Compaq StorageWorks

HSG60 Array Controller ACS Version 8.6

CLI Reference Guide

First Edition (June 2001)
Part Number: EK-G60CL-RA. A01
Compaq Computer Corporation

© 2001 Compaq Computer Corporation.

Compaq, the Compaq logo, and StorageWorks Registered in U. S. Patent and Trademark Office.

Tru64 and OpenVMS are trademarks of Compaq Information Technologies Group, L.P. in the United States and other countries.

UNIX is a trademark of The Open Group in the United States and other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The information in this document is provided "as is" without warranty of any kind and is subject to change without notice. The warranties for Compaq products are set forth in the express limited warranty statements accompanying such products. Nothing herein should be construed as constituting an additional warranty.

Compaq service tool software, including associated documentation, is the property of and contains confidential technology of Compaq Computer Corporation. Service customer is hereby licensed to use the software only for activities directly relating to the delivery of, and only during the term of, the applicable services delivered by Compaq or its authorized service provider. Customer may not modify or reverse engineer, remove, or transfer the software or make the software or any resultant diagnosis or system management data available to other parties without Compaq's or its service provider's consent. Upon termination of the services, customer will, at Compaq's or its service provider's option, destroy or return the software and associated documentation in its possession.

Printed in the U.S.A.

HSG60 Array Controller ACS Version 8.6 CLI Reference Guide First Edition (June 2001) Part Number: EK-G60CL-RA. A01

Contents

About This Guide
Text Conventions
Symbols in Text viii
Symbols on Equipment
Rack Stability ix
Getting Helpx
Compaq Technical Support
Compaq Websitex
Compaq Authorized Reseller xi
Chapter 1
CLI Command Introduction
CLI Overview 1–1
Using the CLI
Command Overview1–2
Controller Commands
Device Commands
Selective Storage Presentation Commands
Storageset Commands
Partition Commands
Logical Unit Commands
Diagnostic and Utility Commands 1–6
Getting Help
Entering CLI Commands
Command Syntax
Changing the CLI Prompt 1–8

iv	HSG60 Array Controller ACS Version 8.6 CLI Reference Guide
	Papter 2 I Command Descriptions CLI Command Descriptions
Glo	ossary
Ind	lex

Figures

Figure 2 1	Location of node ID sticker on a BA370 enclosure.	2	05
rigure 2-1.	Location of node 1D sticker on a bA5/0 enclosure	. 2-	ソン

vi

Tables

Table 1–1	Recall and Edit Command Keys	1–′
Table 2–1	ADD UNITS Switches for New Containers	2-20
Table 2–2	SET controller Switches	2–90
Table 2–3	SET unit-number Switches for Existing Containers	2-11

About This Guide

This guide is designed to be used as step-by-step instructions for installation and as a reference for operation, troubleshooting, and future upgrades.

Text Conventions

This document uses the following conventions to distinguish elements of text:

Keys Keys appear in boldface. A plus sign (+) between two

keys indicates that they should be pressed

simultaneously.

USER INPUT

User input appears in a different typeface and in

uppercase

FILENAMES File names appear in uppercase italics.

Menu Options, These elements appear in initial capital letters.

Command Names, Dialog Box Names

COMMANDS, These elements appear in upper case.

DIRECTORY NAMES, and DRIVE NAMES

NOTE: UNIX commands are case sensitive and will not appear in uppercase.

Type When you are instructed to *type* information, type the

information without pressing the Enter key.

Enter When you are instructed to enter information, type the

information and then press the Enter key.

Symbols in Text

These symbols may be found in the text of this guide. They have the following meanings:

WARNING: Text set off in this manner indicates that failure to follow directions in the warning could result in bodily harm or loss of life.

CAUTION: Text set off in this manner indicates that failure to follow directions could result in damage to equipment or loss of information.

IMPORTANT: Text set off in this manner presents clarifying information or specific instructions.

NOTE: Text set off in this manner presents commentary, sidelights, or interesting points of information.

Symbols on Equipment

These icons may be located on equipment in areas where hazardous conditions may exist.

Any surface or area of the equipment marked with these symbols indicates the presence of electrical shock hazards. Enclosed area contains no operator serviceable parts.

WARNING: To reduce the risk of injury from electrical shock hazards, do not open this enclosure.

Any RJ-45 receptacle marked with these symbols indicates a Network Interface Connection.

WARNING: To reduce the risk of electrical shock, fire, or damage to the equipment, do not plug telephone or telecommunications connectors into this receptacle.

Any surface or area of the equipment marked with these symbols indicates the presence of a hot surface or hot component. If this surface is contacted, the potential for injury exists.

WARNING: To reduce the risk of injury from a hot component, allow the surface to cool before touching.

Power supplies or systems marked with these symbols indicate the equipment is supplied by multiple sources of power.

WARNING: To reduce the risk of injury from electrical shock, remove all power cords to completely disconnect power from the system.

Any product or assembly marked with these symbols indicates that the component exceeds the recommended weight for one individual to handle safely.

WARNING: To reduce the risk of personal INJURY or damage to the equipment, observe local occupational health and safety requirements and guidelines for manual material handling.

Rack Stability

WARNING: To reduce the risk of personal injury or damage to the equipment, be sure that:

- The leveling jacks are extended to the floor.
- The full weight of the rack rests on the leveling jacks.
- The stabilizing feet are attached to the rack if it is a single rack installations.
- The racks are coupled together in multiple rack installations.
- A rack may become unstable if more than one component is extended for any reason. Extend only one component at a time.

Getting Help

If you have a problem and have exhausted the information in this guide, you can get further information and other help in the following locations.

Compaq Technical Support

You are entitled to free hardware technical telephone support for your product for as long you own the product. A technical support specialist will help you diagnose the problem or guide you to the next step in the warranty process.

In North America, call the Compaq Technical Phone Support Center at 1-800-OK-COMPAQ. This service is available 24 hours a day, 7 days a week.

NOTE: For continuous quality improvement, calls may be recorded or monitored.

Outside North America, call the nearest Compaq Technical Support Phone Center. Telephone numbers for world wide Technical Support Centers are listed on the Compaq website. Access the Compaq website by logging on to the Internet at http://www.compaq.com.

Be sure to have the following information available before you call Compaq:

- Technical support registration number (if applicable)
- Product serial numbers
- Product model names and numbers
- Applicable error messages
- Add-on boards or hardware
- Third-party hardware or software
- Operating system type and revision level
- Detailed, specific questions

Compaq Website

The Compaq website has latest information on this product as well as the latest drivers. You can access the Compaq website by logging on to the Internet at http://www.compaq.com/storage.

Compaq Authorized Reseller

For the name of your nearest Compaq Authorized Reseller:

- In the United States, call 1-800-345-1518.
- In Canada, call 1-800-263-5868.
- Elsewhere, see the Compaq website for locations and telephone numbers.

Chapter 1

CLI Command Introduction

Command line interpreter (CLI) commands are used to interact with the controller to establish various controller parameters and storagesets. These CLI commands can be entered into the controller by any of the following means:

- A local terminal connected to the maintenance port of the controller
- A remote connection by way of the host system terminal
- The StorageWorks Command Console (SWCC)

This chapter provides a general description of the CLI interface and an outline of how to use this interface. Chapter 2 contains a description of each CLI command with the correct syntax and examples of usage.

CLI Overview

The CLI is one of the user interfaces through which you control your Compaq StorageWorks array controller in the storage subsystem (the CLI being the most direct). The CLI commands allow you to manage the subsystem by viewing and modifying the configuration of the controller and the devices attached to them. You can also use the CLI to start controller diagnostic and utility programs.

While the CLI provides the most detailed level of subsystem control, a graphical user interface (GUI) is available for use with the CLI. The GUI that is designed for use in the application of CLI commands is called the StorageWorks Command Console (SWCC). The SWCC replicates most of the functions available within the CLI in graphic form and provides a user-friendly method of executing CLI commands.

CLI commands for configuring and viewing the controllers use the relative terms "this controller" and "other controller." See Text Conventions on page vii for an explanation of these terms.

Using the CLI

Access the CLI through the following methods:

- Connecting a PC or local terminal to the maintenance port on the front of the controller.
- Using the diagnostic utility protocol (DUP) utility from a system terminal, enable a remote connection to the controller. After the controller is initially configured and made visible to the host, other configuration tasks can be performed through this remote connection.
- Using the SWCC by way of a PC setup on the subsystem. The SWCC can be used to perform most of the CLI commands that the local terminal can perform.

Command Overview

CLI commands are divided into categories based on the options or structures they control. The following sections list these command categories.

Controller Commands

Controller commands configure the maintenance terminal characteristics, CLI prompt, and so forth. These commands are also used to shut down and restart the controller. There are two types of controller commands: general and failover.

The CLI commands that pertain to the controllers in a general way are:

••	ne cer communes mui per							
ı	CI	LEAR_ERRORS						
		CLI						
		INVALID_CACHE						
ı	CC	ONFIGURATION						
		RESET						
		RESTORE						
		SAVE						

- EXIT
- HELP
- POWEROFF
- RESTART
- SELFTEST
- SET
- SHOW
- RUN
- SHUTDOWN

The CLI commands controlling the Transparent Failover of a controller pair are:

- SET FAILOVER
- SET MULTIBUS FAILOVER
- SET NOFAILOVER
- SET NOMULTIBUS_FAILOVER

Device Commands

Device commands create and configure containers made from physical devices attached to the controller. There are two types of device commands: general and spareset/failedset.

The CLI Commands that allow you to add and configure physical devices in general are:

- ADD DISK
- ADD PASSTHROUGH
- CLEAR ERRORS
 - □ LOST_DATA
 - □ UNKNOWN
 - □ UNWRITEABLE_DATA
- DELETE
- INITIALIZE
- LOCATE

- RENAME
- SET

The CLI commands that change sparesets and failedsets include:

- ADD SPARESET
- DELETE FAILEDSET
- DELETE SPARESET
- SET FAILEDSET
- SHOW FAILEDSET

Selective Storage Presentation Commands

Selective Storage Presentation commands enable or disable access to individually selected units from host and controller ports. Paths can be enabled or disabled either all inclusively or specifically on a per-path basis during the addition of new units or as a modification of existing units.

The CLI commands that pertain to the Selective Storage Presentation feature include:

- ADD UNITS (the ENABLE_ACCESS_PATH switch)
- ADD UNITS (the DISABLE ACCESS PATH switch)
- SET unit-number (the ENABLE ACCESS PATH switch)
- SET unit-number (the DISABLE_ACCESS_PATH switch)
- ADD CONNECTIONS (the UNIT_OFFSET switch)
- SET connection-name (the UNIT_OFFSET switch)

Storageset Commands

Storageset commands create and configure complex containers made from groups of device containers. These commands group device containers together and allow them to be handled as single units. There are four types of storagesets: stripesets, RAIDsets, striped-mirrorsets, and mirrorsets.

The CLI commands that pertain to storagesets include:

- ADD MIRRORSET
- ADD RAIDSET

- ADD STRIPESET
- DELETE
- INITIALIZE
- LOCATE
- MIRROR
- REDUCE
- RENAME
- SET
- SHOW
- UNMIRROR

Partition Commands

Partition commands create multiple logical disk units from the same container.

The CLI Commands that pertain to partitions include:

- CREATE_PARTITION
- DESTROY_PARTITION

Logical Unit Commands

Logical unit commands create and optimize access to logical units made from any container type.

The CLI commands that pertain to units include:

- ADD CONCATSETS
- ADD SNAPSHOT_UNITS
- DELETE
- LOCATE
- RENAME
- RETRY_ERRORS UNWRITEABLE_DATA
- SET
- SHOW

Diagnostic and Utility Commands

Diagnostic and utility commands perform general controller support functions.

The commands that pertain to the diagnostics and utilities include:

- DIRECTORY
- RUN

Getting Help

To get help with using the CLI commands, enter HELP at the CLI prompt. The resulting display shows an overview of the CLI Help System. To obtain help with a specific command or to determine what switches are available with a command, enter as much of the command syntax that is known, followed by a space and a question mark.

For example, to get information on the switches used with the SET *THIS_CONTROLLER* command, enter:

```
SET THIS _CONTROLLER=?
```

To see what is allowed for a prompt, enter the following:

SET THIS PROMPT=?

Entering CLI Commands

Use the following tips and techniques for the entering of CLI commands:

- Commands are *not* case-sensitive.
- For most commands, only enter enough of the command to make the command unique. For example, SHO is the same as entering SHOW.
- The controller processes each command in sequence, regardless of the number of commands entered. A controller experiencing heavy data I/O might respond slowly to CLI commands.

Specific keys or a combination of keys allow the ability to recall and edit the last four commands. This feature can save time and help prevent mistakes when entering similar commands during the configuration process. Table 1–1 lists the keys used to recall and edit commands.

Table 1–1 Recall and Edit Command Keys							
Key	Function Steps forwards or backward through the four most recent CLI commands.						
Up Arrow key or Ctrl+B keys, Down Arrow key or Ctrl+N keys							
Left Arrow key or Ctrl+D keys, Right Arrow key or Ctrl+F keys	Moves the cursor left or right in a command line.						
Ctrl+E keys	Moves the cursor to the end of the line.						
Ctrl+H keys or Backspace key	Moves the cursor to the beginning of the line.						
Ctrl+J keys or Linefeed key	Deletes the word to the left of the cursor.						
Ctrl+U keys	Deletes all characters on the same line as the cursor.						
Ctrl+A keys or F14 key	Toggles between insert and overstrike mode:						
	■ The default setting is insert mode allowing you to insert characters at the cursor location (moving the existing characters to the right).						
	Overstrike mode replaces existing characters. The CLI prompt returns to insert mode at the beginning of each line.						
CtrI+R keys	Recalls the contents of the command line. This function is especially helpful if the system issues a message that interrupts your typing.						

Command Syntax

Each CLI command is described using the following structure:

COMMAND <PARAMETER_NAME=parameter> SWITCHES

- COMMAND—A word or phrase expressed as a verb that is used to instruct the controller what to do. Commands are represented in this guide in capitalized form.
- PARAMETER_NAME—The name of a parameter, followed by an equal sign and the parameter variable. If a specific command specifies parameter names, they must be entered in the command string. Parameter names are represented in this guide in capitalized form.
- parameter—When required in the command, parameters are used as one or more words or phrases that supply necessary information to support the action of the COMMAND. Note that not all CLI commands require parameters. Parameters are represented in this guide as lowercase, italicized text.

■ SWITCHES—An optional word or phrase that modifies the command/parameter string. Not all CLI commands require switches. Switches are represented in this guide as capitalized, italicized text.

Changing the CLI Prompt

Change the CLI prompt display by using the SET *controller PROMPT* command. Enter a 1- to 16- character string as the new prompt. For example, the prompt could be changed to indicate the array controller type, such as "HSG>."

Chapter **2**

CLI Command Descriptions

The previous chapter provided a general description of the CLI interface and an outline of how to use the interface. This section contains the CLI command descriptions which contain the description, full syntax, and examples of the use of each command available on the CLI interface.

CLI Command Descriptions

This section contains the descriptions of the available CLI commands used with the ACS versions 8.6F, 8.6G, 8.6L, 8.6P, and 8.6S software. Each command is described using the following format:

- Command name and brief description
- Syntax needed to enable command
- Parameters needed (if any) to further specify the command
- Switches needed (if any) to modify the command
- Example(s) to illustrate the command usage
- A "See Also" section to cross-reference to others with similar usage

ADD CONCATSETS

Creates a specialized volume, called a storageset expansion or concatset (short for concatenation set), from a storageset that has been given a unit number. Another storageset can then be added to the concatset by the SET *CONCATSETS* command.

CAUTION: This command should only be executed with host operating systems that support dynamic volume expansion. If the operating system cannot handle one of its disks increasing in size, use of this command could make data inaccessible.

Syntax

ADD CONCATSETS concatset-name storageset-name

Parameters

The following parameters are required for the ADD CONCATSETS command:

- concatset-name
- storageset-name

These parameters are described in the following paragraphs:

concatset-name

Assigns a name to the concatenation set, or concatset.

The concatset-name must start with a letter (A through Z) and may consist of a maximum of nine characters including letters A through Z, numbers 0 through 9, periods (.), dashes (-), or underscores (_).

storageset-name

Designates the first storageset to be a member of the concatset.

Switches

There are no switches associated with this command.

Examples

To expand the capacity of unit D0, which consists of stripeset Stripe1, by adding another stripeset, Stripe2, enter:

ADD CONCATSETS C1 STRIPE1 SET C1 ADD=STRIPE2

See Also

DELETE concatset-name SET concatset-name SHOW CONCATSETS SHOW concatset-name

ADD CONNECTIONS

Each path between a Fibre Channel adapter in a host computer and an active host port on a controller is a connection.

This command adds the specified host connection to the table of known connections. This table is maintained in the controller's memory. The maximum table length is 96 connections; if the table contains 96 entries, new connections cannot be added unless some old ones are deleted.

There are two mechanisms for adding a new connection to the table:

1. Physically connecting a host adapter to a controller host port. During Fibre Channel initialization, the controller becomes aware of the connection and adds it to the table. This physical discovery of connections occurs at the point when a host adapter is plugged in to a controller port and after issuing a RESTART command. New connections discovered through physical connection are assigned a default connection name by the controller. The default connection name is of the form !NEWCONnn.

