port DSP register. Last Failure Parameter[5] contains the PCB copy of the device port DSP register. Last Failure Parameter[5] contains the PCB copy of the device port DSPS register. Last Failure Parameter[6] contains the PCB copies of the device port SSTAT2/SSTAT1/SSTAT0/DSTAT registers. Last Failure Parameter[7] contains the PCB copies of the device port LCRC/RESERVED/ISTAT/DFIFO registers. 		
03440188	 A Host Parity Error was detected by a port where: Last Failure Parameter[0] contains the PCB port_ptr value. Last Failure Parameter[1] contains the PCB copy of the device port TEMP register. Last Failure Parameter[2] contains the PCB copy of the device port DBC register. Last Failure Parameter[3] contains the PCB copy of the device port DNAD register. Last Failure Parameter[4] contains the PCB copy of the device port DSP register. Last Failure Parameter[4] contains the PCB copy of the device port DSP register. Last Failure Parameter[5] contains the PCB copy of the device port DSPs register. Last Failure Parameter[6] contains the PCB copies of the device port SSTAT2/SSTAT1/SSTAT0/DSTAT registers. Last Failure Parameter[7] contains the PCB copies of the device port LCRC/RESERVED/ISTAT/DFIFO registers. 		
03470100	Insufficient memory available for target block allocation.		
03480100	Insufficient memory available for device port info block allocation.		
03490100	Insufficient memory available for autoconfig buffer allocation.		
034A0100	Insufficient memory available for PUB allocation.		
034B0100	Insufficient memory available for DS init buffer allocation.		
034C0100	Insufficient memory available for static structure allocation.		
034D0100	DS init DWDs exhausted.		
034E2080	Diagnostics report all device ports are broken.		
03500100	Insufficient memory available for command disk allocation.		
03520100	A failure resulted when an attempt was made to allocate a DWD for use by DS CDI.		

B–70	Service	Manual

Table B-12 Last Failure Codes (sheet 17 of 28)

Code	Description
035A0100	Invalid SCSI message byte passed to DS.
035B0100	Insufficient DWD resources available for SCSI message passthrough.
03640100	Processing run_switch disabled for LOGDISK associated with the other controller.
03650100	Processing pub unblock for LOGDISK associated with the other controller.
03660100	No memory available to allocate pub to tell the other controller of reset to one if its LUNs
03670100	No memory available to allocate pub to tell the other controller of a BDR to one if its LUNs
04010101	The requester id component of the instance code passed to FM\$REPORT_EVENT is larger than the maximum allowed for this environment. Last Failure Parameter[0] contains the instance code value.
04020102	 The requester's error table index passed to FM\$REPORT_EVENT is larger than the maximum allowed for this requester where: Last Failure Parameter[0] contains the instance code value. Last Failure Parameter[1] contains the requester error table index value.
04030102	 The USB index supplied in the Event Information Packet (EIP) is larger than the maximum number of USBs where: Last Failure Parameter[0] contains the instance code value. Last Failure Parameter[1] contains the USB index value.
04040103	 The event log format found in V_fm_template_table is not supported by the Fault Manager. The bad format was discovered while trying to fill in a supplied Event Information Packet (EIP): Last Failure Parameter[0] contains the instance code value. Last Failure Parameter[1] contains the format code value. Last Failure Parameter[2] contains the requester error table index value.
04050100	The Fault Manager could not allocate memory for its Event Information Packet (EIP) buffers.
040A0100	The caller of FM\$CANCEL_SCSI_DE_NOTIFICATION passed an address of a deferred error notification routine which doesn't match the address of any routines for which deferred error notification is enabled.
040E0100	FM\$ENABLE_DE_NOTIFICATION was called to enable deferred error notification but the specified routine was already enabled to receive deferred error notification.
040F0102	 The Event Information Packet (EIP)→generic.mscp1.flgs field of the EIP passed to FM\$REPORT_EVENT contains an invalid flag where: Last Failure Parameter[0] contains the instance code value. Last Failure Parameter[1] contains the value supplied in the Event Information Packet (EIP)→generic.mscp1.flgs field.

Event Reporting:	Templates	and Codes	B–71
------------------	-----------	-----------	------

Table B-12 Last Failure Codes (sheet 18 of 28)

Code	Description
04100101	Unexpected template type found during fmu_display_errlog processing.
	Last Failure Parameter[0] contains the unexpected template value.
04110101	Unexpected instance code found during fmu_memerr_report processing.
	Last Failure Parameter[0] contains the unexpected instance code value.
04120101	CLIB\$SDD_FAO call failed.
	Last Failure Parameter[0] contains the failure status code value.
04130103	The event log format found in the eip is not supported by the Fault Manager.
	 The bad format was discovered while trying to fill in the DLI of the supplied eip where: Last Failure Parameter [0] contains the instance code value. Last Failure Parameter [1] contains the format code value.
04140102	Last Failure Parameter [2] contains the requester error table index value.
04140103	 The bad template value round in the cip is not supported by the radit manager. The bad template value was discovered while trying to build an esd where: Last Failure Parameter [0] contains the instance code value. Last Failure Parameter [1] contains the format code value. Last Failure Parameter [2] contains the requester error table index value.
05010100	In recursive_nonconflict could not get enough memory for scanning the keyword tables for configuration name conflicts.
06010100	The DUART was unable to allocate enough memory to establish a connection to the CLI.
06020100	A port other than terminal port A was referred to by a set terminal characteristics command. This is illegal.
06030100	A DUP question or default question message type was passed to the DUART driver, but the pointer to the input area to receive the response to the question was NULL.
06040100	Attempted to detach unattached maintenance terminal.
06050100	Attempted output to unattached maintenance terminal.
06060100	Attempted input from output only maintenance terminal service.
06070100	The DUART was unable to allocate enough memory for its input buffers
06080000	Controller was forced to restart due to entry of a CNTRL-K character on the maintenance terminal.
07010100	All available slots in the FOC notify table are filled.

B–72	Service	Manual

Table B-12 Last Failure Codes (sheet 19 of 28)

Code	Description
07020100	FOC\$CANCEL_NOTIFY() was called to disable notification for a rtn that did not have notification enabled.
07030100	Unable to start the Failover Control Timer before main loop.
07040100	Unable to restart the Failover Control Timer.
07050100	Unable to allocate flush buffer.
07060100	Unable to allocate active receive fcb.
07070100	The other controller killed this, but could not assert the kill line because nindy on or in debug. So it killed this now.
07080000	The other controller crashed, so this one must crash too.
08010101	A remote state change was received from the FOC thread that NVFOC does not recognize.
	Last Failure Parameter[0] contains the unrecognized state value.
08020100	No memory could be allocated for a NVFOC information packet.
08030101	Work received on the S_nvfoc_bque did not have a NVFOC work id.
	Last Failure Parameter[0] contains the id type value that was received on the NVFOC work queue.
08040101	Unknown work value received by the S_nvfoc_bque.
	Last Failure Parameter[0] contains the unknown work value.
08060100	A write command was received when the NV memory was not locked.
08070100	A write to NV memory was received while not locked.
08080000	The other controller requested this controller to restart.
08090010	The other controller requested this controller to shutdown.
080A0000	The other controller requested this controller to selftest.
080B0100	Could not get enough memory to build a FCB to send to the remote routines on the other controller.
080C0100	Could not get enough memory for FCBs to receive information from the other controller.
080D0100	Could not get enough memory to build a FCB to reply to a request from the other controller.

Event Reporting: Ter	nplates and Codes	; B-/3
----------------------	-------------------	--------

Table B-12 Last Failure Codes (sheet 20 of 28)

Code	Description
080E0101	An out-of-range receiver ID was received by the NVFOC communication utility (master send to slave send ACK).
	Last Failure Parameter[0] contains the bad id value.
080F0101	An out-of-range receiver ID was received by the NVFOC communication utility (received by master).
	Last Failure Parameter[0] contains the bad id value.
08100101	A call to NVFOC\$TRANSACTION had a from field (id) that was out of range for the NVFOC communication utility.
	Last Failure Parameter[0] contains the bad id value.
08110101	NVFOC tried to defer more than one FOC send.
	Last Failure Parameter[0] contains the master ID of the connection that had the multiple delays.
08140100	Could not allocate memory to build a workblock to queue to the NVFOC thread.
08160100	A request to clear the remote configuration was received but the memory was not locked.
08170100	A request to read the next configuration was received but the memory was not locked.
08180100	Could not get enough memory for FLS FCBs to receive information from the other controller.
08190100	An unlock command was received when the NV memory was not locked.
081A0100	Unable to allocate memory for remote work.
081B0101	Bad remote work received on remote work queue. Last Failure Parameter[0] contains the id type value that was received on the NVFOC remote work queue.
081C0101	Bad member management work received.
	Last Failure Parameter[0] contains the bad member management value that was detected.
081D0000	In order to go into mirrored cache mode, the controllers must be restarted.
081E0000	In order to go into nonmirrored cache mode, the controllers must be restarted.
081F0000	An FLM\$INSUFFICIENT_RESOURCES error was returned from a FLM lock or unlock call.
08200000	Expected restart so the write_instance may recover from a configuration mismatch.
08210100	Unable to allocate memory to setup NVFOC lock/unlock notification routines.