NOTE: Certain host conditions, such as a power cycle, that disturb the state of the switched fabric may cause a connection to reappear in the table. The connection will be assigned a default connection name.

2. Adding a connection through the ADD CONNECTIONS command.

NOTE: ADD CONNECTIONS will add an entry to the table whether the connection physically exists or not. The table can be completely filled up with fictitious connections.

Syntax

 $ADD\ CONNECTIONS\ connection-name\ HOST_ID=host-id\ ADAPTER_ID=adapter-id\ CONTROLLER=controller\ PORT=port$

Parameters

The following parameters are required to the ADD CONNECTIONS command:

- connection-name
- HOST ID
- ADAPTER_ID
- CONTROLLER
- PORT

These parameters are described in the following paragraphs:

connection-name

The name that will be assigned to the host connection. The connection name can be any character string, with one exception: the name cannot be in the form of a default connection name. The form of a default connection name is ! NEWCONnn.

The default connection name is assigned automatically by the controller when the connection is physically made between a host adapter and a controller port. Default connection names are assigned only by the controller.

HOST_ID=host-id

HOST_ID is the parameter name for the host-id variable, which is the worldwide name (WWN) of the host. WWN is a 16-character hexadecimal number. The hyphens are not necessary, but are recommended to avoid mistakes in entering the number. The HOST_ID parameter name must be entered, followed by an equal sign, followed by the WWN of the host.

For example, to specify a WWN of AAAA-BBBB-CCCC-DDDD, type: HOST_ID=AAAA-BBBB-CCCC-DDDD

ADAPTER_ID=adapter-id

ADAPTER_ID is the parameter name for the adapter-id variable, which is the worldwide name (WWN) of the host Fibre Channel adapter. WWN is a 16-character hexadecimal number. The hyphens are not necessary, but are recommended to avoid mistakes in entering the number. The ADAPTER_ID parameter name must be entered, followed by an equal sign, followed by the WWN of the host bus adapter.

For example, to specify a WWN of FFFF-GGGG-BBBB-9876, type:

ADAPTER_ID=FFFF-GGGG-BBBB-9876

NOTE: The worldwide name of the host and adapter are sometimes the same. This is a characteristic of the adapter.

CONTROLLER=controller

CONTROLLER is the parameter name for the *controller* variable, which specifies which controller the host is to connect through. The choices are THIS_CONTROLLER, which can be shortened to THIS, and OTHER_CONTROLLER, which can be shortened to OTHER.

PORT=port

PORT is the parameter name for the *port* variable that specifies which host port (1 or 2) the connection is on.

Switches

The following switches are available with the ADD CONNECTION command:

- OPERATING SYSTEM
- RESERVATION_STYLE
- UNIT_OFFSET

These switches are described in the following paragraphs.

$OPERATING_SYSTEM = OS_name$

Specifies the operating system of the host. The *OPERATING_SYSTEM* switch tailors the controllers behavior for use with a particular operating system. Enter a question mark after *OPERATING_SYSTEM* to see the supported operating systems, as follows:

ADD CONNECTIONS SERVER1 OPERATING SYSTEM=?

The response for this command is a list of abbreviations for the supported operating systems.

RESERVATION_STYLE=CONNECTION_BASED (default) RESERVATION_STYLE=HBA_PORT_ID_BASED

Selection of a RESERVATION_STYLE should be based upon the capabilities of the host operating system. See the OS kit for more details. SCSI persistent reservations are processed differently by the HSG80 based upon the RESERVATION_STYLE. Normal SCSI reservations (not persistent) are always treated as CONNECTION_BASED.

When set to HBA_PORT_ID_BASED, a single persistent reservation command is propagated to all HSG80 controller ports, thereby enabling the host to access the unit over any available path.

When set to CONNNECTION_BASED, the persistent reservation is only valid for the port on which it is received, thereby limiting the host access to those paths that have been explicitly reserved.

IMPORTANT: If a particular host prefers either the *CONNECTION_BASED* or *HBA_PORT_ID_BASED* reservation style, all the connections to that particular host must have identical reservation style settings.

The most important advantage of this mechanism is allowing various hosts, with different reservation style requirements, to be connected to the same HSG80 controllers in a SAN environment.

$UNIT_OFFSET = n$

UNIT_OFFSET is a decimal value (n) that establishes the beginning of the range of units that a host connection can access. This offset defines and restricts host connection access to a contiguous group of unit numbers.

In transparent failover mode, host connections on port 1 default to an offset of 0; port 1 connections can see units 0 through 99. Host connections on port 2 default to an offset of 100; port 2 connections can see units 100 through 199.

In multiple-bus failover mode, the default offset is 0 for all host connections.

NOTE: If a controller pair is switched from transparent failover mode to multiple-bus failover mode, the unit offsets for transparent mode remain in effect.

The LUN number equals the unit number minus the offset:

LUN number = unit number - offset

Logical unit number or LUN number = the logical unit number presented to the
host connection.

Unit number = the number assigned to the unit in the ADD UNITS command. This
is the number by which the unit is known internally to the controllers.

For example, a system has three host connections, each of which can see 8 LUNs. Each connection designates its LUNs as 0 through 7. To define for each of these connections a block of 8 units, set the offset for each connection, as follows:

CLI>SET SERVER1 UNIT_OFFSET=0 CLI>SET SERVER2 UNIT_OFFSET=10

CLI>SET SERVER3 UNIT_OFFSET=120

(It is not necessary to use offsets that are divisible by 10, but it makes things simpler.)

The effect of these offset assignments will be as follows:

	Server1	wil	l access u	nits I	00	througl	n D7	7, w	hich	it wil	l see as	LUN	√s 0	through	h 7	!
--	---------	-----	------------	--------	----	---------	------	------	------	--------	----------	-----	------	---------	-----	---

- □ Server2 will access units D10 through D17, which it will see as LUNs 0 through 7.
- ☐ Server3 will access units D120 through D127, which it will see as LUNs 0 through 7.

There is one additional factor to consider when assigning unit numbers and offsets. If the SCSI_VERSION qualifier of the SET THIS/OTHER CONTROLLER command is set to SCSI-3, the command console LUN (CCL) is presented as LUN 0 to every connection, superseding any unit assignments. For more information see the ADD UNITS command.

2-8

Examples

This example shows how to add an entry for a connection named George to the table of known connections, with the indicated host and adapter worldwide names, on port 2 of "this controller," and with reservations checked using the port_id of the host bus adapter.

ADD CONNECTIONS GEORGE HOST_ID=1000-0000-C920-1234 ADAPTER_ID=1000-0000-C920-5678 CONTROLLER=THIS PORT=2 RESERVATION_STYLE=HBA_PORT_ID_BASED

See Also

ADD UNITS
DELETE connections
SET connection-name

ADD DISKS

Names a disk drive and adds it to the controller configuration. This command is typically used when disk drives are added to a previously configured subsystem. During initial setup, the entire disk set is customarily added to the controller's configuration through the CONFIG utility.

NOTE: The controller supports a maximum of 84 storage devices, even though more than 84 target IDs are available. Do not exceed the maximum number of devices in the subsystem.

Syntax

ADD DISKS disk-name scsi-port-target-lun

Parameters

The following parameters are required for the ADD DISKS command:

- disk-name
- scsi-port-target-lun

These parameters are described in the following paragraphs:

disk-name

Assigns a name to the disk device. This disk-name is then used with the ADD UNITS command to create a logical unit. It is also used as a parameter in the adding of a storageset.

The disk name must start with a letter (A through Z) and may consist of a maximum of nine characters including letters A through Z, numbers 0 through 9, periods (.), dashes (-), or underscores (_).

A disk drive is commonly named DISKpttll, where pttll is the disk Port-Target-LUN address. Although other naming conventions are acceptable, this naming convention presents the type of disk drive and the disk drive SCSI location.

scsi-port-target-lun

Indicates the SCSI device PTL address. Place one space between the port number, target number, and the LUN number when entering the PTL address.

□ port—Designates the SCSI device port number, from 1 to 6, on which the disk resides.

- □ *target*—Designates the SCSI target ID of the disk on the port. Valid device target IDs for single controller configurations are 00–15, excluding ID 7. Valid device target IDs for dual controller configurations are 00–15, excluding IDs 6 and 7.
- □ *lun*—Indicates the LUN of the disk drive and is always zero.

The parameters *port*, *target*, and *lun* must be entered with at least one space between them. Leading zeroes can be excluded.

Switches

The following switches are available with the ADD DISKS command:

- TRANSFER_RATE_REQUESTED
- TRANSPORTABLE and NOTRANSPORTABLE

These switches are described in the following paragraphs.

TRANSFER_RATE_REQUESTED=ASYNCHRONOUS
TRANSFER_RATE_REQUESTED=DEFAULT
TRANSFER_RATE_REQUESTED=20MHZ (default)
TRANSFER_RATE_REQUESTED=10MHZ
TRANSFER_RATE_REQUESTED=5MHZ

Specifies the maximum data transfer rate at which the controller is to communicate with the disk drive. The transfer rate might need to be limited to accommodate long cables between the controllers and the device.

TRANSPORTABLE NOTRANSPORTABLE (default)

Indicates whether a disk drive can be accessed exclusively by StorageWorks controllers or can be used by non-StorageWorks systems:

- ☐ TRANSPORTABLE = disk drives do not contain any metadata or restricted areas. Therefore, transportable disks forfeit the advantage metadata provides, but can be moved to a non-StorageWorks environment with their data intact. Disks that are to be used in storagesets cannot be set as transportable.
- □ *NOTRANSPORTABLE* = the controller makes a small portion of the disk inaccessible to the host. This restricted space is used to store administrative information (metadata) used to improve data reliability, error detection, and the ability to recover data. As a result of this metadata, only StorageWorks controllers can retrieve data from non-transportable devices.

If you specify the NOTRANSPORTABLE switch and there is no metadata on the unit, the unit must be initialized. If you specify TRANSPORTABLE for a disk that was originally initialized as a NOTRANSPORTABLE, you should initialize the disk.

NOTE: Compaq recommends you avoid using transportable disks unless there is no other way to move the data.

Examples

To add DISK10000 at port 1, target 0, LUN 0, enter:

ADD DISKS DISK10000 1 0 0

To add DISK40200 as a transportable disk drive to port 4, target 2, LUN 0, enter:

ADD DISKS DISK40200 4 2 0 TRANSPORTABLE

To add a disk drive named DISK30200 as a non-transportable disk to port 3, target 2, LUN 0 and set the data transfer rate to 10 MHz, enter the following on one line:

ADD DISKS DISK30200 3 2 0 NOTRANSPORTABLE TRANSFER_RATE_REQUESTED=10MHZ

To create a host-addressable unit after the disk is added, enter:

INITIALIZE DISK40200

ADD UNITS D199 DISK40200

See Also

ADD PASSTHROUGH ADD UNITS DELETE container-name **INITIALIZE LOCATE** SHOW DISKS **SHOW DEVICES** SHOW PASSTHROUGH SET container-name

ADD MIRRORSETS

Names a mirrorset and adds it to the controller configuration. Mirrorsets are often referred to as RAID 1 storagesets. The data capacity of a RAID 1 is determined by the storage size of the smallest member (base member size).

Syntax

ADD MIRRORSETS mirrorset-name disk-name1 [disk-nameN]

Parameters

The following parameters are required for the ADD MIRRORSETS command:

- mirrorset-name
- disk-name1

These parameters are described in the following paragraphs:

mirrorset-name

Assigns a name to the mirrorset container. This is the name used with the ADD UNITS command to identify the mirrorset as a host-addressable unit.

The mirrorset-name must start with a letter (A through Z) and may consist of a maximum of nine characters including letters A through Z, numbers 0 through 9, periods (.), dashes (-), or underscores (_).

A mirrorset is commonly named MIRRn, where n is a sequentially assigned, unique identifier. Other naming conventions are acceptable, but this naming convention presents both the type of container and a unique identifier for the container in an intuitive manner.

disk-name1 [disk-nameN]

Identifies the disk drives making up the mirrorset. A mirrorset may contain one to six disk drives.

Switches

The following switches are available with the ADD DISKS command:

- \blacksquare COPY
- POLICY and NOPOLICY

■ READ SOURCE

These switches are described in the following paragraphs.

```
COPY=FAST
COPY=NORMAL (default)
```

Sets the speed at which the controller copies data to a new member from normal mirrorset members:

- ☐ Specify *COPY=FAST* to allow the creation of mirrored data to take precedence over other controller operations. When you specify COPY=FAST, the controller uses more resources to create the mirrored data and copying takes less time. However, overall controller performance is reduced.
- ☐ Specify *COPY=NORMAL* when operations performed by the controller should take priority over the copy operation. If you specify COPY=NORMAL creating the mirrored data has a minimal impact on performance.

```
POLICY=BEST_FIT
POLICY=BEST_PERFORMANCE (default)
NOPOLICY
```

Sets the selection criteria the controller uses to choose a replacement disk from the spareset when a mirrorset member fails.

- ☐ Specify *POLICY=BEST_FIT* to choose a replacement disk drive from the spareset that equals or exceeds the base member size (smallest disk drive at the time the mirrorset was initialized). If there is more than one disk drive in the spareset that meets the criteria, the controller selects a disk drive with the best performance.
- ☐ Specify *POLICY=BEST_PERFORMANCE* to allow the software to choose a replacement disk drive from the spareset with the best performance. The controller attempts to select a disk on a different port than existing mirrorset members. If more than one disk drive in the spareset matches the best performance criteria, the controller selects a disk drive that equals or exceeds the base member size.
- ☐ Specify *NOPOLICY* to prevent the controller from automatically replacing a failed disk device. The mirrorset operates in a reduced state until a POLICY=BEST_FIT or POLICY=BEST PERFORMANCE is selected or a member is manually placed in the mirrorset (see page 2–104).

```
READ SOURCE=LEAST BUSY (default)
READ_SOURCE=ROUND_ROBIN
```

Selects the mirrorset member used by the controller to satisfy a read request.

- □ Specify READ_SOURCE=LEAST_BUSY to direct read requests to the mirrorset disk with the least amount of work in its queue. If multiple disks have equally short queues, the controller queries normal disks for each read request as it would when READ_SOURCE=ROUND_ROBIN is specified.
- □ Specify *READ_SOURCE=ROUND_ROBIN* to sequentially direct read requests to each local mirrorset disk. The controller equally queries all normal disks for each read request.

Examples

To create a mirrorset named MIRR1 consisting of disks DISK10000, DISK20100, and DISK30200, enter:

ADD MIRRORSETS MIRR1 DISK10000 DISK20100 DISK30200

To create a host-addressable unit after the mirrorset MIRR1 has been created, enter:

INITIALIZE MIRR1 ADD UNITS D104 MIRR1

See Also

ADD DISKS
ADD UNITS
DELETE container-name
INITIALIZE
MIRROR
REDUCE
SHOW mirrorset-name
SHOW MIRRORSETS
SHOW STORAGESETS
UNMIRROR

ADD PASSTHROUGH

Names a passthrough devices and adds it to the controller configuration. This command is typically used when passthrough devices are added to a previously configured subsystem. During initial setup, the entire device set is customarily added to the controller's configuration through the CONFIG utility.

NOTE: The controller supports a maximum of 84 storage devices, even though more than 84 target IDs are available. Do not exceed the maximum number of devices in the subsystem.

Syntax

ADD PASSTHROUGH passthrough-name scsi-port-target-lun

Parameters

The following parameters are required for the ADD PASSTHROUGH command:

- passthrough-name
- scsi-port-target-lun

These parameters are described in the following paragraphs:

passthrough-name

Assigns a name to the passthrough device. This container name is then used with the ADD UNITS command to create a unit.

The passthrough device must start with a letter (A through Z) and may consist of a maximum of nine characters including letters A through Z, numbers 0 through 9, periods (.), dashes (-), or underscores (_).

A passthrough device is commonly named *PASSpttll*, where *pttll* is the disk Port-Target-LUN address. Although other naming conventions are acceptable, this naming convention presents the type of passthrough device and the passthrough device SCSI location.

Switches

The following switch is available with the ADD DISKS command:

These switches are described in the following paragraphs.

Examples

To add PASS10200 at port 1, target 2, LUN 0, enter:
ADD PASSTHROUGH PASS10200 1 2 0
ADD UNIT P4 PASS10200

See Also

ADD UNITS
DELETE container-name
LOCATE
SHOW DISKS
SHOW DEVICES
SHOW PASSTHROUGH
SET container-name

ADD RAIDSETS

Names a RAIDset and adds the RAIDset to the controller configuration. RAIDsets can contain from 3 to 14 members.

NOTE: The maximum size of a RAIDset is up to 1.024TB

Compaq RAIDsets are RAID level 3/5 storagesets that use the best characteristics of RAID level 3 and RAID level 5. A RAIDset should only contain disk drives of the same capacity. The controller limits the effective capacity of each member to the capacity of the smallest member in the storageset (base member size) when the storageset is initialized. Thus, if you combine 9 GB disk drives with 4 GB disk drives in the same storageset, you will waste 5 GB of capacity on each 9 GB member. A RAIDset must include at least 3 disk drives, but no more than 14.

Syntax

ADD RAIDSETS RAIDset-name disk-name1 disk-name2 disk-name3 [disk-nameN]

Parameters

The following parameters are available to the ADD RAIDSETS command:

- RAIDset-name
- disk-name

These parameters are described in the following paragraphs:

RAIDset-name

Assigns a name to the RAIDset. This is the name used with the ADD UNITS command to identify the RAIDset as a host-addressable unit.

The RAIDset name must start with a letter (A through Z) and may consist of a maximum of nine characters including letters A through Z, numbers 0 through 9, periods (.), dashes (-), or underscores (_).

It is common to name a RAIDset RAIDn, where n is a sequentially assigned, unique identifier. This naming convention presents the user with the type of container and its unique identifier.

disk-name1 disk-name2 disk-name3 [disk-nameN]

Identifies the disk making up the RAIDset. RAIDsets must include at least 3 containers and no more than 14.

Switches

The following switches are available with the ADD RAIDSETS command:

- POLICY and NOPOLICY
- RECONSTRUCT
- REDUCED and NOREDUCED

These switches are described in the following paragraphs.

POLICY=BEST_FIT
POLICY=BEST_PERFORMANCE (default)
NOPOLICY

Sets the selection criteria the controller uses to choose a replacement member from the spareset when a RAIDset member fails:

- □ Specify *POLICY=BEST_FIT* to choose a replacement disk drive from the spareset that equals or exceeds the base member size of the remaining members of the RAIDset. If more than one disk drive in the spareset is the correct size, the controller selects a disk drive giving the best performance.
- ☐ Specify POLICY=BEST_PERFORMANCE to choose a replacement disk drive from the spareset resulting in the best performance of the RAIDset. The controller attempts to select a disk on a different port than existing RAIDset members. If there is more than one disk drive in the spareset matching the best performance criteria, the controller selects a disk drive that equals or exceeds the base member size of the RAIDset.
- □ Specify *NOPOLICY* to prevent the controller from automatically replacing a failed disk device. This RAIDset operates in a reduced state until you select either *POLICY=BEST_PERFORMANCE* or *POLICY=BEST_FIT*, or manually place a member in the RAIDset. See page 2–112, for more information regarding this procedure.

RECONSTRUCT = FASTRECONSTRUCT=NORMAL (default)

Sets the speed at which the controller reconstructs data to a new RAIDset disk that replaces the failed disk:

- ☐ Specify FAST to allow the reconstruct process to take precedence over other controller operations. When the RECONSTRUCT=FAST switch is specified, the controller uses more resources to perform the reconstruction. Reconstruction takes less time, but overall controller performance is reduced during reconstruction.
- □ Specify NORMAL to balance other controller operations with the reconstruct operation. The controller uses relatively few resources to perform the reconstruct process and there is little impact on performance.

REDUCED NOREDUCED (default)

Permits the addition of a RAIDset that is missing a member (due to a failure):

☐ Specify the *REDUCED* switch when you add a reduced RAIDset (a RAIDset that is missing one member).

NOTE: Verify that the RAIDset contains all but one of its disks before specifying the REDUCED switch.

☐ Specify the *NOREDUCED* switch when all the disks making up the RAIDset are present—for instance, when creating a new RAIDset.

Examples

To create a RAIDset named RAID9 that contains disks DISK10000, DISK20100, and DISK30200, enter:

ADD RAIDSETS RAID9 DISK10000 DISK20100 DISK30200

To create a RAIDset named RAID8 that contains disks DISK10000, DISK20100, and DISK30200, and uses the BEST_FIT switch to indicate the replacement policy, enter:

ADD RAIDSETS RAID8 DISK10000 DISK20100 DISK30200 POLICY=BEST FIT

NOTE: Enter the ADD RAIDSETS command on one line.

To create a RAIDset named RAID8 that contains disks DISK10000, DISK20100, and DISK30200, then initialize it and make it into a host-addressable unit, enter:

ADD RAIDSETS RAID8 DISK10000 DISK20100 DISK30200 **INITIALIZE RAID8** ADD UNITS D70 RAID8

To create a three-member RAIDset from the members of a reduced four-member RAIDset, enter the following (do not initialize the RAIDset again):

CAUTION: Data contained on the RAIDset will be erased if you reinitialize the RAIDset.

ADD RAIDSETS RAID6 DISK10300 DISK20400 DISK30200 REDUCED

See Also

ADD UNITS
DELETE container-name
INITIALIZE
SET RAIDSETS
SHOW RAIDSETS
SHOW RAIDset-name
SHOW STORAGESETS

ADD SPARESETS

Adds a disk drive to the spareset and initializes the metadata on the drive. The spareset is a pool of drives available to the controller to replace failing storageset members.

Syntax

ADD SPARESETS disk-name

Parameters

disk-name

Indicates the name of the disk drive being added to the spareset. Only one disk drive can be added to the spareset with each ADD SPARESETS command.

Switches

There are no switches associated with this command.

Example

To add disk drives named DISK20200 and DISK30300 to a spareset, enter:

ADD SPARESETS DISK20200 ADD SPARESETS DISK30300

See Also

DELETE SPARESETS SHOW SPARESETS **SHOW STORAGESETS**

ADD STRIPESETS

Names a stripeset and adds it to the controller configuration. A stripeset can contain from 2 to 24 members. Stripesets are also referred to as RAID level 0 storagesets. The number of members in the stripeset is determined by the number of *container-name* parameters specified.

NOTE: The maximum size of a stripeset is up to 1.024 TB

.Syntax

ADD STRIPESETS stripeset-name container-name1 container-name2 [container-nameN]

Parameters

The following parameters are required for the ADD STRIPESETS command:

- stripeset-name
- container-name

These parameters are described in the following paragraphs:

stripeset-name

Assigns a name to the stripeset. This is the name used with the ADD UNITS command to identify the stripeset as a host-addressable unit.

The stripeset name must start with a letter (A through Z) and may consist of a maximum of nine characters including letters A through Z, numbers 0 through 9, periods (.), dashes (-), or underscores (_).

It is common to name a stripeset STRIPEn, where n is a sequentially assigned, unique identifier. This naming convention presents to the user both the type of container and its unique identifier.

container-name1 container-name2 [container-nameN]

Identifies the members (disk drives or mirrorsets) making up the stripeset. Stripesets can contain between 2 and 24 members.

The container name each must start with a letter (A through Z) and may consist of a maximum of nine characters including letters A through Z, numbers 0 through 9, periods (.), dashes (-), or underscores ().

It is common to name a stripeset container STRIPEn, where n is a sequentially assigned, unique identifier. This naming convention presents to the user both the type of container and its unique identifier.

NOTE: A 256-character limit exists for the command line. If configuring a stripeset with many members, consider renaming the members to shorter names in order to enter the entire command line.

Switches

There are no switches associated with this command.

Examples

To create a stripeset named STRIPE1 that contains disks DISK10000, DISK20100, and DISK30200, enter:

ADD STRIPESETS STRIPE1 DISK10000 DISK20100 DISK30200

To create a stripeset named STRIPE1 and then create a logical unit from it, enter:

INITIALIZE STRIPE1 ADD UNITS D103 STRIPE1

To create a two-member striped mirrorset (a stripeset whose members are mirrorsets), and a logical unit from it, enter the following:

NOTE: Because you can initialize the stripeset, you do not need to individually initialize the mirrorset members.

ADD MIRRORSETS MR1 DISK10000 DISK20100 ADD MIRRORSETS MR2 DISK30200 DISK40300 ADD STRIPESETS STRIPE1 MR1 MR2 INITIALIZE STRIPE1 ADD UNITS D104 STRIPE1

See Also

ADD UNITS ADD MIRRORSETS DELETE container-name **INITIALIZE** SHOW STORAGESET **SHOW STRIPESETS** SHOW stripeset-name

ADD UNITS

Creates a logical unit from a specified container. The controller maps all requests from the host to the logical-unit number as requests to the container specified in the ADD UNITS command. Units can be created from all container types:

- Disk and passthrough devices
- Stripesets
- Mirrorsets
- RAIDsets
- Partitions
- Striped mirrorsets

If adding a newly created container to a subsystem, the container must be initialize in order to be added as a logical unit. If adding a container with stored data that needs to be maintained, do not initialize this container; the container will be added as a logical unit.

CAUTION: Adding a unit immediately makes that unit available to all host connections unless the *DISABLE_ACCESS_PATH* switch is specified. See the *ENABLE_ACCESS_PATH/DISABLE_ACCESS_PATH* switch description for more information.

Syntax

ADD UNITS unit-number container-name

Parameters

The following parameters are required for the ADD UNITS command:

- unit-number
- container-name

These parameters are described in the following paragraphs:

unit-number

The unit number is the designation by which the controller keeps track of the unit. This number maps to one or more host-accessible LUNs. Unit numbers are prefixed by D and are in the range of 0—199. How units are assigned to ports depends on the failover

mo	ode.
	Transparent failover mode:
	□ D0 to D99 are units assigned to port 1
	□ D100 to D199 are units assigned to port 2
	Multiple-bus failover mode:
	\Box D0 to D199 are units visible to the hosts through both ports of both controllers
to	transparent failover mode, adding unit D0 creates a logical unit and presents it as D0 the host on port 1. Adding unit D100 creates a logical unit and presents it as D0 to e host on port 2.
Pa	rtitioned units cannot be split across ports.
In	multiple-bus failover mode, adding unit D0 creates a logical unit that is presented to

both ports on both controllers. What hosts can see the unit is determined by parameters of the ADD CONNECTIONS command and by the

ENABLE/DISABLE_ACCESS_PATH switch of the ADD UNITS command.

The LUN number a host connection assigns to a unit is a function of the UNIT_OFFSET switch in the ADD (or SET) CONNECTIONS command. LUN number equals unit number minus offset:

LUN number = unit number – offset

If no value is specified for the *UNIT_OFFSET* switch in the ADD (or SET) CONNECTIONS command, the offsets are as follows:

- In transparent failover mode, host connections on port 1 have an offset of 0 and host connections on port 2 have an offset of 100.
- ☐ In multiple-bus failover mode, all ports have a default offset of 0.

container-name

Specifies the name of the container (disk drive, device, storageset, or partition) being used to create the unit.

A unit can consist of a maximum of 48 devices.

Switches

Table 2–1 lists all switches for the ADD UNITS command and identifies which switches may be used with each type of device or storageset. Descriptions of each switch follow the table.

Table 2-1 ADD UNITS Switches	for N	ew C	ontai	ners			
Switch	Container Type	RAIDset	Stripeset	Mirrorset	NOTransportable	Transportable	Passthrough
ENABLE_ACCESS_PATH DISABLE_ACCESS_PATH		1	1	1	1	1	1
MAX_READ_CACHED_TRANSFER_SIZE		✓	✓	✓	✓	✓	
MAX_WRITE_CACHED_TRANSFER_SIZE		✓	1	1	1	1	
MAXIMUM_CACHED_TRANSFER_SIZE		1	1	1	1	1	
PARTITION=partition-number		✓	✓	✓	✓		
PREFERRED_PATH NOPREFERRED_PATH		1	1	1	1	1	1
READ_CACHE NOREAD_CACHE		1	1	✓	1	1	
READAHEAD_CACHE NOREADAHEAD_CACHE		1	1	✓	1	1	
RUN NORUN		1	1	1	1	1	
WRITE_PROTECT NOWRITE_PROTECT		1	1	✓	1	1	
WRITEBACK_CACHE NOWRITEBACK_CACHE		1	1	1	1		

NOTE: The *NORUN* switch cannot be specified for partitioned units.

ENABLE ACCESS PATH= DISABLE ACCESS PATH=

Determines which host connections can access the unit. The allowable variables are:

□ ALL

☐ A string of connection names, separated by commas and enclosed in parentheses.

Setting ENABLE_ACCESS_PATH=ALL permits all host connections to access the unit. This is the default.

CAUTION: If the storage subsystem has more than one host connection, access path must be specified carefully to avoid giving undesirable host connections access to the unit. The default condition is that access paths to all host connections are enabled. To restrict host access to a set of host connections, specify

DISABLE_ACCESS_PATH=ALL when the unit is added, then use the SET unit command to specify the set of host connections that are to have access to the unit.

Enabling the access path to a particular host connection does not override previously enabled access paths. All access paths previously enabled are still valid; the new host connection is simply added to the list of connections that can access the unit.

The procedure of restricting access by enabling all access paths then disabling selected paths is particularly not recommended because of the potential data/security breach that occurs when a new host connection is added.

MAX_READ_CACHED_TRANSFER_SIZE=n MAX_READ_CACHED_TRANSFER_SIZE=32 (default)

Sets the largest number of read blocks to be cached by the controller. The controller will not cache any transfers over the size set. Acceptable values are 0 through 2048.

The MAXIMUM_CACHED_TRANSFER switch affects both read and write-back cache when set on a controller that has read and write-back caching.

```
MAX\_WRITE\_CACHED\_TRANSFE\_SIZE = n
MAX WRITE CACHED TRANSFER SIZE=32 (default)
```

Sets the largest number of write blocks to be cached by the controller. The controller will not cache any transfers over the size set. Acceptable write block sizes are 0 through 2048.

The MAXIMUM_CACHED_TRANSFER switch affects both read and write-back cache when set on a controller that has read and write-back caching.

MAXIMUM_CACHED_TRANSFER_SIZE=n MAXIMUM_CACHED_TRANSFER_SIZE=32 (default)

Sets the largest number of read and write blocks to be cached by the controller. The controller will not cache any transfers over the size set. Acceptable write block sizes are 1 through 2048.

The MAXIMUM_CACHED_TRANSFER_SIZE switch affects both read and write-back cache when set on a controller that has read and write-back caching. The use of this switch has the effect of setting both the MAX_READ_CACHED_TRANSFER_SIZE and the MAX_WRITE_CACHED_TRANSFER_SIZE switches.

PARTITION=partition-number

Identifies the partition-number for a partition on a container. The *partition-number* identifies the partition associated with the unit number being added. Use the SHOW *container-name* command to find the partition numbers used by a storageset or a single-disk unit.

NOTE: Transportable units cannot be partitioned. All partitions on a container must be addressed through the same controller. If you add a unit for a partition and specify the preferred path switch, all partitions on that container inherit the same path.

PREFERRED_PATH=OTHER_CONTROLLER
PREFERRED_PATH=THIS_CONTROLLER
NOPREFERRED_PATH (default)

The *PREFERRED_PATH* switch allows balancing of the I/O load by specifying the controller through which the unit will be accessed. If you set *NOPREFERRED_PATH* for a unit, it can be accessed through either controller.

The controllers only use the *PREFERRED_PATH* setting if they are in a dual-redundant configuration. If one controller fails, all the devices are accessed through the remaining controller ignoring the *PREFERRED_PATH* setting.

You can specify the *PREFERRED_PATH* switch for a single controller configuration; however, the switch will not take effect until you add a second controller and configure the two controllers for dual-redundancy.

- ☐ When no preferred path is assigned, the unit is targeted through the controller which detects the unit first after the controllers start.
- □ Select *PREFERRED_PATH=THIS_CONTROLLER* to instruct "this controller" to bring the units online.
- □ Select *PREFERRED_PATH=OTHER_CONTROLLER* to instruct the "other controller" to bring the units online.

NOTE: All partitions on a container must be addressed through the same controller. If you set PREFERRED_PATH for one partition, all partitions on that container inherit the same preferred path setting.

READ_CACHE (default) NOREAD_CACHE

> Sets the controller's read-cache policy function. When READ_CACHE is selected, and the controller receives a read request from the host, the following events occur: the controller reads the data from the disk drives, delivers it to the host, and stores the data in its cache module. Subsequent reads for the same data will take the data from cache rather than accessing the data from the disks.

> Read caching improves performance in almost all situations. Therefore, it is recommended you leave its default setting, READ CACHE, enabled. However, under certain conditions, such as when performing a backup, read caching may not be necessary since only a small amount of data is cached. In such instances, it may be beneficial to disable the read cache function and remove the processing overhead associated with caching data.

READAHEAD CACHE (default) NOREADAHEAD_CACHE

> Enables the controller to keep track of read I/Os. If the controller detects sequential read I/Os from the host, it will then try to keep ahead of the host by reading the next sequential blocks of data (those the host has not yet requested) and putting the data in cache. This process is sometimes referred to as prefetch. The controller can detect multiple sequential I/O requests across multiple units.

> Read-ahead caching improves host application performance since the data will be read from the controller cache instead of disk. Read-ahead caching is the default for units.

If you are adding a unit that is not expected to get sequential I/O requests, select NOREADAHEAD CACHE for the unit.

RUN (default) **NORUN**

Controls the unit's availability to the host:

- \Box Specify *RUN* to make a unit available to the host.
- ☐ Specify NORUN to make a unit unavailable to the host and to cause any data in cache to be flushed to one or more drives. NORUN spins down all the disks used in the unit. The drives making up the unit spin down after the data has been completely flushed.

NOTE: Do not specify the *RUN / NORUN* switches for partitions.