B-74 Service Manual

Table B-12 Last Failure Codes (sheet 21 of 28)

Code	Description	
09010100	Unable to acquire memory to initialize the FLM structures.	
09640101	Work that was not FLM work was found on the FLM queue.	
	Bad format detected or the formatted string overflows the output buffer.	
	Last Failure Parameter [0] contains the work found.	
09650101	Work that was not FLM work was found on the FLM queue.	
	Last Failure Parameter [0] contains the structure found.	
09670101	Local FLM detected an invalid facility to act upon.	
	Last Failure Parameter [0] contains the facility found.	
09680101	Remote FLM detected an error and requested the local controller to restart.	
	Last Failure Parameter [0] contains the reason for the request.	
09C80101	Remote FLM detected an error and requested an invalid facility to act upon.	
	Last Failure Parameter [0] contains the facility found.	
09C90101	Remote FLM detected an invalid work type.	
	Last Failure Parameter [0] contains the work type found.	
09CA0101	Remote FLM detected an invalid work type.	
	Last Failure Parameter [0] contains the work type found.	
09CB0012	 Remote FLM detected that the other controller has a facility lock manager at an incompatible revision level with this controller where: Last Failure Parameter [0] contains the controller FLM revision. Last Failure Parameter [1] contains the other controller FLM revision. 	
0A010100	CACHE $FIND_LOG_BUFFERS$ returned continuation handle \rightarrow 0.	
0A020100	ILF\$CACHE_READY unable to allocate necessary DWDs.	
0A030100	ILF\$CACHE_READY buffers_obtained \rightarrow non-zero stack entry count.	
0A040100	ILF\$CACHE_READY DWD overrun.	
0A050100	ILF\$CACHE_READY DWD underrun.	
0A080100	Not processing a bugcheck.	
0A090100	No active DWD.	
0A0A0100	Current entry pointer is not properly aligned.	

Event Reporting:	Templates	and Codes	B–75
------------------	-----------	-----------	------

Table B-12 Last Failure Codes (sheet 22 of 28)

Code	Description
0A0B0100	Next entry pointer is not properly aligned.
0A0C0100	Next entry was partially loaded.
0A0D0100	Another free DWD is not queued as expected.
0A0E0100	Active DWD is not a DISK WRITE DWD as expected.
0A0F0100	New active DWD is not a DISK WRITE DWD as expected.
0A100100	Data buffer pointer is not properly aligned.
0A110100	DWD count was wrong and a free DWD actually exists.
0A120100	Data buffer pointer is not properly aligned.
0A130100	Data buffer pointer is not properly aligned.
0A140100	New entry pointer is not properly aligned.
0A150100	New entry record type is out of range.
0A160102	 ilf_issue_log_write marker entry page guard check failed where: Last Failure Parameter 0 contains the DWD address value. Last Failure Parameter 1 contains the buffer address.
0A170102	 ilf_get_new_dwd first page guard check failed where: Last Failure Parameter 0 contains the DWD address value. Last Failure Parameter 1 contains the buffer address.
0A180102	 ilf_distribute_cache_DWDs first page guard check failed where Last Failure Parameter 0 contains the DWD address value. Last Failure Parameter 1 contains the buffer address.
0A190102	 ⊥If_depopulate_DWD_to_cache first page guard check failed where: Last Failure Parameter 0 contains the DWD address value. Last Failure Parameter 1 contains the buffer address.
0A1A0102	 ilf_io_success page guard check failed where: Last Failure Parameter 0 contains the DWD address value. Last Failure Parameter 1 contains the buffer address.
0A1B0102	 ⊥If_io_success page guard check failed where Last Failure Parameter 0 contains the DWD address value. Last Failure Parameter 1 contains the buffer address.
0A1C0102	 ILF\$LOG_ENTRY page guard check failed where Last Failure Parameter 0 contains the DWD address value. Last Failure Parameter 1 contains the buffer address.

Table B-12 Last Failure Codes (sheet 23 of 28)

Code	Description
0A1D0102	 ILF\$LOG_ENTRY page guard check failed where: Last Failure Parameter 0 contains the DWD address value. Last Failure Parameter 1 contains the buffer address.
0A1E0102	 ILF\$LOG_ENTRY page guard check failed where: Last Failure Parameter 0 contains the DWD address value. Last Failure Parameter 1 contains the buffer address.
0A1F0100	ilf_rebind_cache_buffs_to_DWDs found duplicate buffer for current DWD.
0A200101	Unknown bugcheck code passed to ilf_cache_interface_crash.
	Last Failure Parameter 0 contains the unknown bugcheck code value.
0A210100	ilf_rebind_cache_buffs_to_DWDs found buffer type not IDX_ILF.
0A220100	ilf_rebind_cache_buffs_to_DWDs found buffer DBD index too big.
20010100	The action for work on the CLI queue should be: ■ CLI_CONNECT ■ CLI_COMMAND_IN ■ CLI_PROMPT
	If it isn't one of these three, this bugcheck will result.
20020100	The FAO returned a non-successful response.
	This will only happen if a bad format is detected or the formatted string overflows the output buffer.
20030100	The type of work received on the CLI work queue wasn't of type CLI.
20060100	A work item of an unknown type was placed on the CLI SCSI Virtual Terminal thread work queue by the CLI.
20080000	This controller requested this controller to restart.
20090010	This controller requested this controller to shutdown.
200A0000	This controller requested this controller to selftest.
200B0100	Could not get enough memory for FCBs to receive information from the other controller.
200D0101	After many calls to DS\$PORT_BLOCKED, the FALSE status back signal (which signals that nothing is blocked) was never received.
	Last Failure Parameter[0] contains the port number $(1 - n)$ to be unblocked.

Event Reporting: Temp	ates and Codes B-7
-----------------------	--------------------

 Table B-12
 Last Failure Codes (sheet 24 of 28)

Code	Description
200E0101	While traversing the structure of a unit, a config_info node was discovered with an unrecognized structure type.
	Last Failure Parameter[0] contains the structure type number that was unrecognized.
200F0101	A config_info node was discovered with an unrecognized structure type.
	Last Failure Parameter[0] contains the structure type number that was unrecognized.
20100101	A config_node of type VA_MA_DEVICE had an unrecognized SCSI device type.
	Last Failure Parameter[0] contains the SCSI device type number that was unrecognized.
20110100	An attempt to allocate memory so the CLI prompt messages could be deleted failed.
20120101	While traversing the structure of a unit, a config_info node was discovered with an unrecognized structure type.
	Last Failure Parameter[0] contains the structure type number that was unrecognized.
20130101	While traversing the structure of a unit, the device was of an unrecognized type. Last Failure Parameter[0] contains the SCSI device type that was unrecognized.
20150100	On failover, both controllers must be restarted for failover to take effect.
	This is how this controller is restarted in COPY=OTHER.
20160000	In order to go into mirrored cache mode, the controllers must be restarted.
20160100	Unable to allocate resources needed for the CLI local program.
20170000	In order to go into unmirrored cache mode, the controllers must be restarted.
20180010	User requested the parameters of "this controller" to be set to initial configuration state.
20190010	A cache state of a unit remains WRITE_CACHE_UNWRITTEN_DATA. The unit is not ONLINE, thus this state would only be valid for a very short period of time.
201A0100	An attempt to allocate memory so a CLI prompt message could be reformatted failed.
201B0100	Insufficient resources to get memory to lock CLI.
201C0100	Insufficient resources to get memory to unlock CLI.
20640000	Nindy was turned on.
20650000	Nindy was turned off.
20692010	To enter dual-redundant mode, both controllers must be of the same type.
206A0000	Controller restart forced by DEBUG CRASH REBOOT command.

|--|

Table B-12 Last Failure Codes (sheet 25 of 28)

Code	Description		
206B0100	Controller restart forced by DEBUG CRASH NOREBOOT command.		
206C0020	Controller was forced to restart in order for new controller code image to take effect.		
206D0000	Controller code load was not completed because the controller could not rundown all units.		
43000100	Encountered an unexpected structure type on S_shis_ctl.scsi_q.		
43030100	Unable to allocate the necessary number of large Sense Data buckets in HPP_init().		
43100100	Encountered a NULL completion routine pointer in a DD.		
43130100	Could not allocate a large sense bucket.		
43160100	A sense data bucket of unknown type (neither LARGE or SMALL) was passed to deallocate_SDB().		
43170100	Call to VA\$ENABLE_NOTIFICATION() failed due to INSUFFICIENT_RESOURCES.		
43190100	Unable to allocate necessary memory in HPP_int().		
431A0100	Unable to allocate necessary timer memory in HPP_int().		
43210101	HPP detected unknown error indicated by HPT.		
	Last Failure Parameter [0] contains the error value.		
44000104	 Interrupt from SCSI host port chip indicated condition that is not handled (unexpected): Last Failure Parameter [0] contains ISTAT Register where: Last Failure Parameter [1] contains DSTAT Register. Last Failure Parameter [2] contains SIEN/SIST Registers. Last Failure Parameter [3] contains Chip Register Base. 		
44010104	 Interrupt from SCSI host port chip indicated ATN condition at unexpected script location where: Last Failure Parameter [0] contains ISTAT Register. Last Failure Parameter [1] contains DSTAT Register. Last Failure Parameter [2] contains Script PC (DSP). Last Failure Parameter [3] contains Chip Register Base. 		
44020104	 Interrupt from SCSI host port chip indicated interrupt with an unexpected reason (pass value) where: Last Failure Parameter [0] contains ISTAT Register. Last Failure Parameter [1] contains DSTAT Register. Last Failure Parameter [2] contains Pass Value. Last Failure Parameter [3] contains Chip Register Base. 		

Event Reporting:	Templates	and Codes	B–79
------------------	-----------	-----------	------

Table B-12 Last Failure Codes (sheet 26 of 28)

Code	Description
44030104	Interrupt from SCSI host port chip indicated interrupt with an unexpected reason but invalid conditions where:
	Last Failure Parameter [0] contains ISTAT Register.
	Last Failure Parameter [1] contains DSP Register.
	Last Failure Parameter [2] contains Code (Condition).
	Last Failure Parameter [3] contains Chip Register Base.
44040104	Interrupt from SCSI host port chip indicated interrupt with an unexpected reason but invalid conditions where:
	Last Failure Parameter [0] contains ISTAT Register.
	Last Failure Parameter [1] contains DSTAT Register.
	■ Last Failure Parameter [2] contains Script PC (DSP).
	Last Failure Parameter [3] contains Chip Register Base.
44050104	Interrupt from SCSI host port chip indicated STO condition at unexpected script location where:
	Last Failure Parameter [0] contains ISTAT Register.
	Last Failure Parameter [1] contains DSTAT Register.
	Last Failure Parameter [2] contains Script PC (DSP).
	Last Failure Parameter [3] contains Chip Register Base.
44060104	Interrupt from SCSI host port chip indicated HTH condition at unexpected script location where:
	Last Failure Parameter [0] contains ISTAT Register.
	Last Failure Parameter [1] contains DSTAT Register.
	Last Failure Parameter [2] contains Script PC (DSP).
	Last Failure Parameter [3] contains Chip Register Base.
44070100	Unable to locate the IDENTIFY msg in HTB.
44090100	Encountered an unknown MESSAGE OUT message.
440A0104	Interrupt from SCSI host port chip indicated parity error at unexpected script location where:
	Last Failure Parameter [0] contains ISTAT Register.
	Last Failure Parameter [1] contains DSTAT Register.
	Last Failure Parameter [2] contains Script PC (DSP).
	Last Failure Parameter [3] contains Chip Register Base.
440B0100	Encountered unknown structure on port queue in HPT\$ABORT_HTB.
440C0100	No available Abort Records to process abort request.
440D0100	No available FOR Records to process Failover request.
440E0100	Unable to allocate the necessary number of HTBS in hpt_init().

B–80	Service	Manual
------	---------	--------

Table B-12 Last Failure Codes (sheet 27 of 28)

Code	Description		
440F0104	 Interrupt from SCSI host port chip indicated interrupt with an unexpected reason but invalid conditions where: Last Failure Parameter [0] contains ISTAT Register. Last Failure Parameter [1] contains DSP Register. Last Failure Parameter [2] contains Code (Condition). Last Failure Parameter [3] contains Chip Register Base. 		
44100100	Unable to allocate the necessary memory for scripts in hpt_init().		
44110100	Unable to allocate the necessary memory for abort records in hpt_init().		
44120100	Unable to allocate the necessary memory for tables in hpt_init().		
64000100	Insufficient buffer memory to allocate data structures needed to propagate SCSI Mode Select changes to other controller.		
64010100	During an initialization of LUN specific mode pages, an unexpected device type was encountered.		
80010100	An HTB was not available to issue an I/O when it should have been.		
80030100	DILX tried to release a facility that wasn't reserved by DILX.		
80040100	DILX tried to change the unit state from MAINTENANCE_MODE to NORMAL but was rejected because of insufficient resources.		
80050100	DILX tried to change the usb unit state from MAINTENANCE_MODE to NORMAL but DILX never received notification of a successful state change.		
80060100	DILX tried to switch the unit state from MAINTENANCE_MODE to NORMAL but was not successful.		
80070100	DILX aborted all cmds via va\$d_abort() but the HTBS haven't been returned.		
80090100	DILX received an end msg which corresponds to an op code not supported by DILX.		
800A0100	DILX was not able to restart his timer.		
800B0100	DILX tried to issue an I/O for an opcode not supported.		
800C0100	DILX tried to issue a oneshot I/O for an opcode not supported.		
800D0100	A DILX device control block contains an unsupported unit_state.		
800F0100	A DILX cmd completed with a sense key that DILX does not support.		
80100100	DILX could not compare buffers because no memory was available from EXEC\$ALLOCATE_MEM_ZEROED.		
80110100	While DILX was deallocating his deferred error buffers, at least one could not be found.		

Event Reporting:	Templates	and Codes	B–81
------------------	-----------	-----------	------

Table B-12 Last Failure Codes (sheet 28 of 28)

Code	Description	
80120100	DILX expected an Event Information Packet (EIP) to be on the receive EIP queue but no EIPs were there.	
80130100	DILX was asked to fill a data buffer with an unsupported data pattern.	
80140100	DILX could not process an unsupported answer in dx\$reuse_params().	
80150100	A deferred error was received with an unsupported template.	
83020100	An unsupported message type or terminal request was received by the CONFIG virtual terminal code from the CLI.	
83030100	Not all alter_device requests from the CONFIG utility completed within the timeout interval.	
83050100	An unsupported message type or terminal request was received by the CFMENU utility code from the CLI.	
83060100	Not all alter_device requests from the CFMENU utility completed within the timeout interval.	
84010100	An unsupported message type or terminal request was received by the CLONE virtual terminal code from the CLI.	
85010100	HSUTIL tried to release a facility that wasn't reserved by HSUTIL.	
85020100	HSUTIL tried to change the unit state from MAINTENANCE_MODE to NORMAL but was rejected because of insufficient resources.	
85030100	HSUTIL tried to change the usb unit state from MAINTENANCE_MODE to NORMAL but HSUTIL never received notification of a successful state change.	
85040100	HSUTIL tried to switch the unit state from MAINTENANCE_MODE to NORMAL but was not successful.	
86000020	Controller was forced to restart in order for new code load or patch to take effect.	
86000020	Controller was forced to restart due to execution of the CRASH utility.	
86010010	The controller code load function is about to update the program card.	
	This requires controller activity to cease. This code is used to inform the other controller this controller will stop responding to inter-controller communications during card update. An automatic restart of the controller at the end of the program card update causes normal controller activity to resume.	
8A020080	A memory error was encountered on the new cache module.	
	The controller has been automatically restarted to clear the error.	

B-82 Service Manual

Table B-13 Repair Action Codes (sheet 1 of 10)

Code	Description	
00	No action necessary.	
01	An unrecoverable hardware detected fault occurred or an unrecoverable firmware inconsistency was detected.	
	Proceed with controller support avenues. Contact your local field service representative.	
03	Follow the recommended repair action contained as indicated in the Last Failure Code.	
04	 Two possible problem sources are indicated: One of the dual power supplies has failed. Follow repair action 07 for the power supply with the Power LED out. One of the shelf blowers has failed. Follow repair action 06. 	
05	 Four possible problem sources are indicated: Total power supply failure on a shelf. Follow repair action 09. A device inserted into a shelf that has a broken internal SBB connector. Follow repair action 0A. A standalone device is connected to the controller with an incorrect cable. Follow repair action 08. A controller hardware failure. Follow repair action 20. 	
06	Determine which blower has failed and replace it.	
07	Replace power supply.	
08	Replace the cable. Refer to the specific device documentation.	
09	Determine power failure cause.	
0A	Determine which SBB has a failed connector and replace it.	
OB	 The "other controller" in a dual-redundant configuration has been reset with the "Kill" line by the controller that reported the event. To restart the "Killed" controller: Enter the CLI command RESTART OTHER on the "Surviving" controller. Depress the RESET button (//) on the "Killed" controller. If the "other controller" is repeatedly being "Killed" for the same or a similar reason, follow repair action 20. 	