WRITE_PROTECT NOWRITE PROTECT (default)

Specifies whether data contained on the selected unit can be overwritten:

- ☐ Specify WRITE_PROTECT to prevent host write operations to the unit. However, the controller may still write to a write-protected RAIDset to satisfy a reconstruct pass or to reconstruct a newly replaced member. Additionally, metadata, reconstruct, and copy writes are still allowed to RAIDsets and mirrorsets.
- □ Specify *NOWRITE_PROTECT* to allow the host to write data to the unit. This allows the controller to overwrite existing data. *NOWRITE_PROTECT* is the default for transportable disks.

WRITEBACK_CACHE NOWRITEBACK_CACHE

Enable or disable the write-back data caching function of the controller. The controller write-back caching feature improves write performance.

NOTE: NOWRITEBACK_CACHE cannot be applied to is the default on transportable disks. WRITEBACK_CACHE is the default on notransportable disks.

- □ Specify WRITEBACK_CACHE for all new RAIDsets, mirrorsets, and units that you want to take advantage of the controller write-back caching feature.
- □ Specify *NOWRITEBACK_CACHE* for units that you want data from the host to go directly to the specified devices without being cached.

CAUTION: Though there is built-in redundancy to protect data contained in cache, allowing data to be written to write-back cache may result in the loss of data if the controller fails.

Specifying *NOWRITEBACK_CACHE* enables only write-through caching. In write-through caching, when the controller receives a write request from the host it places the data in its cache module, writes the data to the disk drives, then notifies the host when the write operation is complete. This process is called *write-through caching* because the data passes through—and is stored in—the cache memory on its way to the disk drives. Write-through caching is only enabled when write-back caching is disabled, or when the *MAXIMUM_CACHED_TRANSFER_SIZE* switch is set to zero.

NOTE: The controller may take up to five minutes to flush data contained within the write-back cache when you specify the *NOWRITEBACK_CACHE* switch.

Examples

To create unit D102 from a single-disk drive named DISK10000 and set the host access to the unit through "this controller," enter:

ADD UNITS D102 DISK10000 PREFERRED PATH=THIS CONTROLLER

- ☐ If the controller pair is in transparent failover mode, this unit is on port 2. It will be presented to each host connection as LUN (2 – offset). Offset is a host connection characteristic, specified in the ADD (or SET) CONNECTIONS command.
- ☐ If the controller pair is in multiple-bus failover mode, this unit can potentially be seen by all four controller ports. It will be presented to each host connection as LUN (2 – offset). Offset is a host connection characteristic, specified in the ADD (or SET) CONNECTIONS command.

To create unit D5 from mirrorset MIRR1, and to let only two host connections (Server1 and Server2) have access to this unit, enter:

ADD UNITS D5 MIRR1 DISABLE ACCESS PATH=ALL SET UNITS D5 ENABLE_ACCESS_PATH=(SERVER1,SERVER2)

- ☐ If the controller pair is in transparent failover mode, this unit is on port 1, and is available only to host connections Server1 and Server2. Server1 and Server2 must be connected to host port 1 to access the unit. The unit will be presented to each host connection as LUN (5 – offset). Offset is a host connection characteristic, specified in the ADD (or SET) CONNECTIONS command.
- ☐ If the controller pair is in multiple-bus failover mode, this unit can potentially be seen by all four controller ports, but is accessible only by host connections Server1 and Server2. It will be presented to each host connection as LUN (5 – offset).

To create unit D7 from a RAIDset named RAID9 and instruct the unit to take advantage of the controller's write-back caching feature.

ADD RAIDSETS RAID9 DISK10100 DISK20100 DISK30100 DISK40100 **INITIALIZE RAID9** ADD UNITS D7 RAID9 WRITEBACK CACHE

See Also

CREATE_PARTITION **DELETE** unit-number SET unit-number **SHOW UNITS**

CLEAR ERRORS CLI

Stops the display of current or previous error messages at the CLI prompt. Errors are displayed (even after the error condition has been rectified) until the controller is restarted or this command is entered.

NOTE: This command does not clear the error condition. The command only stops the CLI from displaying the error.

There are three message types:

- General information
- Warning (user may want to examine, but the command will be executed)
- Error (command will not execute)

Syntax

CLEAR_ERRORS CLI

Parameters

There are no parameters associated with this command.

Switches

There are no switches associated with this command.

Example

To clear any message enter:

CLEAR_ERRORS CLI

See Also

CLEAR_ERRORS controller INVALID_CACHE CLEAR_ERRORS unit-number LOST_DATA CLEAR_ERRORS device-name UNKNOWN CLEAR_ERRORS unit-number UNWRITEABLE_DATA

CLEAR ERRORS controller INVALID CACHE

Clears an invalid cache error and allows the controller and cache to resume operation. If the error is due to a mirrored-cache configuration that is incorrect, the controller indicates mirrored mode status after the error is cleared.

Use this command for the following situations:

- When the controller or cache modules have been replaced resulting in mismatched data between the controllers.
- When the controller or cache module is replaced while data is still in cache and not properly flushed with the SHUTDOWN, SET NOFAILOVER, or SET NOMULTIBUS FAILOVER commands first.

Syntax

CLEAR_ERRORS controller INVALID_CACHE data-retention-policy

Parameters

The following parameters are required for the CLEAR_ERRORS INVALID_CACHE command:

- **■** controller
- data-retention-policy

These parameters are described in the following paragraphs:

controller

Identifies which controller is to receive the CLEAR_ERRORS command. You must specify THIS_CONTROLLER (the one connected to the CLI maintenance terminal) or OTHER_CONTROLLER.

data-retention-policy

Instructs the controller how to handle write-back cached data:

IMPORTANT: Because misuse of this command can cause data loss, both the command and the switch DESTROY_UNFLUSHED_DATA or NODESTROY_UNFLUSHED_DATA must be entered in their entirety. They cannot be abbreviated.

□ Specify NODESTROY_UNFLUSHED_DATA (default) to retain the cached data and discard controller information. The controller metadata synchronizes with that of the cache module and preserves any unwritten data for eventual flushing to the disk array.

The NODESTROY_UNFLUSHED_DATA parameter is used in the following situations:

- ☐ If the controller module has been replaced.
- ☐ If the controller nonvolatile memory (NVMEM) contents were lost.
- ☐ Specify DESTROY_UNFLUSHED_DATA to retain the controller information and discard the unwritten cache data.

The DESTROY UNFLUSHED DATA parameter is used in the following situations:

- ☐ If the cache module has been replaced.
- ☐ Any other reason not listed above.

CAUTION: Specifying the DESTROY_UNFLUSHED_DATA parameter destroys data remaining in cache, which can result in data loss.

Switches

There are no switches associated with this command.

Examples

To clear an invalid cache error on "this controller" after replacing a controller module, enter the following command on one line:

CLEAR_ERRORS THIS_CONTROLLER INVALID_CACHE NODESTROY_UNFLUSHED_DATA

To clear an invalid cache error on the "other controller" after replacing a cache module, enter the following command on one line:

CLEAR ERRORS OTHER CONTROLLER INVALID CACHE DESTROY UNFLUSHED DATA

See Also

CLEAR_ERRORS CLI CLEAR_ERRORS LOST_DATA CLEAR_ERRORS UNKNOWN CLEAR_ERRORS UNWRITEABLE_DATA

CLEAR ERRORS device-name **UNKNOWN**

Use this command to force the controller to recognize a failed device, regardless of the controller's prior evaluation of the device's condition.

A device failure may cause the controller to label the device as unknown. When that happens, the controller does not check the device again to see if it has been repaired or if the error condition has been corrected. You must enter this command so the controller can recognize the device after the cause of the error has been corrected.

Syntax

CLEAR_ERRORS device-name UNKNOWN

NOTE: Spell out UNKNOWN when using this command.

Parameters

device-name

Identifies the device with the unknown error.

Switches

There are no switches associated with this command.

Example

To force the controller to recognize a previously unknown device named DISK30000,

CLEAR_ERRORS DISK30000 UNKNOWN

See Also

CLEAR ERRORS CLI CLEAR_ERRORS INVALID_CACHE CLEAR_ERRORS UNWRITEABLE_DATA

CLEAR_ERRORS unit-number LOST_DATA

Clears lost data errors on a unit; all partitions on the unit's container are affected.

The controller reports a lost data error on the unit when you remove a write-back cache module or when the cache module contains unflushed data, possibly due to an interruption in the primary power source with no backup power present. The CLEAR_ERRORS *unit-number* LOST_DATA command clears the lost data error but does not recover the lost data.

NOTE: Clearing lost data errors or lost data block errors on a RAIDset causes a reconstruction of all parity blocks. Clearing lost data errors or lost data block errors on a mirrorset causes members to normalize.

Syntax

CLEAR_ERRORS unit-number LOST_DATA

NOTE: Spell out LOST_DATA when using this command.

CAUTION: This command may cause data loss.

Parameters

unit-number

Identifies the unit number on which the lost data error is to be cleared. The *unit-number* is the same name given to the unit when you added it to the controller's configuration with the ADD UNITS command.

Switches

There are no switches associated with this command.

Example

To clear the lost data error on disk unit number D103, enter:

CLEAR_ERRORS D103 LOST_DATA

See Also

CLEAR_ERRORS CLI CLEAR_ERRORS INVALID_CACHE CLEAR_ERRORS UNKNOWN CLEAR_ERRORS UNWRITEABLE_DATA

CLEAR_ERRORS *unit-number* **UNWRITEABLE_DATA**

Clears an unwriteable data error on a unit.

This command affects all partitions on the same container.

If a storageset or disk drive fails before its data has been written to it, the controller reports an unwriteable data error. The CLEAR_ERRORS *unit-number* UNWRITEABLE_DATA command removes the data from the cache and clears the unwriteable data error.

CAUTION: This command will cause data loss.

Syntax

CLEAR_ERRORS unit-number UNWRITEABLE_DATA

IMPORTANT: Because misuse of this command will cause data loss, the command cannot be abbreviated.

Parameters

unit-number

Identifies the unit having the unwriteable data error. The *unit-number* is the name given to the unit when it was created with the ADD UNITS command.

Switches

There are no switches associated with this command.

Example

To clear the unwriteable data error on disk unit D103, enter:

CLEAR_ERRORS D103 UNWRITEABLE_DATA

See Also

CLEAR_ERRORS CLI CLEAR_ERRORS INVALID_CACHE CLEAR_ERRORS LOST_DATA CLEAR_ERRORS UNKNOWN RETRY_ERRORS UNWRITEABLE_DATA

CONFIGURATION RESET

Erases the entire subsystem configuration data file stored in the non-volatile memory (NVRAM) of "this controller."

IMPORTANT: This command sets the controller to a default configuration and shuts down the controller, disabling communication between host and controller. Enter new configuration information through the SET THIS_CONTROLLER command or the CONFIGURATION RESTORE command to make the controller operational.

This command does *not* erase the configuration file that was stored on disk with the INITIALIZE *container-name SAVE CONFIGURATION* command.

NOTE: Before issuing this command, make sure the subsystem configuration is saved.

- In single-controller subsystems, the configuration is saved on the disk array. If a container has the SAVE_CONFIGURATION switch specified when it is initialized (through the INITIALIZE command), the disks that constitute that unit will be able to save a copy of the configuration.
- For dual-redundant controllers, the configuration is stored in the companion controller.

Specify the CONFIGURATION RESET command on "this controller" in nofailover mode (SET NOFAILOVER or SET NOMULTIBUS FAILOVER CLI command) only. Enter this command to ensure all of the old configuration information is removed when a controller module is moved from one subsystem to another.

Dual-redundant controller subsystems have the configuration information stored on the "other" controller and do not need to use the INITIALIZE *container-name SAVE_CONFIGURATION* command unless the subsystem is being upgraded (for example, both controllers are being replaced with newer versions).

- New subsystem configuration information can be re-entered by using the SET THIS_CONTROLLER command.
- Saved subsystem configuration information can be re-established by using the CONFIGURATION RESTORE command.
- New subsystem configuration information can be re-established by using the SET FAILOVER COPY or SET NOMULTIBUS FAILOVER= command. These CLI commands "copy" the configuration file from the defined controller non-volatile memory and places the file into the redundant controller non-volatile memory. For example, use SET FAILOVER COPY=OTHER_CONTROLLER or SET NOMULTIBUS FAILOVER executed from "this controller" to place the "other controller" configuration file into the "this controller" non-volatile memory.

■ Ensure subsystem configuration is stored on disk for single controller subsystems by way of the INITIALIZE container-name SAVE_CONFIGURATION or the CONFIGURATION SAVE command.

Initiate the CONFIGURATION RESET command from the controller operator control panel (OCP) using the following steps:

- 1. Push and hold port button #5 and then momentarily press the reset (//) button.
- 2. Continue holding the port button until the port button #5 LED starts FLASHING.
- 3. Release the port button.

Syntax

CONFIGURATION RESET

Parameters

There are no parameters associated with this command.

Switches

There are no switches associated with this command.

Example

To erase the subsystem configuration information in "this controller," enter: CONFIGURATION RESET

See Also

CONFIGURATION RESTORE **CONFIGURATION SAVE INITIALIZE**

CONFIGURATION RESTORE

Copies the subsystem configuration information from the configuration file saved on disk into the NVRAM of "this controller." This command locates the most recent configuration file created on disk and restores it. This command causes a reboot and takes effect immediately.

CAUTION: If a disk has been moved from one subsystem to another, and it contains configuration information, perform a CONFIGURATION SAVE command to synchronize the new disk with the subsystem configuration.

IMPORTANT: Use this command for a single controller configuration only. *Do not* use this command for controllers in a dual-redundant configuration.

Initiate the CONFIGURATION RESTORE command from the controller OCP using the following steps:

- 1. Push and hold port button #5 and then momentarily pressing the reset (//) button.
- 2. Continue holding the port button until the port button #5 LED starts FLASHING.
- 3. Release the port button.

If the controller you are installing was previously used in another subsystem, it will restart with the configuration that resides in its nonvolatile memory. If this differs from the current configuration of the subsystem, you can purge the controller's old configuration with the following command:

CONFIGURATION RESET

Use of the CONFIGURATION RESET command erases the entire configuration on the controller, restores the controller's default configuration, and performs a shutdown of the controller. Press the controller reset (//) button to restart the controller after the controller has been configured—refer to the controller installation and configuration guide for configuration information.

IMPORTANT: The *container-name SAVE_CONFIGURATION* command on page 2–66 must be used to save controller configuration information to a disk in order to reset the configuration or to restore the configuration. See the commands on page 2–63, page 2–40, and page 2–44 for more information.

Syntax

CONFIGURATION RESTORE

Parameters

There are no parameters associated with this command.

Switches

There are no switches associated with this command.

Example

To restore the subsystem configuration into the memory of the controller in a single-controller subsystem, enter:

CONFIGURATION RESTORE

See Also

CONFIGURATION RESET CONFIGURATION SAVE **INITIALIZE**

CONFIGURATION SAVE

Forces the controller to copy the subsystem configuration information in its NVRAM memory onto a configuration file on the disk array. This allows you to know exactly when a copy of the configuration is saved. The command takes effect immediately.

Use the INITIALIZE *container-name SAVE_CONFIGURATION* command to set up the location of the configuration file on the specified container and to save the current subsystem configuration.

The controller periodically updates the configuration file on the disk array. This command forces an immediate update. In single-controller subsystems, the configuration is saved on the disk array. If a container had the *SAVE_CONFIGURATION* switch specified when it was initialized (through the INITIALIZE command), the disks that constitute that unit will be able to save a copy of the configuration.

IMPORTANT: Use this command for a single controller configuration only. Compaq *does not* recommend using this command for controllers in a dual-redundant configuration.

Syntax

CONFIGURATION SAVE

Parameters

There are no parameters associated with this command.

Switches

There are no switches associated with this command.

Example

To save the subsystem configuration into the memory of the controller in a single-controller subsystem, enter:

CONFIGURATION SAVE

See Also

CONFIGURATION RESET CONFIGURATION RESTORE INITIALIZE

CREATE PARTITION

Divides a non-transportable disk drive storageset into several separately addressable storage units. The command marks a specified percentage of a disk drive or storageset to be used as a separately addressable unit—a partition. Any non-transportable disk or storageset can be divided into a maximum of eight partitions. Each partition can then be separately presented to the host.

Initialize all disks and storagesets before creating or destroying partitions.

Syntax

CREATE_PARTITION container-name SIZE=percent

Parameters

container-name

Identifies the disk or storageset to partition. This is the same name given to the disk or storageset when it was created with the ADD command (for example, ADD DISKS, ADD STRIPESETS, and so forth). Any disk, stripeset, mirrorset, striped mirrorset, or RAIDset can be partitioned. A transportable disk cannot be partitioned. You must initialize the container before creating the first partition.

Switches

The following switches are used with the CREATE_PARTITION command:

- Geometry switches
 - □ CAPACITY
 - □ CYLINDERS
 - \Box HEADS
 - □ SECTORS_PER_TRACK
- SIZE

These switches are described in the following paragraphs:

```
CAPACITY=n (1 to the maximum container size in blocks)
CYLINDERS=n (1 to 16,777,215)
HEADS=n (1 to 255)
SECTORS_PER_TRACK=n (1 to 255)
```

These switches are used to set the geometry reported to the host.