Event Reporting:	Templates	and Codes	B–83
------------------	-----------	-----------	------

Table B-13 Repair Action Codes (sheet 2 of 10)

Code	Description
0C	Both controllers in a dual-redundant configuration are attempting to use the same SCSI ID (either 6 or 7 as indicated in the event report).
	Note that the other controller of the dual-redundant pair has been reset with the "Kill" line by the controller that reported the event.
	 Two possible problem sources are indicated: A controller hardware failure. A controller backplane failure. First, follow repair action 20 for the "Killed" controller. If the problem persists follow repair action 20 for the "Surviving" controller. If the problem still persists replace the controller backplane.
0D	The Environmental Monitor Unit has detected an elevated temperature condition.
	Check the shelf and its components for the cause of the fault.
0E	The Environmental Monitor Unit has detected an external air-sense fault.
	Check components outside of the shelf for the cause of the fault.
0F	An environmental fault previously detected by the Environmental Monitor Unit is now fixed.
	This event report is notification that the repair was successful.
10	Restore on-disk configuration information to original state.
20	Replace the controller module.
22	Replace the indicated cache module or the appropriate memory SIMMs on the indicated cache module.
23	Replace the indicated write cache battery.
À	Warning Battery Replacement May Cause Injury.

 Table B-13
 Repair Action Codes (sheet 3 of 10)

Code	Description
24	 Check for the following invalid write cache configurations: Wrong write cache module installed—replace with the matching module or clear the invalid cache error via the CLI.
	■ Write cache module is missing (single controller configuration)—reseat cache if it is physically present, or add the missing cache module, or clear the invalid cache error via the CLI.
	Write cache module is missing (dual-redundant configuration)—match write cache boards with both controllers.
	Write cache modules are not the same type (dual-redundant configuration)—replace a cache module to assure both are compatible with each other.
	Write cache modules are not the same size (dual-redundant configuration)—replace a cache module to assure both are compatible with each other.
	Cache module is populated with memory SIMMs in an illegal configuration— reconfigure according to guidelines.
25	An unrecoverable Memory System failure occurred.
	Upon restart the controller will generate one or more Memory System Failure Event Sense Data Responses; follow the repair action(s) contained therein.
26	The Master DRAB detected a Cache Timeout condition.
	The cache regions in effect are identified in the Master DRAB RSR register where: ■ Bits 8 through 11 identify the CACHEA memory region.
	Bits 12 through 15 identify the CACHEB memory region.
	Bits 20 through 23 the CACHEA DRAB registers region.
	Bits 24 through 27 identify the CACHEB DRAB registers region.
	If Master DRAB DSR register bit 14 is set, the failure was reported via the NMI. If Master DRAB DSR register bit 14 is clear the failure was reported via the
	DRAB_INT. Follow repair action 36.
27	 The Master DRAB detected an Nbus Transfer Error Acknowledge (TEA) condition where: Master DRAB DSR register bit 14 is set, the failure was reported via the NMI. Master DRAB DSR register bit 14 is clear, the failure was reported via the DRAB INT
	(follow repair action 36).

Event Reporting:	Templates	and Codes	B–85
------------------	-----------	-----------	------

 Table B-13
 Repair Action Codes (sheet 4 of 10)

Code	Description
28	 A Multiple Bit ECC error was detected by the Master DRAB where: The Master DRAB DER register bits 0 through 6 contain the syndrome value. The Master DRAB EAR register combined with Master DRAB ERR bits 0 through 3 (address region) yields the affected memory address. The Master DRAB EDR register contains the error data. If the failure involved a Device Port, the Master DRAB CSR register bits 10 through 12 identify that Device Port. If Master DRAB DSR register bit 14 is set, the failure was reported via the NMI. If Master DRAB DSR register bit 14 is clear, the failure was reported via the DRAB_INT (follow repair action 34).
29	 A Multiple Bit ECC error was detected by the CACHEA0 or CACHEA1 DRAB where: The CACHEAn DRAB DER register bits 0 through 6 contain the syndrome value. The CACHEAn DRAB EAR register combined with the Master DRAB RSR register bits 8 through 11 (CACHEA memory region) yields the affected memory address. The CACHEAn DRAB EDR register contains the error data. If the failure involved a Device Port, the Master DRAB CSR register bits 10 through 12 identify that Device Port. If Master DRAB DSR register bit 14 is set, the failure was reported via the NMI. If Master DRAB DSR register bit 14 is clear, the failure was reported via the DRAB_INT. Follow repair action 34.
2A	 A Multiple Bit ECC error was detected by the CACHEB0 or CACHEB1 DRAB where The CACHEBn DRAB DER register bits 0 through 6 contain the syndrome value. The CACHEBn DRAB EAR register combined with the Master DRAB RSR register bits 12 through 15 (CACHEB memory region) yields the affected memory address. The CACHEBn DRAB EDR register contains the error data. If the failure involved a Device Port, the Master DRAB CSR register bits 10 through 12 identify that Device Port. If Master DRAB DSR register bit 14 is set, the failure was reported via the NMI. If Master DRAB DSR register bit 14 is clear, the failure was reported via the DRAB_INT. Follow repair action 34.

B–86	Service	Manual

Table B-13 Repair Action Codes (sheet 5 of 10)

Code	Description	
2B	The Master DRAB detected an Ibus to Nbus Timeout condition.	
	 For each of the following conditions, a firmware fault is indicated; follow repair action 01. Otherwise, follow repair action 36: Master DRAB DSR register bit 14 is set, the failure was reported via the NMI. Master DRAB DSR register bit 14 is clear, the failure was reported via the DRAB_INT. Master DRAB CSR register bits 10 through 12 contains the value 1 and WDR1 register bit 26 is clear. Master DRAB CSR register bits 10 through 12 contains the value 2 and WDR1 register bit 27 is clear. Master DRAB CSR register bits 10 through 12 contains the value 3 and WDR1 register bit 28 is clear. Master DRAB CSR register bits 10 through 12 contains the value 4 and WDR1 register bit 29 is clear. Master DRAB CSR register bits 10 through 12 contains the value 4 and WDR1 register bit 29 is clear. Master DRAB CSR register bits 10 through 12 contains the value 4 and WDR1 register bit 30 is clear. Master DRAB CSR register bits 10 through 12 contains the value 4 and WDR1 register bit 30 is clear. Master DRAB CSR register bits 10 through 12 contains the value 5 and WDR1 register bit 30 is clear. 	
2C	 The Master DRAB detected a Nonexistent Memory Error condition where: The Master DRAB EAR register combined with Master DRAB ERR bits 0 through 3 (address region) yields the affected memory address. The Master DRAB EDR register contains the error data. If the failure involved a Device Port, the Master DRAB CSR register bits 10 through 12 identify that Device Port. If Master DRAB DSR register bit 14 is set, the failure was reported via the NMI. If Master DRAB DSR register bit 14 is clear, the failure was reported via the DRAB_INT. Follow repair action 36. 	
2D	 The CACHEA0 or CACHEA1 DRAB detected a Nonexistent Memory Error condition where: The CACHEAn DRAB EAR register combined with the Master DRAB RSR register bits 8 through 11 (CACHEA memory region) yields the affected memory address. The CACHEAn DRAB EDR register contains the error data. If the failure involved a Device Port, the Master DRAB CSR register bits 10 through 12 identify that Device Port. If Master DRAB DSR register bit 14 is set, the failure was reported via the NMI. If Master DRAB DSR register bit 14 is clear, the failure was reported via the DRAB_INT. Follow repair action 36. 	

Event Reporting:	Templates	and Codes	B–87
------------------	-----------	-----------	------

 Table B-13
 Repair Action Codes (sheet 6 of 10)

Code	Description
2E	 The CACHEB0 or CACHEB1 DRAB detected a Nonexistent Memory Error condition where: The CACHEBn DRAB EAR register combined with the Master DRAB RSR register bits 12 through 15 (CACHEB memory region) yields the affected memory address. The CACHEBn DRAB EDR register contains the error data. If the failure involved a Device Port, the Master DRAB CSR register bits 10 through 12 identify that Device Port. If Master DRAB DSR register bit 14 is set, the failure was reported via the NMI. If Master DRAB DSR register bit 14 is clear, the failure was reported via the DRAB_INT. Follow repair action 36.
2F	 The Master DRAB detected an Address Parity Error or a Write Data Parity Error condition where: The Master DRAB EAR register combined with Master DRAB ERR bits 0 through 3 (address region) yields the affected memory address. The Master DRAB EDR register contains the error data. If the failure involved a Device Port, the Master DRAB CSR register bits 10 through 12 identify that Device Port. If Master DRAB DSR register bit 14 is set, the failure was reported via the NMI. If Master DRAB DSR register bit 14 is clear, the failure was reported via the DRAB_INT. For Write Data Parity Error conditions, Bits 0—3 of the Master DRAB CSR register identify the byte in error. For Address Parity Error conditions follow repair action 34. For Write Data Parity Error conditions follow repair action 35.

	B–88	Service	Manual
--	------	---------	--------

 Table B-13
 Repair Action Codes (sheet 7 of 10)

Code	Description
30	 The CACHEA0 or CACHEA1 DRAB detected an Address Parity Error or a Write Data Parity Error condition where: If the failure occurred during a memory refresh attempt, the CACHEAn DRAB EAR register combined with the Master DRAB RSR register bits 8 through 11 (CACHEA memory region) yields the affected memory address. If the failure occurred during a memory access attempt, the CACHEA0 DRAB EAR register combined with the Master DRAB RSR register bits 8 through 11 (CACHEA memory region) or bits 20 through 23 (CACHEA DRAB register region) yields the affected memory address. No other information is available to distinguish a memory region access from a DRAB register region access.
	 The CACHEAn DRAB EDR register contains the error data. If the failure involved a Device Port, the Master DRAB CSR register bits 10 through 12 identify that Device Port. If Master DRAB DSR register bit 14 is set, the failure was reported via the NMI. If Master DRAB DSR register bit 14 is set, the failure was reported via the DRAB_INT. For Write Data Parity Error conditions bits 0 through 3 of the CACHEAn DRAB CSR register identify the byte in error. For Address Parity Error conditions follow repair action 34. For Write Data Parity Error conditions follow repair action 35.

Event Reporting:	Templates	and Codes	B–89
------------------	-----------	-----------	------

 Table B-13
 Repair Action Codes (sheet 8 of 10)

Code	Description
31	The CACHEB0 or CACHEB1 DRAB detected an Address Parity Error or a Write Data
	 Parity Error condition: If the failure occurred during a memory refresh attempt, the CACHEBn DRAB EAR register combined with the Master DRAB RSR register bits 8 through 11 (CACHEB memory region) yields the affected memory address. If the failure occurred during a memory access attempt, the CACHEB0 DRAB EAR register combined with the Master DRAB RSR register bits 8 through 11 (CACHEB memory region) or bits 20 through 23 (CACHEB DRAB register region) yields the affected memory address.
	No other information is available to distinguish a memory region access from a DRAB register region access.
	 The CACHEBn DRAB EDR register contains the error data. If the failure involved a Device Port, the Master DRAB CSR register bits 10 through 12 identify that Device Port.
	 If Master DRAB DSR register bit 14 is set, the failure was reported via the NMI. If Master DRAB DSR register bit 14 is clear, the failure was reported via the DRAB_INT.
	For Write Data Parity Error conditions bits 0 through 3 of the CACHEBn DRAB CSR register identify the byte in error.
	 For Address Parity Error conditions, follow repair action 34. For Write Data Parity Error conditions, follow repair action 35.
32	 The Master DRAB detected an Ibus Parity Error condition where: The Master DRAB EAR register combined with the Master DRAB ERR bits 4 through 7 (address region) yields the affected memory address. The Master DRAB EDR register contains the error data.
	 If Master DRAB DSR register bit 14 is set, the failure was reported via the NMI. If Master DRAB DSR register bit 14 is clear, the failure was reported via the DRAB_INT
	 If bits 20 through 23 of the Master DRAB DCSR register contain a nonzero value, a firmware fault is indicated; follow repair action 01; otherwise, follow repair action 36.
33	This event report contains supplemental information related to a Memory System Failure event report delivered earlier. Use the Instance Code contained in the Memory Address field of this event report to correlate this event report with the other event report.
34	If Bit 31 of the DCSR register of the DRAB that detected the failure is set, a firmware fault is indicated; follow repair action 01; otherwise, follow repair action 36.
35	If bits 20 through 23 of the WDR1 register contain a nonzero value, a firmware fault is indicated; follow repair action 01. Otherwise, follow repair action 36.

B–90 Service Manual

Table B-13 Repair Action Codes (sheet 9 of 10)

Code	Description
36	 Use the following sequence to find the cause of this error: If the Master DRAB detected the failure, follow repair action 20. If the CACHEAn or CACHEBn DRAB detected the failure, follow repair action 22. If the problem persists, follow repair action 01.
37	The Memory System Failure translator could not determine the failure cause. Follow repair action 01.
38	Replace the indicated cache memory SIMM.
40	 If the Sense Data FRU field is non-zero follow repair action 41. If the Sense Data FRU field is zero, replace the appropriate FRU associated with the device SCSI interface or the entire device.
41	Consult the device maintenance manual for guidance on replacing the indicated device FRU.
43	Update the configuration data to correct the problem.
44	 Replace the SCSI cable for the failing SCSI bus. If the problem persists, replace the Controller backplane, Drive backplane, or Controller module.
45	Interpreting the device supplied Sense Data is beyond the scope of the controller firmware. See the device service manual to determine the appropriate repair action, if any.
50	 The RAIDset is inoperative for one or more of the following reasons: More than one member malfunctioned—perform repair action 55. More than one member is missing—perform repair action 58. Before reconstruction of a previously replaced member completes another member becomes missing or malfunctions—perform repair action 59. The members have been moved around and the consistency checks show mismatched members—perform repair action 58.
51	 The mirrorset is inoperative for one or more of the following reasons: The last NORMAL member has malfunctioned—perform repair actions 55 and 59. The last NORMAL member is missing—perform repair action 58. The members have been moved around and the consistency checks show mismatched members—perform repair action 58.
52	The indicated Storageset member was removed for one of the following reasons: The member malfunctioned—perform repair action 56. By operator command—perform repair action 57.

Event Reporting:	Templates	and Codes	B–91
------------------	-----------	-----------	------

Table B-13 Repair Action Codes (sheet 10 of 10)

Code	Description
53	The storageset may be in a state that prevents the adding of a replacement member.
	Check the state of the storageset and its associated unit and resolve the problems found before adding the replacement member.
54	The device may be in a state that prevents adding it as a replacement member or may not be large enough for the storageset.
	Use another device for the ADD action and perform repair action 57 for the device that failed to be added.
55	Perform the repair actions indicated in any and all event reports found for the devices that are members of the storageset.
56	Perform the repair actions indicated in any and all event reports found for the member device that was removed from the storageset. Then perform repair action 57.
57	Delete the device from the failedset and redeploy (perhaps by adding it to the spareset so it will be available to be used to replace another failing device).
58	Install the physical devices that are members of the storageset in the proper port, target, and LUN locations.
59	Delete the storageset, recreate it with the appropriate ADD, INITIALIZE, and ADD UNIT commands and reload its contents from backup storage.
5A	Restore the mirrorset data from backup storage.
69	 An unrecoverable fault occurred at the host port: There may be more than one entity attempting to use the same SCSI ID number, or Some other bus-configuration error may have occurred, such as improper termination. If you don't find any SCSI host bus configuration problems, follow repair action 01.
80	An EMU fault has occurred.
81	The EMU reported terminator power out of range. Replace the indicated I/O modules.
83	 An EMU has become unavailable: If the EMU and its enclosure have been removed from the subsystem, no action is required. If the enclosure has lost power, restore power to the enclosure. If the EMU-to-EMU cable has been disconnected or is broken, reconnect or replace the cable. If the EMU has failed, replace the EMU.

B-92 Service Manual

Code	Description
01	Executive Services
02	Value Added Services
03	Device Services
04	Fault Manager
05	Common Library Routines
06	Dual Universal Asynchronous Receiver/Transmitter Services (DUART)
07	Failover Control
08	Nonvolatile Parameter Memory Failover Control
09	Facility Lock Manager
0A	Integrated Logging Facility
20	Command Line Interpreter
43	Host Port Protocol Layer
44	Host Port Transport Layer
64	SCSI Host Value Added Services
80	Disk Inline Exercise (DILX)
82	Subsystem Built-In Self Tests (BIST)
83	Device Configuration Utilities (CONFIG/CFMENU)
84	Clone Unit Utility (CLONE)
85	Format and Device Code Load Utility (HSUTIL)
86	Code Load/Code Patch Utility (CLCP)
8A	Field Replacement Utility (FRUTIL)

Table B-14 Component Identifier Codes

Event Reporting:	Templates and Codes	B–93
------------------	---------------------	------

Threshold Value	Classification	Description	
Value			
01	IMMEDIATE	Failure or potential failure of a component critical to proper controller operation is indicated; immediate attention is required.	
02	HARD	Failure of a component that affects controller performance or precludes access to a device connected to the controller is indicated.	
0A	SOFT	 An unexpected condition detected by one of the following: A controller firmware component (e.g., protocol violations, host buffer access errors, internal inconsistencies, uninterpreted device errors, etc.) An intentional restart or shutdown of controller operation is indicated. 	
64	INFORMATIONAL	An event having little or no effect on proper controller or device operation is indicated.	