NOTE: The geometry switches should not be used unless there is a compatibility problem with the existing defaults.

The geometry switches for the INITIALIZE command are ignored when you create partitions. The geometry switches supplied with the CREATE_PARTITION command are used by the unit.

```
SIZE=percent
SIZE=LARGEST
```

Specifies the size of the partition to be created as a percentage of the total container's storageset size:

☐ Specify SIZE=percent to create a partition on the specified container that is a percentage of the container's total capacity. Up to eight partitions may be created on any one container.

NOTE: The resulting partition is slightly smaller than the size specified because metadata also occupies some of the space allocated to the partition.

- \square Specify SIZE = LARGEST to:
 - ☐ Have the controller create the largest partition possible from unused space on the disk or storageset.
 - ☐ Create the last partition on a container. Because the remaining space is not equal to an exact percentage value, specifying LARGEST allows you to optimize use of the remaining space.

Example

To create a RAIDset named RAID9, divide it into four equal parts, and create host-addressable units for each partition, enter:

ADD RAIDSETS RAID9 DISK10000 DISK20100 DISK30200 **INITIALIZE RAID9** CREATE PARTITION RAID9 SIZE=25 CREATE_PARTITION RAID9 SIZE=25 CREATE_PARTITION RAID9 SIZE=25 CREATE_PARTITION RAID9 SIZE=LARGEST ADD UNITS D101 RAID9 PARTITION=1 ADD UNITS D102 RAID9 PARTITION=2

ADD UNITS D103 RAID9 PARTITION=3 ADD UNITS D104 RAID9 PARTITION=4

See Also

ADD UNITS
DELETE unit-number
DESTROY PARTITION
CREATE_PARTITION
SET unit-number
SHOW

DELETE concatsets

Deletes an existing concatset. If the concatset is associated with a unit, the unit must be deleted before deleting the concatset.

Syntax

DELETE concatset-name

Parameters

concatset-name

The name of the concatset to be deleted.

Switches

There are no switches associated with this command.

Examples

To delete concatset C1, which is associated with unit D0, enter:

DELETE DO **DELETE C1**

See Also

DELETE unit-number SET concatsets

DELETE connections

Deletes a specified connection from the table of known connections maintained by the controller.

The table of known host connections is maintained in the controller's memory. Once a connection is added to the table, it stays there, even if the physical connection between host adapter and controller port is severed. The only way to remove a connection from the table is through the DELETE *connections* command.

DELETE *connections* removes the connection from the table whether or not the host adapter is still physically connected to a controller port.

NOTE: A connection with an access path *explicitly* enabled on a unit cannot be deleted. Access path is enabled explicitly through the *ENABLE_ACCESS_PATH* qualifier of the ADD UNITS or SET unit commands. If access path is generically enabled for all connections (*ENABLE_ACCESS_PATH=ALL*), then any or all connections can be deleted. A connection with explicit access path must have the access path disabled (through the *DISABLE_ACCESS_PATH* qualifier of the SET *unit* command) before the connection can be deleted.

Syntax

DELETE connection-name

Parameters

connection-name

The name given to the host connection. The connection name is one of the following:

- ☐ The default name assigned to the host connection when it was physically connected to the controller port. Default names are of the form !NEWCONnn.
- ☐ The name given through the RENAME command.
- ☐ The name given through the ADD CONNECTIONS command.

Switches

There are no switches associated with this command.

Examples

To delete host connection Server1 from the table of known connections (unless the access path to Server1 is specifically enabled for one or more unit), enter:

DELETE SERVER1

To delete host connection Server4 from the table of known connections when Server4 has explicit access path to unit D7, enter:

SET D7 DISABLE_ACCESS_PATH=SERVER4 DELETE SERVER4

See Also

ADD CONNECTIONS ADD UNITS SET connection-name SET unit-number

DELETE container-name

Deletes a specified container belonging to the controller configuration.

IMPORTANT: A container cannot be deleted if the container is in use by a higher-level container. For example, a disk belonging to a member of a RAIDset, or a RAIDset unit, cannot be deleted. To delete a member of one of these storagesets, the higher-level container or containers must be deleted first.

NOTE: This command *does not* delete failedsets or sparesets. See page 2–54 and page 2–55 for details.

When a storageset is deleted, the individual disks are free to be used by another container. If you create the container again with the exact same disk configuration, and none of the disks have been used for anything or initialized, then the container can be reassembled using its original disks.

Syntax

DELETE container-name

Parameters

container-name

Identifies the container to be deleted. This is the name given to the container when it was created using the ADD command (for example, ADD DISKS, ADD STRIPESETS, and so forth).

Switches

There are no switches associated with this command.

Examples

To delete a disk drive named DISK10000, enter:

DELETE DISK10000

To delete a stripeset named STRIPE1, enter:

DELETE STRIPE1

To delete a RAIDset named RAID9, enter: DELETE RAID9

See Also

DELETE FAILEDSET **DELETE SPARESETS** UNMIRROR

DELETE FAILEDSETS

Removes a disk drive from a failedset. The failedset contains disk drives that were:

- Removed by the controller from RAIDsets and mirrorsets because they failed
- Manually removed using the SET command (for example, SET *mirrorset-name REMOVE=disk-name*)

Enter the DELETE FAILEDSETS command before physically removing failed members from the storage enclosure for testing, repair, or replacement.

You should consider all disk drives in the failedset as defective. Repair or replace disks found in the failedset.

Syntax

DELETE FAILEDSETS disk-name

Parameters

disk-name

Identifies the disk you want to delete from the failedset. Only one disk at a time can be removed from a failedset.

Switches

There are no switches associated with this command.

Example

To delete DISK20200 from the failedset, enter: DELETE FAILEDSETS DISK20200

See Also

SET FAILEDSETS SHOW FAILEDSETS

DELETE SPARESETS

Removes a disk drive from the spareset. The spareset contains disk drives that are available for use, but not yet added to the controller configuration.

Syntax

DELETE SPARESETS disk-name

Parameters

disk-name

Identifies the disk drive being deleted from the spareset. Remove only one disk at a time from a spareset.

Switches

There are no switches associated with this command.

Example

To remove DISK20300 from the spareset, enter: DELETE SPARESETS DISK20300

See Also

ADD SPARESETS SHOW SPARESETS

DELETE *unit-number*

Deletes a unit from the subsystem configuration.

The DELETE command causes the flushing of any user data from the write-back cache to the disks and deletes the specified unit. The command deletes the association of the unit with its underlying device, storageset, RAIDset, or partition. The container and any data in it are left intact.

If any errors occur when trying to flush the user data, the logical unit is not deleted. To delete a unit that has existing errors, you must clear all the errors using a CLEAR_ERRORS command.

Syntax

DELETE unit-number

Parameters

unit-number

Identifies the unit number to be deleted. The *unit-number* is the same name given to the unit when it was created using the ADD UNITS command.

Switches

There are no switches associated with this command.

Example

This example shows how to delete disk unit number D103:

DELETE D103

See Also

ADD UNITS CLEAR_ERRORS CLEAR_ERRORS LOST_DATA CLEAR_ERRORS UNWRITEABLE_DATA DELETE container-name DELETE FAILEDSETS DELETE SPARESETS DESTROY_PARTITION

DESTROY_PARTITION

Removes a partition from a container. Marks the area reserved for a partition as available. The available area is then consolidated with any adjacent free areas.

CAUTION: Data contained on a partition is lost when you enter the DESTROY_PARTITION command.

You cannot destroy a partition that has been assigned a unit number. You must first enter the DELETE *unit-number* command to delete the unit using the partition.

After a partition is destroyed, the container from which it was created must be initialized.

Syntax

DESTROY_PARTITION container-name PARTITION=partition-number

Parameters

The following parameters are available to the DESTROY_PARTITION command:

- container-name
- partition-number

These parameters are described in the following paragraphs:

container-name

Identifies the disk or storageset containing the partition to be destroyed. This is the name given to the container when it was created using the ADD command (for example, ADD DISKS, ADD STRIPESETS, and so forth).

partition-number

Identifies the partition to be destroyed. Use the SHOW *container-name* command to identify the correct partition before carrying out the DESTROY_PARTITION command.

Switches

There are no switches associated with this command.

Example

To delete the unit for partition 2 on RAIDset RAID9 and destroy the partition, enter:

DESTROY_PARTITION RAID9 PARTITION=2

If partition 2 of RAID9 has not yet been assigned a unit number, to delete partition 2, enter:

DESTROY_PARTITION RAID9 PARTITION=2

See Also

CREATE_PARTITION DELETE unit-number **SHOW**

DIRECTORY

Displays a list of the diagnostics and utilities available on "this controller."

Syntax

DIRECTORY

Parameters

There are no parameters associated with this command.

Switches

There are no switches associated with this command.

Example

To display a directory listing, enter:

DIRECTORY

The following is an example of the resultant display:

```
HSUTIL
           V86 D
FRUTIL
           V86 D
CHVSN
           V86 D
CLCP
           V86 D
           V86 D
CLONE
           V86 D
CONFIG
DILX
           V86 D
DIRECT
           V86 D
DSTAT
           V86 D
DDSTAT
           V86 D
DWNGRD
           V86 D
           V86 D
FMU
VTDPY
```

NOTE: CHVSN, DSTAT and DWNGRAD are not user utilities. These utilities are used by Compaq authorized service providers only.

See Also

RUN

EXIT

This command is used only to terminate a remote virtual terminal connection. Use of this command exits the CLI program and returns control to the host.

Syntax

EXIT

Parameters

There are no parameters associated with this command.

Switches

There are no switches associated with this command.

Example

To terminate the CLI program, enter:

EXIT

HELP

Displays a brief explanation of how to obtain help on any command or CLI function by using the question mark (?) character.

IMPORTANT: A character space must precede the question mark.

Syntax

HELP

Parameters

There are no parameters associated with this command.

Switches

There are no switches associated with this command.

Example

To display information regarding the HELP command, enter:

HELP

The following is displayed:

Help may be requested by typing a question mark (?) at the CLI prompt. This will print a list of all available commands.

For further information you may enter a partial command and type a space followed by a (?) to print a list of all available options at that point in the command. For example:

SET THIS_CONTROLLER ?

Prints a list of all legal SET THIS_CONTROLLER commands.

To list all legal commands pertaining to a specific CLI command: type the command, type a space, and enter a question mark. For example:

SET?

INITIALIZE

Initializes metadata on the specified container. During initialization, a small amount of disk space is reserved for metadata that the controller uses to keep track of the array. This metadata is inaccessible to the host. Disks made transportable (using the TRANSPORTABLE switch of the ADD DISKS command) do not contain metadata.

Units are not initialized; a container is initialized before being assigned to a unit.

CAUTION: The INITIALIZE command destroys all user data on the container unless you use the NODESTROY switch. The NODESTROY switch is valid only on mirrorsets and striped mirrorsets.

If a partitioned container is initialized, all partitions are eliminated.

Syntax

INITIALIZE container-name

If you initialize a transportable disk, any metadata contained on the disk is destroyed and the entire disk drive is accessible by the host. The drive does not have the error detection and data security provided by the metadata that is on notransportable disks.

Use the INITIALIZE command when:

Creating a unit from a newly installed disk.
Creating a unit from a newly created RAIDset, stripeset, or mirrorset
Initializing the data structure of a previously partitioned container.

Do not use the INITIALIZE command when:

Creating a unit from the same disks previously initialized, such as when a RAIDse
is moved.

- ☐ Creating a storageset from existing members.
- ☐ Adding a RAIDset with the REDUCED switch.

Parameters

container-name

Specifies the container to initialize. This is the same name given to the disk or storageset when it was created using the ADD command (for example, ADD DISKS, ADD STRIPESETS, and so forth).

Switches

The following switches are used by this command:

- Geometry switches
 - □ CAPACITY
 - □ CYLINDERS
 - \Box HEADS
 - □ SECTORS_PER_TRACK
- CHUNKSIZE
- DESTROY and NODESTROY
- SAVE_CONFIGURATION and NOSAVE_CONFIGURATION

These switches are described in the following paragraphs.

CAPACITY=n (1 to the maximum container size in blocks)
CYLINDERS=n (1 to 16,777,215)
HEADS=n (1 to 255)
SECTORS_PER_TRACK=n (1 to 255)

These commands are used to set the geometry switches reported to the host.

NOTE: The geometry switches should not be used unless there is a compatibility problem with the existing defaults.

The geometry switches for the INITIALIZE command are ignored when you create partitions. The geometry switches supplied with the CREATE_PARTITION command are used by the unit.

CHUNKSIZE=DEFAULT (default) CHUNKSIZE=n

Specifies the block chunk size to be used for RAIDsets and stripesets. You can specify the chunk block size by entering CHUNKSIZE=n, or allow the controller to set the chunk size by entering CHUNKSIZE=DEFAULT.

NOTE: The CHUNKSIZE switch is only valid with stripesets and raidsets.

The default chunk size for storagesets with less than or equal to nine members is 256 blocks, or 128 kilobytes (K). The default chunk size for storagesets with more than nine members is 128 blocks or 64K. Compaq does not recommend a chunk size less than 128 blocks (64K).

IMPORTANT: The default chunk size should be used with caution. It is imperative that you analyze the I/O transfers being used with your application to determine the proper chunk size. An improper value used as a chunk size may cause serious performance problems with the subsystem.

Refer to the detailed description of chunk size that is contained in the controller installation and configuration guide for information regarding recommended chunk size settings for this application.

DESTROY (default) **NODESTROY**

Controls how the metadata on the initialized container is to be handled.

NOTE: The DESTROY and NODESTROY switches are valid only with striped mirrorsets and mirrorsets.

- ☐ Specify *NODESTROY* to preserve forced error metadata during the initialization process. Use the NODESTROY switch only when a unit is to be created from disk drives reduced from mirrorsets. This allows the data on the container to be accessed by a mirrorset or striped mirrorset unit. The NODESTROY switch is not valid for RAIDsets, simple stripesets, and single-disk configurations.
- ☐ Specify *DESTROY* to overwrite user data and forced error flags during the initialization.

SAVE_CONFIGURATION NOSAVE CONFIGURATION (default)

Instructs the controller to save the controller configuration (or not to save the configuration) to the container being initialized.

The *SAVE_CONFIGURATION* switch requires only one disk to be initialized with this option. However, more disks may be used, if desired, for redundancy.

- □ Specify *SAVE_CONFIGURATION* to store a copy of the controller configuration on the container being initialized. A new controller can receive information from a container containing configuration information saved with the *SAVE_CONFIGURATION* switch. If you specify *SAVE_CONFIGURATION* for a multi-device storageset, such as a stripeset, the complete controller configuration information is stored on each disk drive in the storageset.
- ☐ A disk drive initialized with the *SAVE_CONFIGURATION* switch specified has slightly less storage space available for user data.
- ☐ Specify *NOSAVE_CONFIGURATION* if you do not want to store a copy of the controller configuration on a container.

Examples

To initialize container DISK10000 and save a copy of the controller configuration on it, enter:

INITIALIZE DISK10000 SAVE_CONFIGURATION

To initialize RAID4 and to reserve an area for configuration information on all the disks that constitute RAID4, enter:

INITIALIZE RAID4 SAVE_CONFIGURATION

To initialize stripeset STRIPE1 with the default chunk size, enter:

NOTE: Note that the chunk size is not specified, so the controller initializes the unit with the default chunk size.

INITIALIZE STRIPE1

To initialize RAIDset RAID9 with a chunk size of 20, enter:

INITIALIZE RAID9 CHUNKSIZE=20

To initialize DISK40400 and preserve the data after it is removed (reduced) from a mirrorset, enter:

REDUCE DISK40400 INITIALIZE DISK40400 NODESTROY

To show the devices with the SAVE_CONFIGURATION switch enabled, enter:

SHOW DEVICES FULL

Name	Type	Port	Τā	arg	Lun	Used by
DISK10000	disk	1		0	0	S2
	DEC	RZ28M	(C) DEC 10	003		
Sw	itches:					
1	NOTRANSPO	RTABLE				
7	TRANSFER_	RATE_REQUES	STED=20MHZ	(synchronous	s 10.00 MH	Z negotiated)
I	LOCAL					
Si	ze: 4108	970 blocks				
Co	nfigurat	ion being b	acked up c	n this conta	iner	
DISK30300	disk	3		3	0	S2
	DEC	RZ28M	(C) DEC 10	003		
S	Switches:					
1	NOTRANSPO	RTABLE				
7	TRANSFER_	RATE_REQUES	STED=20MHZ	(synchronous	s 10.00 MH	Z negotiated)
I	LOCAL					
Si	ze: 4108	970 blocks				
Co	nfigurat	ion being b	acked up c	on this conta	iner	

See Also

ADD DISKS ADD MIRRORSETS ADD RAIDSETS ADD STRIPESETS ADD PASSTHOUGH **ADD UNITS** CONFIGURATION RESET CONFIGURATION RESTORE CREATE_PARTITION MIRROR

LOCATE

Indicates the physical location of configured units, storagesets, and devices by FLASHING the device fault LED on the front of the storage device. A FLASHING LED helps to distinguish between located devices and failed devices.