Table B-15 Event Notification/Recovery Threshold Classifications

Table B-16 ASC and ASCQ Codes (sheet 1 of 3)

ASC Code	ASCQ Code	Description
3F	85	Test Unit Ready or Read Capacity Command failed
3F	87	Drive failed by a Host Mode Select command.
3F	88	Drive failed due to a deferred error reported by drive.
3F	90	Unrecovered Read/Write error.
3F	C0	No response from one or more drives.
3F	C2	NV memory and drive metadata indicate conflicting drive configurations.
3F	D2	Synchronous Transfer Value differences between drives.
80	00	Forced error on Read
82	01	No Command control structures available.
84	04	Command failed - SCSI ID verification failed.
85	05	Data returned from drive is invalid.
89	00	Request Sense command to drive failed.

B–94	Service	Manual
------	---------	--------

Table B-16 ASC and ASCQ Codes (sheet 2 of 3)

ASC Code	ASCQ Code	Description
8A	00	Illegal command for pass through mode.
8C	04	Data transfer request error.
8F	00	Premature completion of a drive command.
93	00	Drive returned vendor unique sense data.
A0	00	Last failure event report.
A0	01	Nonvolatile parameter memory component event report.
A0	02	Backup battery failure event report.
A0	03	Subsystem built-in self test failure event report.
A0	04	Memory system failure event report.
A0	05	Failover event report.
A0	07	RAID membership event report.
A0	08	Multiple Bus failover event.
A0	09	Multiple Bus failback event.
A1	00	Shelf OK is not properly asserted.
A1	01	Unable to clear SWAP interrupt. Interrupt disabled.
A1	02	Swap interrupt re-enabled.
A1	03	Asynchronous SWAP detected.
A1	04	Controller shelf OK is not properly asserted.
A1	0A	EMU fault: Power Supplies not OK.
A1	0B	EMU fault: Fans not OK.
A1	0C	EMU fault: Temperature not OK.
A1	0D	EMU fault: External Air Sense not OK.
A1	10	Power supply fault is now fixed.
A1	11	Fans fault is now fixed.
A1	12	Temperature fault is now fixed.
A1	13	External Air Sense fault is now fixed.
A1	14	Controller vendor specific

Event Reporting:	Templates	and Codes	B–95
------------------	-----------	-----------	------

ASC Code	ASCQ Code	Description
A1	15	Controller vendor specific
B0	00	Command timeout.
B0	01	Watchdog timer timeout.
D0	01	Disconnect timeout.
D0	02	Chip command timeout.
D0	03	Byte transfer timeout.
D1	00	Bus errors.
D1	02	Unexpected bus phase.
D1	03	Disconnect expected.
D1	04	ID Message not sent.
D1	05	Synchronous negotiation error.
D1	07	Unexpected disconnect.
D1	08	Unexpected message.
D1	09	Unexpected tag message.
D1	0A	Channel busy.
D1	0B	Device initialization failure. Device sense data available.
D2	00	Miscellaneous SCSI driver error.
D2	03	Device services had to reset the bus.
D3	00	Drive SCSI chip reported gross error.
D4	00	Non-SCSI bus parity error.
D5	02	Message Reject received on a valid message.
D7	00	Source driver programming error.
E0	03	Fault Manager detected an unknown error code.
E0	06	Maximum number of errors for this I/O exceeded.
E0	07	Drive reported recovered error without transferring all data.

Table B-16 ASC and ASCQ Codes (sheet 3 of 3)

Glossary

Adapter	A device that converts the protocol and hardware-interface of one bus type into that of another without changing the functionality of the bus.
BBR	Bad block replacement. The procedure used to locate a replacement block, mark the bad block as replaced, and move the data from the bad block to the replacement block.
BBU	Battery backup unit. A StorageWorks SBB option that extends power availability after the loss of primary ac power or a power supply to protect against the corruption or loss of data.
Block	The smallest data unit addressable on a disk. Also called a sector. In integrated storage elements, a block contains 512 bytes of data, EDC, ECC, flags, and the block's address header.
CDU	Cable distribution unit. The power entry device for StorageWorks cabinets. The unit provides the connections necessary to distribute ac power to cabinet shelves and fans.
CLI	Command line interpreter. Operator command line interface for the HS family controller firmware.
Container	A term given to:
	Any entity that is capable of storing data, whether it is a physical device or a group of physical devices.
	■ A virtual, internal, controller structure representing either a single disk or a group of disk drives linked as a storageset.
	Stripesets and mirrorsets are examples of storageset containers the controller uses to create units.
Controller	A hardware/software device that facilitates communications between a host and one or more devices organized in an array. The HSZ70 controller is an example of an array controller.

G-1

Controller shelf	A StorageWorks shelf designed to contain controller and cache modules.
Data center cabinet	A generic reference to the large cabinets, such as the SW800-series, in which StorageWorks components can be mounted.
Differential SCSI bus	A signal's level is determined by the potential difference between two wires. A differential bus is more robust and less subject to electrical noise than is a single-ended bus.
DILX	Disk inline exerciser. Diagnostic firmware used to test the data transfer capabilities of disk drives in a way that simulates a high level of user activity.
Dual-redundant configuration	Two controllers in one controller shelf providing the ability for one controller to take over the work of the other controller in the event of a failure of the other controller.
DUART	Dual universal asynchronous receiver/transmitter. An integrated circuit containing two serial, asynchronous transceiver circuits.
DWZZA, B, C	StorageWorks compatible SCSI bus signal converters:
	 DWZZA is a SCSI-2 compliant single-ended to differential bus converter (8-bit).
	 DWZZB is a SCSI-2 compliant single-ended to differential bus converter (16-bit).
	■ DWZZC is an UltraSCSI compliant single-ended to single-ended extender, as well as a differential-to-single-ended converter.
ECB	External cache battery.
ECC	Error correction code. One or more cyclic redundancy check (CRC) words that allow detection of a mismatch between transmitted and received data in a communications system, or between stored and retrieved data in a storage system. The ECC allows for location and correction of an error in the received/retrieved data. All ECCs have limited correction power.
Glossary G-	·З
-------------	----
-------------	----

EDC	Error detection code. One or more checksum words that allow detection of a mismatch between transmitted and received data in a communications system, or between stored and retrieved data in a storage system. The EDC has no data correction capability.
ESD	Electrostatic discharge. The discharge of a potentially harmful static electric voltage as a result of improper grounding.
Failback	The process of restoring data access to the newly-restored controller in a dual-redundant controller configuration (see Failover).
Failedset	A group of disk drives that have been removed from RAIDsets due to a failure or a manual removal. Disk drives in the failedset should be considered defective and should be tested, repaired, and then placed into the spareset.
Failover	The process that takes place when one controller in a dual-redundant configuration assumes the workload of a failed controller.
Flush	The act of writing data from the cache module to the media.
FRU	Field replaceable unit. A hardware component that can be replaced.
FWD SCSI	Fast, wide, differential SCSI. The differential SCSI bus with a 16-bit parallel data path that yields a transfer rate of up to 20 MB/s.
Half-height device	A device that occupies half of a 5.25 inch SBB carrier. Two half-height devices can be mounted in a 5.25 inch SBB carrier. The first half-height device is normally mounted in the lower part of the carrier. The second device is normally mounted in the upper part of the carrier.
HBVS	Host-based volume shadowing. Also known as Phase 2 volume shadowing.
HSOF	Hierarchical storage operating firmware. Software contained on a program card that provides the logic for the HS array controllers.
HIS	Host interconnect services. The firmware in the HS array controller that communicates with the host.
Host	Any computer to which a storage subsystem can be attached.

Hot swap	A method of replacing a device whereby the system that contains the device remains online and active during replacement. The device being replaced is the only device that cannot perform operations during a hot swap.
Initiator	A SCSI device that requests an I/O process to be performed by another SCSI device (a target). This is always the controller.
Local terminal	Any EIA-423 compatible terminal plugged into the controller maintenance port. This terminal may be used to identify the controller, enable host paths, define the initial configuration, and check controller status. It is not required for normal operations. It is sometimes referred to as a maintenance terminal.
Logical unit	The physical device or storage unit seen by the host. Often these logical units are spread across more than one physical device, especially in RAID implementations. This is not the same as a logical unit number (LUN).
Logical Unit Number	See LUN.
LRU	Least recently used. Cache terminology for the block replacement policy for the read cache.
LUN	A logical unit number is a physical or virtual peripheral device addressable through a target. LUNs use their target's bus connection to communicate on the SCSI bus.
Metadata	Data written on the physical disk that is not visible to the host/customer that allows the HS array controller to maintain a high integrity of customer data.
Mirrorset	Two or more physical disks configured to present one highly reliable virtual unit to the host.
Non-redundant configuration	A single controller configuration. A controller configuration which does not include an second backup controller permitting failover in the event of a failure.
Normal member	A mirrorset member whose entire contents is guaranteed to be the same as all other NORMAL members. All NORMAL members are exactly equivalent.