The LOCATE command causes the device fault LED to function as follows:

- FLASH once per second on a good device. The LED turns OFF with the LOCATE CANCEL command.
- Illuminate continuously on a failed device. The LED stays ON even after being turned OFF with the LOCATE CANCEL command.

NOTE: The LOCATE command can also be used to test the device fault LED.

Not all devices provide a device fault LED; therefore, these devices cannot be identified using the LOCATE command.

Syntax

LOCATE parameter

Parameters

The following parameters are available to the LOCATE command:

- \blacksquare ALL
- CANCEL
- container-name
- DISKS
- \blacksquare ptl
- UNITS
- unit-number

These parameters are described in the following paragraphs:

NOTE: Only one of the following parameters can be entered with each LOCATE command.

ALL

Causes the device fault LEDs of all configured devices to FLASH. You can also specify ALL to test all of the LEDs at once.

CANCEL

Turns OFF all device fault LEDs turned ON with the LOCATE command.

container-name

Causes the device fault LEDs on the devices within the container-name to FLASH. If a device name is given, the device fault LED FLASHES. If a storageset name is given, the fault LED on all of the devices assigned to the storageset FLASHES.

DISKS

Causes the device fault LEDs of all configured disks to FLASH.

ptl (scsi-port-target-lun)

Causes the device fault LED on the device at the given SCSI location to FLASH.

UNITS

Causes the device fault LEDs of all devices used by the units to FLASH.

NOTE: This parameter is useful for determining which storage devices are not currently configured into logical units.

unit-number

Causes the device fault LEDs on the devices making up the unit-number to FLASH.

Switches

There are no switches associated with this command.

Examples

To cause the device fault LED on device DISK10000 to FLASH, enter:

LOCATE DISK10000

To cause the device fault LEDs on all of the devices assigned to disk unit number D102 to FLASH, enter:

LOCATE D102

To cause the device fault LEDs on all configured disk devices to FLASH, enter:

LOCATE DISKS

To turn OFF the device fault LEDs that are FLASHING on all devices, enter:

LOCATE CANCEL

2–70 HSG60 Array Controller ACS Version 8.6 CLI Reference Guide

See Also

SHOW

MIRROR

Creates a one-member mirrorset from a single disk and names it.

NOTE: This command is used only on disks already configured as units or members of a stripeset.

Use the ADD MIRRORSETS command to create a mirrorset from disk drives not already members of higher-level containers.

After the disk drive is converted to a mirrorset, increase the nominal number of members by entering the SET mirrorset-name MEMBERSHIP=number-of-members command, then enter the SET mirrorset-name REPLACE=disk-name command to add more members to the mirrorset.

Syntax

MIRROR disk-name mirrorset-name

Parameters

The following parameters are available to the MIRROR command:

- disk-name
- mirrorset-name

These parameters are described in the following paragraphs:

disk-name

Specifies the name of the disk to convert to a one-member mirrorset. The disk must be part of a unit.

mirrorset-name

Assigns a name for the mirrorset.

The mirrorset-name must start with a letter (A through Z) and may consist of a maximum of nine characters including letters A through Z, numbers 0 through 9, periods (.), dashes (-), or underscores (_).

It is common to name a mirrorset MIRRn, where n is a sequentially assigned, unique identifier. Other naming conventions are acceptable, but this naming convention provides both the type of container and its unique identifier.

Switches

The following switches are available for use with the MIRROR command:

- COPY
- POLICY and NOPOLICY

These switches are described in the following paragraphs.

```
COPY=FAST
COPY=NORMAL (default)
```

Sets the speed at which the controller copies data to a new member from normal mirrorset members when data is being mirrored to the storageset's disk drives:

- □ Specify *COPY=FAST* to allow the creation of mirrored data to take precedence over other controller operations. When you specify *COPY=FAST*, the controller uses more resources to create the mirrored data, and copying takes less time. However, overall controller performance is reduced.
- □ Specify *COPY=NORMAL* when operations performed by the controller should take priority over the copy operation. If you specify *COPY=NORMAL* creating the mirrored data has a minimal impact on performance.

```
POLICY=BEST_FIT
POLICY=BEST_PERFORMANCE (default)
NOPOLICY
```

Sets the selection criteria the controller uses to choose a replacement disk from the spareset when a mirrorset member fails.

- □ Specify *POLICY=BEST_FIT* to choose a replacement disk drive from the spareset that equals or exceeds the base member size (smallest disk drive at the time the mirrorset was initialized). If there is more than one disk drive in the spareset that meets the criteria, the controller selects a disk drive with the best performance.
- ☐ Specify POLICY=BEST_PERFORMANCE to choose a replacement disk drive from the spareset with the best performance. The controller attempts to select a disk on a different port than existing mirrorset members. If there is more than one disk drive in the spareset matching the best performance criteria, the controller selects a disk drive that equals or exceeds the base member size.
- □ Specify *NOPOLICY* to prevent the controller from automatically replacing a failed disk device. This causes the mirrorset to operate in a reduced state until either *POLICY=BEST_PERFORMANCE* or *POLICY=BEST_FIT* is selected, or a member is manually placed in the mirrorset (see page 2–104).

Example

The following steps show how to create a striped mirrorset with full redundancy:

- 1. Create a normal stripeset.
- 2. Create a unit from the stripeset.
- 3. Make each member of the normal stripeset a mirrorset containing two members.

The commands used in the script below set the nominal number of members in each mirrorset to two and add a second disk to each mirrorset. Because the higher-level structure of the stripeset is carried down to the mirrorsets, initialization of the mirrorsets or adding them as units is not necessary.

ADD STRIPESETS STRIPE1 DISK10100 DISK20100 DISK30100 **INITIALIZE STRIPE1** ADD UNITS D102 STRIPE1 MIRROR DISK10100 MIRROR1 SET MIRROR1 MEMBERSHIP=2 SET MIRROR1 REPLACE=DISK20200 MIRROR DISK20100 MIRROR2 SET MIRROR2 MEMBERSHIP=2 SET MIRROR2 REPLACE=DISK30200 MIRROR DISK30100 MIRROR3 SET MIRROR3 MEMBERSHIP=2 SET MIRROR3 REPLACE=DISK10200

See Also

ADD MIRRORSETS **INITIALIZE** REDUCE SHOW MIRRORSETS **UNMIRROR**

> In dual-redundant mode, if both controllers cannot be shutdown, then both controllers and associated battery chargers remain ON.

Example

To power off the disk units and the enclosure in 10 seconds (BATTERY_OFF and NO_OVERRIDE_BAD_FLUSH are the defaults), enter:

POWEROFF SECONDS=10

REDUCE

Removes member disk drives from mirrorsets and decreases the nominal number of members in the mirrorsets.

This command *does not* put reduced members into the failedset (unlike the SET *mirrorset-name REMOVE=disk-name* command). When using the REDUCE command to take a snapshot of a striped mirrorset, you must reduce all mirrorsets with one command. The CLONE utility does this automatically.

The nominal number of members in a mirrorset is determined by the number of members assigned to the mirrorset with the SET *mirrorset-name*

MEMBERSHIP=number-of-members command or the ADD MIRRORSETS mirrorset-name disk-name1 [disk-nameN] command—in other words, the number of disks that the mirrorset originally contained before it was reduced. The actual number of members contained in the mirrorset may be less than the nominal number of members if:

- A disk drive is not added back to the mirrorset.
- A member remains removed from the mirrorset.
- The mirrorset replacement policy switch *NOPOLICY* is specified with the SET *mirrorset-name* command.
- No spare disks exist.

The actual number of members in the mirrorset can never be greater than the nominal number of members. The disks to be removed do not need to be members of the same mirrorset. However, the disks must all be part of the same unit (for example, the same striped mirrorset). When a disk is reduced from a mirrorset, the controller:

- Flushes all of the unit's data from write-back data cache.
- Pauses I/O to the unit.
- \blacksquare Removes the specified disk(s).
- Decreases the nominal number of members of the mirrorset(s) by the number of disk(s) removed from the mirrorset(s).
- Re-establishes I/O to the unit.

For each reduced mirrorset, there must be at least one remaining normal member after the reduction. If this is not true for all of the *disk-names* specified, the mirrorset is not reduced.

Only normal members can be reduced. A normal member is a mirrorset member whose entire contents are the same as all other normal members within the mirrorset.

NOTE: An error is displayed if you attempt to reduce any mirrorset so that there would not be any normal member remaining.

Syntax

REDUCE disk-name1 disk-name2 disk-name3...

Parameters

disk-name1 disk-name2 disk-name3...

Specifies the names of the disk or disks to be removed from the mirrorset or mirrorsets. Multiple members can be removed with the REDUCE command.

Switches

There are no switches associated with this command.

Example

To remove DISK20100, DISK20200, and DISK40200 from their respective mirrorsets,

SHOW STRIPE1

Name	Storageset	Uses	Used by
STRIPE1	stripeset	MIRR1 MIRR2	D104
		MTRR3	

SHOW MIRRORSETS

Name	Storageset	Uses	Used by
MIRR1	mirrorset	DISK10100	STRIPE1
		DISK20100	
MIRR2	mirrorset	DISK10200	STRIPE1
		DISK20200	
MIRR3	mirrorset	DISK30300	STRIPE1
		DISK40200	

2–76 HSG60 Array Controller ACS Version 8.6 CLI Reference Guide

REDUCE DISK20100 DISK20200 DISK40200

SHOW MIRRORSETS

Name	Storageset	Uses	Used by
MIRR1	mirrorset	DISK10100	STRIPE1
MIRR2	mirrorset	DISK10200	STRIPE1
MIRR3	mirrorset	DISK30300	STRIPE1

See Also

ADD MIRRORSETS MIRROR RUN CLONE SET mirrorset-name SHOW MIRRORSETS

RENAME

Renames a specified container or specified host connection.

NOTE: Units cannot be renamed.

Syntax

RENAME old-container-name new-container-name

Parameters

The following parameters are available to the RENAME command:

- old-container-name
- new-container-name

These parameters are described in the paragraphs that follow.

old-container-name

Specifies the existing name of the container or host connection.

new-container-name

Assigns the new name for the container or host connection.

A name of a host connection can be any combination of letters and numbers, with the one restriction that it cannot take the form of the default assigned by the controller (!NEWCONnn).

Switches

There are no switches associated with this command.

Example

To change the name of DISK10000 to MYDISK, enter:

RENAME DISK10000 MYDISK

To change the name of host connection !NEWCON03 to server2, enter:

RENAME !NEWCON03 SERVER2

RESTART controller

Flushes all user data from the write-back cache of the specified controller and restarts the controller.

Syntax

RESTART controller

Parameters

controller

Identifies which controller is to receive the RESTART command. You must specify THIS_CONTROLLER (the one connected to the CLI maintenance terminal) or OTHER_CONTROLLER.

Switches

The following switches are available to the RESTART *controller* command:

- IGNORE_ERRORS and NOIGNORE_ERRORS
- IMMEDIATE_SHUTDOWN and NOIMMEDIATE_SHUTDOWN

These switches are described in the following paragraphs.

IGNORE_ERRORS NOIGNORE_ERRORS (default)

Controls the reaction of the controller based on the status of write-back cache.

CAUTION: The *IGNORE_ERRORS* switch might cause the controller to keep unflushed data in the write-back cache until it restarts and is able to write the data to devices. Do not perform any hardware changes until the controller flushes the cache.

- ☐ Specify *IGNORE_ERRORS* to instruct the controller to restart even if the data within write-back cache cannot be written to the devices.
- □ Specify *NOIGNORE_ERRORS* to instruct the controller to not restart if the data within write-back cache cannot be written to the devices.

$IMMEDIATE_SHUTDOWN$ NOIMMEDIATE_SHUTDOWN (default)

Instructs the controller when to shutdown and whether to flush the write-back cache or not.

CAUTION: The *IMMEDIATE_SHUTDOWN* switch instructs the controller to immediately shutdown without regard to any data contained within write-back cache. Do not perform any hardware changes until the controller flushes the cache.

- ☐ Specify *IMMEDIATE_SHUTDOWN* to instruct the controller to restart immediately without flushing data from the write-back cache to devices.
- ☐ Specify *NOIMMEDIATE_SHUTDOWN* to instruct the controller not to restart before all data has been flushed from write-back cache to the devices.

Examples

To restart "this controller," enter: RESTART THIS_CONTROLLER

To restart "other controller," enter: RESTART OTHER_CONTROLLER

See Also

SELFTEST controller SHUTDOWN controller

RETRY_ERRORS unit-number UNWRITEABLE_DATA

Causes the controller to attempt to write previously unwriteable data from the write-back cache to the specified devices. No data is lost if the retry fails.

If a container fails in a way that prevents the data in write-back cache to be written to the container, an unwriteable data error is reported.

Syntax

RETRY_ERRORS unit-number UNWRITEABLE_DATA

Parameter

unit-number

Identifies the unit number to which the data contained in write-back cache tries to write. The unit-number is the same name given to the unit when it was created using the ADD UNITS command.

Switches

There are no switches associated with this command.

Example

To retry the writing of the cached data previously marked "unwriteable to disk unit D103," enter:

RETRY_ERRORS D103 UNWRITEABLE_DATA

See Also

CLEAR_ERRORS UNWRITEABLE_DATA

RUN

Runs the specified diagnostic or utility program on "this controller."

Syntax

RUN program-name

Parameter

program-name

The program-name parameter specifies the name of the diagnostic or utility program to be run. The following programs can currently be run:

- ☐ CHVSN—This is not a user utility. This utility may be used by Compaq authorized service providers only.
- □ CLCP—A utility used to load updated software code or patches.
- □ CLI—A utility that allows the entry of the command line interpreter commands into the controller.
- ☐ CLONE—A utility used to automate the process of mirroring units to create a snapshot copy of host unit data.
- □ CONFIG—A utility used to locate and add devices to the controller configuration. The CONFIG utility may be run anytime new devices are added to the subsystem.
- □ DILX—A utility used to test and verify the controller operation with attached storage devices under a high or low I/O load. Run DILX (disk inline exerciser) only when there is no activity on the controller. The total I/O load is handled by the controller, bypassing the host.

The DILX utility has two modes: autoconfigure mode and standard mode.

CAUTION: Run the DILX utility in the autoconfigure mode only at initial installations. When write operations are enabled, the DILX utility may overwrite existing data.

The autoconfigure mode is the most thorough mode and allows you to:

- ☐ Automatically test all of the disk units configured
- ☐ Automatically perform thorough tests on all units with write operations enabled

The standard mode is more flexible and allows you to:

	Test disks you select
	Perform tests in read-only mode or write-only mode
	Provide run time and performance summary option
	Run in read-only mode
	RECT—A command used to display a list of all executable diagnostic or utility ograms.
	STAT—This is not a user utility. This utility may be used by Compaq authorized evice providers only.
	WNGRD—This is not a user utility. This utility may be used by Compaq thorized service providers only.
FN	MU—A fault management utility used to control several spontaneous errors. MU also displays information regarding the most recent controller and memory stem failure.
	UTIL—A utility used when replacing a failed controller, external cache battery, cache module.
	SUTIL—A utility used to format a disk device or to download new firmware to a be or disk device.
pro	TDPY—A utility used to display the current controller state, performance data, ocessor utilization, host post activity and status, device state, logical unit state, the performance, and I/O performance.

Refer to the controller troubleshooting reference guide for more information regarding these utilities.

Switches

There are no switches associated with this command.

Example

To start the DILX diagnostic program, enter:

RUN DILX

See Also

DIRECTORY

SELFTEST controller

Flushes the data from the specified controller write-back cache (if present) and shuts down the controller. It then restarts the controller in looping self-test mode. Press the controller reset (//) button to take the controller out of self-test mode.

Syntax

SELFTEST controller

Parameters

controller

Identifies which controller is to perform the SELFTEST controller command. You must specify THIS_CONTROLLER (the one connected to the CLI maintenance terminal) or OTHER_CONTROLLER.

Switches

The following switches are available to the SELFTEST *controller* command:

- IGNORE_ERRORS and NOIGNORE_ERRORS
- IMMEDIATE_SHUTDOWN and NOIMMEDIATE_SHUTDOWN

These switches are described in the following paragraphs.

IGNORE ERRORS NOIGNORE_ERRORS (default)

Instruct the controller how to respond to write-back cache errors.

CAUTION: The IGNORE_ERRORS switch might cause data to remain in write-back cache. Do not perform any hardware changes until the controller flushes the cache.

- ☐ Specify *IGNORE_ERRORS* to instruct the controller to ignore any write-back cache errors. Such errors can result from data contained within write-back cache unable to be written to the devices or lost data errors.
- ☐ Specify *NOIGNORE_ERRORS* to instruct the controller not to run the self-test program if the write-back cache errors are detected.

IMMEDIATE_SHUTDOWN NOIMMEDIATE_SHUTDOWN (default)

Instructs the controller whether to flush the write-back cache.

CAUTION: The *IMMEDIATE_SHUTDOWN* switch instructs the controller to immediately shut down, without regard to any data contained within write-back cache. Do not perform any hardware changes until the controller flushes the cache.