Glossary	G-5

Normalizing member	A mirrorset member whose contents is the same as all other NORMAL and NORMALIZING members for data that has been written since the mirrorset was created or lost cache data was cleared. Data that has never been written may differ among NORMALIZING members.
NVMEM	Nonvolatile memory. A term used to describe memory that can retain data during a power loss to the controller.
Partition	A percentage of a storageset or single-disk unit that may be presented to the host as a storage unit.
Partitioning	Device partitioning is the process of dividing up a single large container into a number of smaller containers.
Port	The hardware and software used to connect a host controller to a communication bus, such as CI, DSSI, or SCSI bus. This term also is used to describe the connection between the controller and its SCSI storage devices.
PTL	Port-Target-LUN—a method of device notation where:
	$\blacksquare P = \text{the controller's device port (1-6).}$
	$\blacksquare T = \text{the target ID of the device (0-5).}$
	$\blacksquare L = \text{the LUN of the device (0-7).}$
Qualified device	A device that has been fully tested in an approved StorageWorks configuration, (that is, shelf, cabinet, power supply, cabling, and so forth) and is in complete compliance with country-specific standards (for example, FCC, TUV, and so forth) and with all Digital standards.
Quiesce	To make a device bus (port) inactive or dormant. For example, the operator must <i>quiesce</i> SCSI bus operations during a device warm swap.
RAID	R edundant a rray of i ndependent d isks. The multiple storage access methods devised for performance (RAID 0, striping) and/or various cost levels of availability (RAID 1 through RAID 5).
RAIDset	Three or more physical disks that are configured to present an array of disks as a single virtual unit to the host.

|--|--|--|--|

Read cache	The cache used to accelerate read operations by retaining data which has been previously read, written, or erased, based on a prediction that it will be reread.
Replacement policy	The method by which a spare disk is selected to replace a disk that has failed in a RAIDset.
SBB	StorageWorks Building Block. A modular carrier plus the individual mechanical and electromechanical interface required to mount the device into a standard StorageWorks shelf. Any device conforming to shelf mechanical and electrical standards is considered an SBB.
SBB shelf	A StorageWorks shelf, such as the DS-BA350Sx, designed to house plug-in SBB modules.
SCSI	Small Computer System Interface. An ANSI interface defining the physical and electrical parameters of a parallel I/O bus used to connect a maximum of 15 devices. The StorageWorks device interface is implemented according to SCSI-2 standard, allowing the synchronous transfer of 16-bit data at rates of up to 40 MB/s.
SCSI device	A host computer adapter, a peripheral controller, or a storage element that can be attached to the SCSI bus.
SCSI device ID	The bit-significant representation of the SCSI addressing that refers to one of the signal lines numbered 0 through 15. Also referred to as a target ID.
SCSI-A cable	A 50-conductor (25 twisted pair) cable used for single-ended, SCSI bus connectors.
SCSI-P cable	A 68-conductor (34 twisted pair) cable used for differential bus connectors.
Small Computer System Interface	See SCSI.
Spareset	A pool of disk drives used by the controller to replace failed members of a RAIDset or mirrorset.
SPD	Software Product Description. A document that contains the legal description of a product.

Glossary	G-7
----------	-----

Storageset	Any collection of containers, such as partitions, stripesets, RAIDsets, the spareset, and the failedset, that make up a container.
Storage unit	The general term that refers to storagesets, single disk units, and all other storage devices that can be installed in your subsystem and accessed by a host. A storage unit can be any entity that is capable of storing data, whether it is a physical device or a group of physical devices (see Container).
StorageWorks	A family of Compaq Computer Corporation's modular data storage products that allows customers to design and configure their own storage subsystems. Components include power, packaging, cabling, devices, controllers, and software. Customers can integrate devices and array controllers in StorageWorks enclosure to form storage subsystems.
StorageWorks Building Block	See SBB.
Stripeset	A virtual disk drive with its physical data spread across multiple physical disks. Stripeset configurations do not include a data recovery mechanism.
Striped mirrorset	Stripesets whose members have been mirrored.
Tagged command queuing	A SCSI feature that allows a device to have multiple I/O requests outstanding to it at one time.
Target	A SCSI device that performs an operation requested by an initiator. The target number is determined by the device's address on its SCSI bus.
Unit	The host view of a container on an HSxxx array controller. A unit may be made up of simply a physical disk or tape drive, or a more complex container such as a RAIDset.
Unwritten cached data	Data in the write-back cache which has not yet been written to the physical device, but the user has been notified that the data has been written.
VCS	VAXcluster console system.

G-8	Service Manual	

Virtual terminal	A software path from an operator terminal on the host to the controller's CLI. The path can be established via the host port on the controller (using DUP) or via the maintenance port through on intermediary host (VCS). A virtual terminal is also sometimes called a host console.
Warm swap	A method for adding or replacing a device whereby the system remains online, but all activity on the device bus must be halted for the duration of the swap.
Write-back caching	A caching strategy that writes data to the cache memory, then flushes the data to the intended device at some future time. From the user perspective, the write operation is complete when the data is stored in the cache memory. This strategy avoids unnecessary access of the devices.
Write hole	Undetectable RAID level 1 or 5 data corruption. A write hole is caused by the successful writing of some, but not all, of the storageset members. Write holes occur under conditions such as power outages, where the writing of multiple members can be abruptly interrupted. A battery backed-up cache design eliminates the write hole, because data is preserved and writes can be retried.
Write-through cache	A cache write strategy in which the destination of the write data is the primary storage media. This operation may update, invalidate, or delete data from the cache memory accordingly, to ensure that the cache does not contain obsolete data. The user sees the operation as complete only after the backup storage device has been updated.

Index

A

Abbreviations xv AC input module part number 1–3 Adapter G–1 ASC_ASCQ codes 2–12

B

BA370 rack-mountable enclosure part number 1–2, 1–4 BBR G–1 BBU G–1 Block G–1 Blower 1–17

С

Cables tightening xii Cache module installing single-controller configuration 3–9 operation 1–19 part number 1–3 removing single-controller configuration 3–7 replacing single-controller configuration 3–7 Caution, defined xiv CLCP

patching software 4-5 upgrading software 4-2 CLI firmware 1-15 Codes ASC_ASCQ 2-12 device_type 2-12 event codes 2-12 instance 2-12 last failure 2-12 repair_action 2-12 structure of events and last-failures 2-14 translating 2-12 types of 2-12 Command line interpreter See CLI Component codes 2–12 Component ID 2-14 Configuration map of devices in subsystem 2-20 upgrading to dual-redundant 4-14 Configuring Controller Multiple-Bus Failover 4-20 container, defined G-1 Controller "this" and "other" defined xiii checking communication with devices 2-19 checking communication with host 2-18 checking transfer rate with host 2-18 installing dual-redundant controller configuration 3 - 16single-controller configuration 3-6 part number 1-3 removing dual-redundant controller configuration

I—1

I—2 Service Manual

3 - 14single-controller configuration 3-2replacing dual-redundant controller configuration 3 - 14single-controller configuration 3-2 self test 2-32 shutting down 2–33 upgrading software 4-2 Controller, cache module, and ECB upgrade installation 4–15 Conventions abbreviations xv typographical xii warnings, cautions, tips, notes xii Cooling fan part number 1-2, 1-4

D

DAEMON tests 2–32 Data center cabinet G-2 Data patterns for DILX write test 2–31 Deleting patches 4-5, 4-7 software patches 4-7 Deleting software patches 4–5 Describing event codes 2–12 Device checking communication with controller 2-19 checking I/O 2-21 checking port status 2-23 checking status 2-21 exercising 2-27 finding 2-27 mapping in subsystem 2–20 testing read and write capability 2-28 testing read capability 2-27 upgrading firmware 4–9 Device ports checking status 2-23

Device services firmware 1-17 Device type codes 2-12Devices replacing 3-43 Devices, half-height G-3 Diagnostic registers 1–7 Differential SCSI bus G-2 DILX 2-27, G-2 **DIMMs** installing 3-42 dual-redundant controller configuration 3 - 42single-configuration controller 3-42 removing 3-41 dual-redundant controller configuration 3-41 single-configuration controller 3-41 replacing 3-40 replacing in a dual-redundant controller configuration 3-40 replacing in a single-configuration controller 3-40 Disk drive. <Italic>See device Displaying current FMU settings 2-17 event codes 2–12 last-failure codes 2-11 memory-system failures 2-11 software patches 4-5 Documentation, related xv Dual-redundant configuration upgrading from single configuration 4–14 Dual-redundant controller configuration installing controller 3-16 removing controller 3-14 DIMMs 3-41 replacing controller 3-14

Index I-3

DIMMs 3-40 ECB with cabinet powered off 3-9 ECB with cabinet powered on 3-29 I/O module 3–36 PVA module 3-31 PVA module in the first expansion enclosure 3-33 PVA module in the master enclosure 3-31PVA module in the second expansion enclosure 3-33 Dual-redundant controller configurations replacing ECB 3-27 replacing modules 3-13 DUART G-2 DWZZA G-2