- □ Select *IMMEDIATE_SHUTDOWN* to instruct the controller to run the self-test program immediately without flushing user data from write-back cache to devices.
- □ Select *NOIMMEDIATE_SHUTDOWN* to instruct the controller to flush data from write-back cache before running the self-test program.

Examples

To start the self-test program on "this controller," enter:

SELFTEST THIS_CONTROLLER

To run the self-test program on the "other controller," even if the "other controller" cannot flush all data from the write-back cache, enter:

SELFTEST OTHER_CONTROLLER IGNORE_ERRORS

See Also

RESTART controller SHUTDOWN controller

SET concatsets

Expands an existing unit by concatenating another storageset of the same type to the storageset that constitutes the unit.

CAUTION: This command should only be done with host operating systems that can support dynamic volume expansion. If the operating system cannot handle one of its disks getting suddenly bigger, use of this command could make data inaccessible.

This command is subject to restrictions:

- Both storagesets must be of the same type.
- If either member storageset becomes inoperative, the concatset becomes inoperative. However, a reduced RAIDset does not make the concatset inoperative.
- Mirrorsets cannot be used.
- Partitions cannot be used.
- Concatsets cannot be partitioned.
- The maximum total disks in a concatset is 24.
- Storagesets must have been initialized before being added to the concatset.
- The CLONE utility cannot be used on a concatset.
- Concatsets cannot be used in remote copy sets.

Syntax

SET concatset-name

Parameters

concatset-name

The name of the concatset to be expanded.

Switches

ADD=storage-set-name

Concatenates the storageset specified by storage-set-name to the concatset.

Examples

To expand the capacity of unit D0 which consists of stripeset Stripe1, by adding another stripeset (Stripe2), enter:

ADD CONCATSETS C1 STRIPE1 SET C1 ADD=STRIPE2

See Also

ADD CONCATSETS DELETE concatsets SHOW CONCATSETS

SET connection-name

Changes the operating characteristics of a host connection. Each path between a Fibre Channel adapter in a host computer and an active host port on a controller is a connection.

This command adds the specified host connection to the table of known connections. This table is maintained in the controller's memory. The maximum table length is 96 connections; if the table contains 96 entries, new connections cannot be added unless some old ones are deleted.

The SET connection-name command changes the operating parameters of the specified host connection. A host connection is a specific instance of one host connected to one port of one controller through one host adapter.

Syntax

SET connection-name

Parameters

connection-name

This is the name of the host connection. When a new host-adapter-port-controller connection is made, the new connection is given a default connection name. The default connection name is !NEWCONnn, where nn is a decimal number. The connection name can be changed through the RENAME command.

Switches

The following switches are available for the SET connection-name command:

- OPERATING_SYSTEM
- RESERVATION STYLE
- UNIT OFFSET

These switches are described in the following paragraphs.

OPERATING_SYSTEM=OS_name

Specifies the operating system of the host. After typing "OPERATING_SYSTEM," add a space and enter a question mark. The CLI will display the available options.

RESERVATION_STYLE=CONNECTION_BASED (default) RESERVATION STYLE=HBA PORT ID BASED

Selection of a RESERVATION_STYLE should be based upon the capabilities of the host operating system. See the OS kit for more details. SCSI persistent reservations are processed differently by the HSG80 based upon the RESERVATION_STYLE. Normal SCSI reservations (not persistent) are always treated as CONNECTION_BASED.

When set to HBA_PORT_ID_BASED, a single persistent reservation command is propagated to all HSG80 controller ports, thereby enabling the host to access the unit over any available path.

When set to CONNNECTION_BASED, the persistent reservation is only valid for the port on which it is received, thereby limiting the host access to those paths that have been explicitly reserved.

IMPORTANT: If a particular host prefers either the *CONNECTION_BASED* or *HBA_PORT_ID_BASED* reservation style, all the connections to that particular host must have identical reservation style settings.

The most important advantage of this mechanism is allowing various hosts, with different reservation style requirements, to be connected to the same HSG80 controllers in a SAN environment.

UNIT_OFFSET

Unit offset (usually just called offset) is a decimal value that establishes the beginning of the range of units that a host connection can access. It defines and restricts host connection access to a contiguous group of unit numbers.

If no value is specified for the *UNIT_OFFSET* switch, then host connections have default offsets as follows:

- ☐ In transparent failover mode, connections on port 1 have an offset of 0 and connections on port 2 have an offset of 100.
- \Box In multiple-bus failover mode, all connections have an offset of 0.

The relationship between LUN number, unit number, and offset is as follows:

LUN = unit-number - offset

- ☐ Logical unit-number (LUN) = the logical unit-number presented to the host connection
- ☐ Unit-number = the number assigned to the unit in the ADD UNITS command. This is the number by which the unit is known internally to the controllers.

Example

set !newcon31 operating_system=vms unit_offset=20

See Also

ADD CONNECTIONS ADD UNITS DELETE connections RENAME

SET controller

Changes specified switch values on the specified controller. "This controller" indicates the controller that is connected to the maintenance terminal while executing CLI commands. "Other controller" is the controller not connected to the maintenance terminal in dual-redundant controller configurations.

NOTE: After doing a SET command to either controller, use a SHOW THIS_CONTROLLER and a SHOW OTHER_CONTROLLER command to verify that the changes went into effect.

Syntax

SET controller

Parameter

controller

Identifies which controller is to be set. Specify THIS_CONTROLLER (the one connected to the CLI maintenance terminal) or OTHER_CONTROLLER.

Switches

Table 2–2 lists the switches available with this command. Descriptions of the switches follow the table.

Table 2–2 SET controller Switches							
Switch Values							
ALLOCATION_CLASS	0-4294967295; in OpenVMS: 0-65535, 0 (default)						
CACHE_FLUSH_TIMER=n	1-65535, 10 (default)						
COMMAND_CONSOLE_LUN NOCOMMAND_CONSOLE_LUN	None						
INDENTIFIER=n NOIDENTIFIER	1-9999						
MIRRORED_CACHE NOMIRRORED_CACHE	None						
NODE_ID	nnn-nnnn-nnnn xx						

Table 2–2 SET controller Switches (Continued)					
Switch	Values				
PORT_1_TOPOLOGY=LOOP_HARD PORT_1_TOPOLOGY=LOOP_SOFT PORT_1_TOPOLOGY=OFFLINE PORT_2_TOPOLOGY=LOOP_HARD	None				
PORT_2_TOPOLOGY=LOOP_SOFT PORT_2_TOPOLOGY=OFFLINE	4.40 shareston				
PROMPT="new prompt" SCSI_VERSION=SCSI-2 SCSI_VERSION=SCSI-3	1-16 characters None				
TERMINAL_PARITY NOTERMINAL_PARITY	Odd or even, no terminal parity (default)				
TERMINAL_SPEED	4800, 9600 (default), or 19200				
TIME	Two-digit day, three-character month, four-digit year, and two-digit hour, minute, and second				
UPS=NODE_ONLY UPS=DATACENTER_WIDE NOUPS	None				

ALLOCATION_CLASS

Allocation class is a unique identification number assigned to the controller pair under certain operating systems. The value for an allocation class is 0-4294967295. In the OpenVMS operating system, this is a 2-byte number (do not specify a number over 65535); for Compaq Tru64 UNIX, it is a 4-byte number. It is reported in response to the SCSI inquiry command and is the same for all units connected to one or both controllers. The allocation class value allows the host to identify the controllers that are a matched dual-redundant pair. This number should be unique for every pair of dual-redundant controllers in the cluster.

IMPORTANT: This value must not be zero (default) in dual-redundant configurations in host systems that implement allocation class. A zero value in this configuration causes the operating system to disable failover between the controller pair. Some operating systems do not implement allocation class, in which case the default of zero has no meaning.

CACHE_FLUSH_TIMER=n CACHE_FLUSH_TIMER=10 (default)

Specifies how many seconds (1–65535) of idle time on a unit may elapse before the write-back cache flushes its entire contents to the disks of this idle unit. The default setting is 10 seconds. When changed, the new value entered for this switch takes effect immediately.

COMMAND_CONSOLE_LUN NOCOMMAND CONSOLE LUN

Enables or disables the command console LUN (CCL), a communication LUN used to initially setup StorageWorks Command Console. When changed, the new setting for this switch takes effect immediately.

This switch works in SCSI-2 mode only. This switch has no effect in SCSI-3 mode. SCSI mode is set by the *SCSI_MODE* switch of this command.

- Select *COMMAND CONSOLE LUN* to enable the CCL.
- Select *NOCOMMAND_CONSOLE_LUN* to disable the CCL.

If all LUNs have already been allocated and you attempt to enable the CLL, the following message displays:

Error 1230: Command console LUN can't be enabled because all LUNs are allocated

IDENTIFIER=n NOIDENTIFIER

IDENTIFIER provides an alternative way (other than worldwide name) for some operating systems to identify the command console LUN (CCL).

The IDENTIFIER switch is used with the SCSI VERSION switch when the SCSI version is set to SCSI-3 mode. The IDENTIFIER switch creates a CCL identifier that makes the controller and the CCL visible to the host. This number can be a value between 1-9999.

MIRRORED CACHE NOMIRRORED CACHE

Enables the mirrored-write-back-data cache feature on dual-redundant controllers. When changed, both controllers restart for the new switch setting to take effect.

The following tasks are performed when the NOMIRRORED_CACHE switch is specified:

1	seemed.
	Data in write-back cache is flushed when cache is configured in non-mirrored mode.
	Enables mirrored write-back cache on both controllers.
_	If an invalid cache configuration exists within the cache modules, an error is generated.
	IMPORTANT: Both controllers must be operational before this command is accepted.

Issue this switch through only one controller. The controllers must have a valid cache configuration before specifying this switch. The controllers automatically restart when this switch is specified.

NOTE: All unwritten write-cached data is automatically flushed from the cache before restart when the MIRRORED_CACHE switch is specified. Depending on the amount of data to be flushed, this command may take several minutes to complete before the controller is restarted.

The NOMIRRORED_CACHE switch disables mirror mode. Data in write-back cache is flushed when this switch is entered from mirrored mode. This switch disables mirrored write-back cache on both controllers. Therefore, this switch is only to be issued through one controller. The controller must contain a valid cache configuration before this switch is assigned. Unlike going from nonmirrored mode to mirrored mode, going from mirrored mode to nonmirrored mode is permitted with a failed cache module. The controller automatically restarts when this switch is specified.

NODE_ID=nnnn-nnnn-nnnn xx

Sets the subsystem worldwide name (node ID).

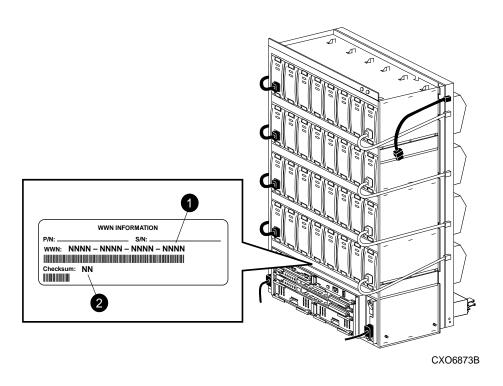
- □ *nnnn-nnnn-nnnn* is the node id
- \Box xx is the checksum

CAUTION: Each subsystem has its own unique worldwide name (node ID). If you attempt to set the subsystem worldwide name to a name other than the one that came with the subsystem, the data on the subsystem will not be accessible. Never set two subsystems to the same worldwide name; data corruption will occur.

NODE_ID is used to set the worldwide name. Worldwide name, which is actually a number, is a Fibre Channel convention. Every port has a unique 64-bit number, consisting of 16 hex digits. Each StorageWorks Fibre Channel enclosure is assigned a node ID, which the controller pair in the enclosure assumes. The port IDs derive from the node ID. The node ID assigned to a enclosure never changes.

The node ID ends in a zero. An example of a node ID is 5000-1FE1-FF0C-EE00. The derivation of port IDs from the node ID is done automatically by the controllers. The numerical value of the port IDs depends on what failover mode the controllers are in.

In transparent failover mode, the port ID of port 1 for both controllers is the node ID plus 1, so in the above example, the port ID for port 1 would be 5000-1FE1-FF0C-EE01. Both controllers share this port ID for port 1 because in the transparent failover mode, only one controller's port 1 is active at any time, and the other port 1 is on standby. Similarly, both controllers share a port ID for port 2, which is the node ID plus 2 (in the example, 5000-1FE1-FF0C-EE02).


For a single configuration controller, the Port ID is derived the same way (plus 1 for port 1, plus 2 for port 2).

In multiple-bus failover, all four ports are independent, and each has its own port ID. The port IDs are assigned as follows:

- \Box Controller B port 1 = node ID + 1
- \Box Controller B port 2 = node ID + 2
- \Box Controller A port 1 = node ID + 3
- \Box Controller A port 2 = node ID + 4

When one of the pair of controllers in a dual redundant configuration is replaced, the remaining controller remembers the node ID. When the replacement controller is installed, the in-place controller tells the node ID to the replacement controller, and the replacement controller automatically assumes the correct port IDs.

If a situation occurs that requires the node ID to be reset, it can be done through the CLI by specifying the *NODE_ID* parameter in the SET *controller* command. The node ID *must* be reset to the number on the enclosure sticker. (The sticker calls it the worldwide name.) The sticker also contains a checksum, which verifies the ID number. When the node ID is entered, both controllers will assume the correct port IDs automatically. Figure 2–1 shows the location of the sticker.

Node ID Checksum

Figure 2-1. Location of node ID sticker on a BA370 enclosure

PORT_1_TOPOLOGY=LOOP_HARD

PORT_1_TOPOLOGY=LOOP_SOFT

 $PORT_1_TOPOLOGY = OFFLINE$

 $PORT_2_TOPOLOGY=LOOP_HARD$

 $PORT_2_TOPOLOGY=LOOP_SOFT$

PORT_2_TOPOLOGY=OFFLINE

Indicates whether the user or controller selects the AL-PA for a host port, or whether the port is to be set offline (used only in AL-PA (FC-AL-PA) topology).

LOOP_HARD allows you to pick the AL-PA. LOOP_SOFT requests the controller to pick the ALPA. OFFLINE sets the host port offline. Specify OFFLINE for a port when it will not be used.

IMPORTANT: If a topology is already selected, topology must be set to offline before another topology is selected.

```
PROMPT="new prompt"
```

Specifies the alpha-numeric characters that are displayed when the ACS command line interpreter prompts for input. This display (prompt) may be from 1-16 characters in length (only printable ASCII characters and spaces). The new prompt name must be enclosed within quotes. When changed, the new text entered for this switch takes effect immediately.

```
SCSI_VERSION=SCSI-2 (default)
SCSI_VERSION=SCSI-3
```

Specifies the host protocol to use. SCSI-3 means that the controller uses some SCSI-3 commands. It does not mean that it is a fully-compliant SCSI-3 device. The command console LUN, CCL, presents to the host a LUN through which it communicates with the controller.

A side effect of the SCSI mode is how the command console LUN (CCL) is handled.

- □ SCSI-2 specifies that the CCL is not fixed at a particular location, but floats depending on the configuration.
- □ SCSI-3 specifies that the CCL is fixed at LUN 0. The SCSI device-type returned to the host is array controller.

Changes to this switch take place at the next controller restart.

```
TERMINAL_PARITY=ODD
TERMINAL_PARITY=EVEN
NOTERMINAL_PARITY (default)
```

Specifies the parity with which data is transmitted and received. When changed, the new setting for this switch takes effect immediately.

```
TERMINAL_SPEED=baud-rate
TERMINAL_SPEED=9600 (default)
```

Sets the terminal transmission and reception speed (baud rate) to 4800, 9600 (default), or 19200 baud. When changed, the new value entered for this switch takes effect immediately.

```
TIME=dd-mmm-yyyy:hh:mm:ss
```

Sets the date and time using a 24-hour clock. The time is set on both controllers in a dual-redundant configuration. When changed, the new value entered for this switch takes effect immediately.

UPS=NODE ONLY UPS=DATACENTER WIDE **NOUPS**

> Specifies whether the controller should perform regular battery condition checks. Setting the UPS/NOUPS switch for either controller sets the switch for both controllers. Both controllers must be restarted in order for the new setting to take effect.

☐ Specify *UPS=NODE_ONLY* if your storage subsystem power is supplied by a separate uninterruptible power supply (UPS) directly connected to a PVA module. If NODE_ONLY is specified the controller continues to check the condition of the cache batteries.

CAUTION: Setting UPS=NODE_ONLY or UPS=DATACENTER_WIDE without having a UPS or similar backup system in place may result in data loss if power is interrupted.

- ☐ Specify *UPS=DATACENTER_WIDE* if the whole room or building (not just the subsystem) is supported by a UPS. If DATACENTER WIDE is specified, the controller does not check the condition of the cache batteries and ignores the battery's state. This causes RAIDsets and mirrorsets to always be available, regardless of the condition of the cache batteries.
- ☐ Specify *NOUPS* to instruct the controller to perform regular cache battery checks and evaluate the condition of the cache batteries.

Examples

To change the "this controller" CLI prompt, enter:

SET THIS CONTROLLER PROMPT="TOP"

To change the "other controller" CLI prompt, enter:

SET OTHER_CONTROLLER PROMPT="CONTROLLER B"

See Also

SHOW controller

SET device-name

Enables changes to the transfer rate and transportable characteristics of the specified disk drive.