E

ECB dual-redundant controller configuration replacing with cabinet powered off 3-9 replacing with cabinet powered on 3-29 part number 1-3 replacing with cabinet powered off 3-9 replacing with cabinet powered on 3-29 single-controller configuration replacing with cabinet powered off 3-9 replacing with cabinet powered on 3-29 ECC G-2 EDC G-3 Electrostatic discharge precautions xi **EMU** part number 1–3 Error logging firmware 1–17 ESD G-3 Event codes structure 2-14 translating 2-12 types 2–12 Event threshold codes 2–12

Excercising drives and units 2–27 EXEC 1–15

F

Failover G-3 Fault management firmware 1–17 Fault remedy table 2-4 Finding devices 2–27 Firmware CLI 1-15 description 1-11 device services 1-17 error logging 1-17EXEC functions 1–15 fault management 1–17 host protocol 1-15 value-added 1-18 Firmware, upgrading 4–9 Flush G–3 FMU displaying current display settings 2-17 enabling event logging 2-15 enabling repair-action logging 2-15 enabling timestamp 2-16 enabling verbose logging 2-16 general description 2-10 interpreting last-failures 2-10 interpreting memory-system failures 2-10 logging last-failure codes 2–15 setting display for 2–15 translating event codes 2-12 FRU G-3 FWD SCSI G-3

Η

Half-height device G–3 Hardware, HS controller diagnostic registers 1–7

I—4 Service Manual

i960 1-5 policy processor 1-5 HBVS G-3 HIS G-3 History, revision of this manual xvi Host checking transfer rate to controller 2-18 Host port checking status 2-18 Host protocol 1-15 HS controller models host protocol 1–15 HS operating firmware See Firmware **HSUTIL** messages 4–12 upgrading device firmware 4–9

Ι

I/O checking to devices 2-21 checking to host 2-18 checking to units 2-24 I/O Module part number 1-2 I/O module replacing 3-36 replacing in a dual-redundant controller configuration 3-36 replacing in a single-configuration controller 3 - 36i960 1-5, 1-9 Initiator G-4 Installing cache module single-controller configuration 3–9 controller dual-redundant controller configuration 3-16 single-controller configuration 3–6 controller, cache module, and ECB 4-15 DIMMs 3-42

dual-redundant controller configuration 3 - 42single-controller configuration 3-42 dual-redundant controller configuration cache module 3–21 controller 3-16 DIMMs 3-42 mirrorset member 3-43 patches 4-5 RAIDset member 3-43 single-controller configuration cache module 3–9 controller 3-6 DIMMs 3-42 software patches 4-5 Instance codes component ID 2-14 event threshold 2-14 repair action 2-14 structure 2-14 translating 2-12 Intel 80960CA chip See i960 Interpreting event codes 2–14

L

Last-failure codes component ID 2-14 displaying 2-11 logging 2–15 parameter count 2-14 repair action 2-14 structure 2-14 translating 2-12 Listing patches 4-5, 4-8 software patches 4-8 Listing software patches 4–5 Local terminal general description G-4 Local-connection port precautions xii

Index I-5

Locating devices 2–27 Locking the program card 4–3 Logging enabling in FMU 2–15 enabling verbose logging 2–16 timestamping 2–16 Logical unit G–4 LRU G–4 LUN G–4

Μ

Map of devices in subsystem 2–20 Member replacing 3–43 Memory-system failures 2–11 Mirrorset member installing 3–43 removing 3–43

Ν

Non-redundant configuration G-4 Normal member G-4 Note, defined xiv NV G-5

0

Operating system, controller See EXEC

Р

Parameter count 2–14 Part numbers storage subsystem basic building blocks 1–2 Patches deleting 4–7

installing 4-5 listing 4–8 listing, installing, deleting 4-5 Policy processor 1-5 Power supply part number 1-3 Precautions electrostatic discharge xi local-connection port xii VHDCI cables xii Problem solving 2–1 Program card write-protection switch 4-3 Publications, related xv PVA module part number 1-2, 1-4 replacing 3-31 master enclosure 3-31 second expansion enclosure 3-33 replacing in a dual-redundant controller configuration 3-31 first expansion enclosure 3-33 master enclosure 3-31 second expansion enclosure 3-33 replacing in a single-configuration controller 3-31 first expansion enclosure 3-33 master enclosure 3-31 second expansion enclosure 3-33

Q

Qualified device G–5 Quiesce G–5

R

RAIDset member installing 3–43 removing 3–43 Rate of transfer,checking to host 2–18

I—6 Service Manual

Read capability, testing 2–27 Reduced storageset 3-43 Related publications xv Remedies 2–4 Removing cache module single-controller configuration 3-7controller dual-redundant controller configuration 3 - 14single-controller configuration 3–2 DIMMs 3-41 dual-redundant controller configuration 3 - 41single-controller configuration 3-41 dual-redundant controller configuration cache module 3-19 controller 3–14 DIMMs 3-41 failed mirrorset member 3-43 failed RAIDset member 3-43 single-controller configuration cache module 3–7 controller 3–2 DIMMs 3-41 Repair-action codes logging 2-15 translating 2–12 Replacing cache module single-controller configuration 3-7controller dual-redundant controller configuration 3 - 14single-controller configuration 3-2DIMMs 3-40 dual-redundant controller configuration 3 - 40single-controller configuration 3-40 dual-redundant controller configuration 3-13 cache module 3–19

controller 3-14 DIMMs 3-40 ECB with cabinet powered off 3–9 ECB with cabinet powered on 3-29 I/O module 3–36 PCMCIA card 3-43 PVA module 3–31 PVA module, first expansion enclosure 3 - 33PVA module, master enclosure 3–31 PVA module, second expansion enclosure 3-33 ECB 3-29 ECB with cabinet powered off 3–9 ECB with cabinet powered on 3-29 I/O module 3–36 modules dual-redundant controller configuration 3-13 modules in a single-controller configuration 3 - 2PVA module 3–31 master enclosure 3–31 second expansion enclosure 3-33 single-controller configuration 3-2cache module 3–7 controller 3-2 DIMMs 3-40 ECB with cabinet powered off 3-9ECB with cabinet powered on 3-29 I/O module 3–36 PCMCIA card 3-43 PVA module 3–31 PVA module, master enclosure 3–31 PVA module, second expansion enclosure 3 - 33storageset member 3-43 Required tools xiv Restart_type codes 2–12 Restarting the subsystem 2-34Revision history xvi Running

Index I-7

controller self test 2–32 DAEMON tests 2–32 DILX 2–27 FMU 2–11 VTDPY 2–17

S

SBB G-6 SCSI command operations 2-12 Self test 2–32 Setting display characteristics for FMU 2-15 Shutting down the subsystem 2-33Single configuration upgrading to dual-redundant 4-14 Single-controller configuration installing cache module 3-9 controller 3-6 removing cache module 3-7 controller 3–2 DIMMs 3-41 replacing cache module 3-7 controller 3-2DIMMs 3-40 ECB 3-27 ECB with cabinet powered off 3-9 ECB with cabinet powered on 3-29 I/O module 3–36 PVA module 3-31 PVA module in the first expansion enclosure 3-33 PVA module in the master enclosure 3–31 PVA module in the second expansion enclosure 3-33 replacing modules 3-2 Software patches 4-5 upgrading 4-2 Software patches

deleting 4-7 installing 4-5 listing 4–8 Software, HS controller See Firmware SPD G-6 Starting the subsystem 2–34 Status device ports 2-23 devices 2-21 host port 2-18 units 2–24 Storageset member replacing 3-43 Structure of event codes 2–14 Subsystem restarting 2-34 shutting down 2-33 upgrading 4-1 Symptoms 2–4

Т

Tagged command queuing G-7 Target G-7 Testing read capability 2-27 This controller, defined xiii Tightening VHDCI cables xii Timestamp for logging 2–16 Tip, defined xiv Tools xiv Transfer rate checking to devices 2-19 checking to host 2-18 Translating event codes 2-12 Troubleshooting checklist 2-1 general description 2-1 table 2-4 Turning off the subsystem 2-33 Turning on the subsystem 2–34 Typographical conventions xii

I—8 Service Manual

U

Write-through cache G-8

Unit checking I/O 2-24 checking status 2-24 excercising 2-27 Upgrading controller software 4–2 device firmware 4–9 installing controller, cache module, and ECB 4-15 single to dual-redundant 4-14 using CLCP 4-5 deleting patches 4-7 deleting software patches 4–7 installing patches 4–5 installing software patches 4–5 listing patches 4–8 listing software patches 4-8

V

Value-added functions firmware 1–18 Verbose logging 2–16 VHDCI cable precautions xii Virtual terminal G–8 Virtual terminal display. <Italic>See VTDPY VTDPY checking communication with host 2–18 general description 2–17 running 2–17

W

Warm swap G–8 Warning, defined xiv Write capability, test for devices 2–28 Write hole G–8 Write protection for program card 4–3