Syntax

SET device-name

Parameter

device-name

Specifies the name of the device to change, such as disk or passthrough device.

Switches

The following switches are available to the SET device-name command:

- TRANSFER_RATE_REQUESTED
- TRANSPORTABLE and NOTRANSPORTABLE

These switches are described in the following paragraphs.

TRANSFER_RATE_REQUESTED=ASYNCHRONOUS
TRANSFER_RATE_REQUESTED=DEFAULT
TRANSFER_RATE_REQUESTED=20MHZ (default)
TRANSFER_RATE_REQUESTED=10MHZ
TRANSFER_RATE_REQUESTED=5MHZ

Specifies the maximum data transfer rate for the controller to use in communicating with the device. You may need to limit the transfer rate to accommodate long cables between the controllers and the device.

NOTE: This switch is used by all container types.

TRANSPORTABLE*NOTRANSPORTABLE*

Indicates whether a disk can be accessed exclusively by StorageWorks controllers (the TRANSPORTABLE switch is used for disks only).

NOTE: This switch works only if the disk drive is not used by a higher level assembly, such as a storageset or a unit, and is used by disk containers only.

		Storagesets	cannot	be made	transportabl
--	--	-------------	--------	---------	--------------

Specify NOTRANSPORTABLE for all disks used in RAIDsets, stripesets,
mirrorsets and sparesets

- Transportable disks do not contain any metadata or restricted areas on the disk. Therefore, transportable disks forfeit the advantage metadata provides.
- Transportable disks can be moved to a non-StorageWorks environment with their data intact.
- ☐ If you specify the *NOTRANSPORTABLE* switch and there is no metadata on the unit, the unit must be initialized.
- ☐ If you specify *TRANSPORTABLE* for a disk that was originally initialized as a NOTRANSPORTABLE, you should initialize the disk.
- ☐ Compaq recommends you avoid specifying *TRANSPORTABLE* unless transportability of the device or media is imperative and there is no other way to accomplish moving the data.

NOTE: Specifying TRANSPORTABLE should be avoided unless transportability of the device or media is imperative and there is no other way to accomplish moving the data.

Examples

To set the data transfer rate of DISK20000 to 5MHz, enter:

SET DISK20000 TRANSFER RATE REQUESTED=5MHZ

To set DISK10300 to transportable, enter:

SET DISK10300 TRANSPORTABLE

See Also

ADD DISKS SHOW DEVICES SHOW DISKS

SET FAILEDSET

Enables changes to the automatic replacement policy for the failedset.

Syntax

SET FAILEDSET

Parameters

There are no parameters associated with this command.

Switches

AUTOSPARE NOAUTOSPARE

Specifies the policy to be used by the controller when a disk drive is physically replaced in the failedset.

- ☐ Specify *AUTOSPARE* to instruct the controller to automatically move devices physically replaced in the failedset into the spareset.
- □ Specify *NOAUTOSPARE* to instruct the controller to leave devices physically replaced in the failedset. The device, though replaced, remains in the failedset until it is manually removed with the DELETE FAILEDSET command.

In most circumstances, a disk physically replaced into the failedset is functional and contains no metadata—that is, a new device (one that has not been initialized). If you specify the *AUTOSPARE* switch when a disk is physically replaced in the failedset, the controller checks to see if any metadata is present. If the controller detects metadata, the disk remains in the failedset. If the controller does not detect metadata, the controller automatically initializes the disk and moves it from the failedset to the spareset. Now a member of the spareset, the disk is available for any mirrorset or RAIDset requiring a replacement member. If the automatic initialization fails, the disk remains in the failedset.

Disks that you plan to use for *AUTOSPARE* must not have valid metadata on them. If you suspect a disk does have metadata on it (if it was used in a stripeset or was initialized as *NOTRANSPORTABLE*), you must use the following procedure to make the disk available as a spareset replacement disk (DISK10000 is used as an example):

1. Delete all containers to which the disk belongs.

2. Make the disk transportable.

SET DISK10000 TRANSPORTABLE.

3. Initialize the disk.

INITIALIZE DISK10000

4. Delete the disk.

DELETE DISK10000

5. Add disk to the Spareset or remove disk from the enclosure.

Example

To enable the automatic spare feature, enter:

SET FAILEDSET AUTOSPARE

To disable the automatic spare feature, enter:

SET FAILEDSET NOAUTOSPARE

See Also

DELETE FAILEDSET SHOW FAILEDSET

SET FAILOVER COPY=*controller*

Configures both controllers to operate in a dual-redundant configuration under transparent failover mode. This command allows both controllers to access the storage devices, providing controller fault-tolerant data processing. If one of the two controllers fail, the devices and any cache attached to the failed controller become available to and accessible through the other controller.

IMPORTANT: Remove all connections that appear using the SHOW CONNECTIONS command prior to establishing transparent failover mode.

NOTE: Before putting the controllers in failover mode, remove any previous mode with the SET NOFAILOVER command.

Syntax

SET FAILOVER COPY=controller

Parameters

There are no parameters for this command.

Switches

COPY=controller

Identifies which controller contains the source subsystem configuration for the copy. You must specify THIS_CONTROLLER (the one connected to the CLI maintenance terminal) or OTHER_CONTROLLER. The companion controller receiving the configuration information restarts after the command is executed.

CAUTION: Make sure you know which controller has the good configuration information before entering this command. The device configuration information from the controller specified by the *controller* parameter overwrites the information on the companion controller.

- ☐ Specify THIS_CONTROLLER to copy the device configuration information from the "this controller" to "other controller."
- ☐ Specify OTHER_CONTROLLER to copy the device configuration information from the "other controller" to "this controller."

Due to the amount of information being passed from one controller to the other, this command may take up to two minutes to complete.

Example

To set the controllers in transparent failover mode and copy the configuration information from "this controller" to "other controller," enter:

SET FAILOVER COPY=THIS_CONTROLLER

See Also

SET MULTIBUS_FAILOVER SET NOFAILOVER SET NOMULTIBUS_FAILOVER

SET *mirrorset-name*

Changes the characteristics of a mirrorset including the addition and removal of members.

Syntax

SET mirrorset-name

Parameter

mirrorset-name

Specifies the name of the mirrorset to modify. This is the same name given to the mirrorset when it was created with the ADD MIRRORSETS command.

Switches

The following switches are available to the SET *mirrorset-name* command:

- \blacksquare COPY
- MEMBERSHIP
- POLICY and NOPOLICY
- READ SOURCE
- REMOVE
- REPLACE

These switches are described in the following paragraphs.

```
COPY=FAST
COPY=NORMAL
```

Sets the speed at which the controller copies data to a new member from normal mirrorset members when data is being mirrored to the storageset's disk drives.

- □ Specify *COPY=FAST* to allow the creation of mirrored data to take precedence over other controller operations. When you specify *COPY=FAST*, the controller uses more resources to create the mirrored data, and copying takes less time. However, overall controller performance is reduced.
- □ Specify *COPY=NORMAL* when operations performed by the controller should take priority over the copy operation. If you specify *COPY=NORMAL*, creating the mirrored data has a minimal impact on performance.

MEMBERSHIP=number-of-members

Sets the nominal number of mirrorset members to the number you specify for the number-of-members value. A maximum of six members can be specified.

NOTE: No other switches can be set when you specify the MEMBERSHIP switch.

If you increase the number of members, the controller automatically adds disk drives from the spareset to the mirrorset until the new number of members is reached, or there are no more suitable disk drives in the spareset.

If you increase the number of members and the NOPOLICY switch is specified, the REPLACE=disk-name switch must be specified to bring the mirrorset up to the new nominal number of members.

You cannot set the nominal number of members lower than the actual number of members. Specify the REMOVE switch to reduce the number of disk drives from the mirrorset.

POLICY=BEST_FIT POLICY=BEST_PERFORMANCE (default) **NOPOLICY**

Sets the selection criteria the controller uses to choose a replacement disk from the spareset when a mirrorset member fails.

- ☐ Specify *POLICY=BEST_FIT* to choose a replacement disk drive from the spareset that equals or exceeds the base member size (smallest disk drive at the time the mirrorset was initialized). If there is more than one disk drive in the spareset that meet the criteria, the controller selects a disk drive with the best performance.
- ☐ Specify *POLICY=BEST_PERFORMANCE* to choose a replacement disk drive from the spareset with the best performance. The controller attempts to select a disk on a different port than existing mirrorset members. If there is more than one disk drive in the spareset matching the best performance criteria, the controller selects a disk drive that equals or exceeds the base member size of the mirrorset.
- ☐ Specify *NOPOLICY* to prevent the controller from automatically replacing a failed disk device. The mirrorset operates in a reduced state until a POLICY=BEST_FIT or POLICY=BEST PERFORMANCE is selected, or a member is manually placed in the mirrorset.

READ_SOURCE=disk-name READ_SOURCE=LEAST_BUSY (default) READ_SOURCE=ROUND_ROBIN

Selects the mirrorset member used by the controller to satisfy a read request.

- □ Specify the *READ_SOURCE=disk-name* of a specific member to which you want the controller to direct all read requests. If the member fails out of the mirrorset, the controller selects the first normal member it finds to satisfy its read requests.
- □ Specify *READ_SOURCE=LEAST_BUSY* to direct read requests to the mirrorset member with the least amount of work in its queue. If multiple members have equally short queues, the controller queries these members for each read request as it would when *READ_SOURCE=ROUND_ROBIN* is specified.
- □ Specify *READ_SOURCE=ROUND_ROBIN* to sequentially direct read requests to each mirrorset member. The controller equally queries all normal members for each read request.

REMOVE=disk-name

Instructs the controller to remove a member from an existing mirrorset. The disk drive specified by *disk-name* is removed from the mirrorset specified by *mirrorset-name*. The removed disk drive is added to the failedset.

NOTE: No other switches can be set when the *REMOVE* switch is specified.

For each reduced mirrorset, there must be at least one remaining normal member after the reduction. A normal member is one whose contents are the same as the other members.

Unlike the REDUCE command, the *REMOVE* switch does not change the nominal number of members in the mirrorset. If the mirrorset has a replacement policy and there are acceptable disk drives in the spareset, the controller adds disk drives from the spareset to the mirrorset to make the actual number of members equal to the nominal number of members.

NOTE: Normalizing members exist only when you first create a mirrorset or when you clear lost data on a mirrored unit. The controller recognizes the member as normal, and all other original mirrorset members as "normalizing." New data that is written to the mirrorset is written to all members. The controller copies the normal member's data existing data before the mirrorset was created to the normalizing members. The controller recognizes the normalizing members as normal when all the normalizing member's blocks are the same.

REPLACE=disk-name

Instructs the controller to add a disk member to an existing mirrorset if the following conditions are met.

- ☐ The replacement policy is set to *NOPOLICY*.
- ☐ The mirrorset is missing at least one member.

If these conditions are met, the disk drive specified by disk-name is added to the mirrorset specified by mirrorset-name. The nominal number of members does not change.

The disk name used is the name given to a disk when it was added to the configuration with the ADD DISKS command.

NOTE: Do not specify any other switches when the *REPLACE* switch is specified.

Examples

To change the replacement policy of mirrorset MIRR1 to BEST_FIT, enter:

SET MIRR1 POLICY=BEST_FIT

To remove member DISK30000 from mirrorset MIRR1 created above, enter:

SET MIRR1 REMOVE=DISK30000

NOTE: If the mirrorset has a replacement policy and an acceptable disk drive is in the spareset, the controller automatically adds the spare disk drive to the mirrorset.

To add disk DISK30200 to the mirrorset MIRR1 and immediately begin the copy operation onto DISK 30200, enter:

SET MIRR1 REPLACE=DISK30200

See Also

ADD MIRRORSETS MIRROR **REDUCE** SHOW MIRRORSETS **UNMIRROR**

SET MULTIBUS FAILOVER

Places "this controller" and the "other controller" into multiple-bus failover mode. Failover is a process that allows a controller to take over total control of the storage subsystem in the event of the failure of its companion controller.

IMPORTANT: Remove all connections that appear using the SHOW CONNECTIONS command prior to establishing multibus failover mode.

NOTE: Before putting the controllers in MULTIBUS_FAILOVER mode, remove any previous transparent failover mode with the SET NOFAILOVER command.

Syntax

SET MULTIBUS_FAILOVER COPY=controller

Parameters

There are no parameters for this command.

Switches

COPY=controller

Identifies which controller contains the source configuration. You must specify THIS_CONTROLLER (the one connected to the CLI maintenance terminal) or OTHER_CONTROLLER. The companion controller receives the configuration information and restarts.

CAUTION: Make sure you know which controller has the good configuration information before entering this command. The device configuration information from the controller specified by the *controller* parameter overwrites the information on the companion controller.

- ☐ Specify THIS_CONTROLLER to copy the device configuration information from the "this controller" to "other controller."
- □ Specify OTHER_CONTROLLER to copy the device configuration information from the "other controller" to "this controller."

Due to the amount of information being passed from one controller to the other, this command may take up to two minutes to complete.

Example

This example shows how to configure a controller pair to operate in multiple bus failover mode:

SET MULTIBUS_FAILOVER COPY=THIS_CONTROLLER

The configuration on "this controller" is automatically copied to the "other controller" when you issue the SET MULTIBUS_FAILOVER command. If you want to prefer specific units to specific controllers, use the following command after setting multiple bus failover:

SET D100 PREFERRED_PATH=THIS_CONTROLLER SET D101 PREFERRED_PATH=OTHER_CONTROLLER

See Also

SET FAILOVER SET NOFAILOVER SET NOMULTIBUS_FAILOVER

SET NOFAILOVER SET NOMULTIBUS FAILOVER

The SET NOFAILOVER and SET NOMULTIBUS_FAILOVER commands remove "this controller" and the "other controller" (if currently reachable) from failover mode. Either command can be used to cancel failover, as they both perform exactly the same actions.

The controller on which the command was entered is always removed from the dual-redundant mode, even if the second controller is not currently reachable. No configuration information is lost. All units that were accessed through the "other controller" fail over to "this controller," and the "other controller" is shut down.

IMPORTANT: Immediately after entering this command, one controller should be physically removed because the sharing of devices is not supported by single controller configurations.

It is recommended that both controllers be present when this command is carried out. Otherwise, the controllers become misconfigured with each other, requiring additional steps later to allow the "other controller" to be configured for failover.

The SET NOFAILOVER and SET NOMULTIBUS_FAILOVER commands affect both controllers, regardless of the controller on which the command is carried out.

Syntax

SET NOFAILOVER or SET NOMULTIBUS_FAILOVER

Parameters

There are no parameters associated with this command.

Switches

DESTROY UNFLUSHABLE DATA NODESTROY_UNFLUSHABLE_DATA (default)

Instructs the controller how to handle data contained within write-back cache. These switches have no effect if both controllers are operational. Select one of these switches to indicate how the controller is to handle data contained in cache if one of the controllers fails before it can properly shut down with the SET NOFAILOVER, SET NOMULTIBUS FAILOVER, or SHUTDOWN commands.

Under some circumstances, the data in a failed controller's write-back cache may not fail over to the operating controller's write-back cache. For example, cache data will not failover if the operating controller has a failed cache battery because of the risk of data loss if the power is interrupted.

- □ Specify NODESTROY UNFLUSHABLE DATA to leave the unwritten data intact in the failed controller's write-back cache. When the failed controller is replaced and placed into service, the write-back cache data is flushed to the appropriate devices.
- ☐ Specify *DESTROY_UNFLUSHABLE_DATA* to reconfigure the operational controller before replacing the failed controller. The unwritten data of the failed controller may reference devices not present in the new configuration. If you do not destroy the old configuration data, it may conflict with the new configuration and cause the subsystem to behave unpredictably.

CAUTION: Unflushed data cannot be recovered after it is destroyed.

Example

To terminate transparent failover mode between two controllers in a dual-redundant configuration, enter:

SET NOFAILOVER

See Also

SET FAILOVER SET MULTIBUS FAILOVER

SET RAIDset-name

Changes the characteristics of the specified RAIDset.

NOTE: The number and type of disk drives that are used to create the storageset determine the maximum size of the RAIDset.

Syntax

SET RAIDset-name

Parameters

RAIDset-name

Specifies the name of the RAIDset to modify. This is the name used with the ADD UNITS command to identify the RAIDset as a host-addressable unit.

Switches

The following switches are available to the SET *RAIDset-name* command:

- POLICY and NOPOLICY
- RECONSTRUCT
- REMOVE
- REPLACE

These switches are described in the following paragraphs.

```
POLICY=BEST_FIT
POLICY=BEST_PERFORMANCE (default)
NOPOLICY
```

Specifies the replacement policy to use when a member within the RAIDset fails.

☐ Specify *BEST_FIT* to choose a replacement disk drive from the spareset that equals or exceeds the base member size (smallest disk drive at the time the RAIDset was initialized). If more than one disk drive in the spareset is the correct size, the controller selects a disk drive with the best performance.

- □ Specify *POLICY=BEST PERFORMANCE* to choose a replacement disk drive from the spareset resulting in the best performance of the RAIDset. The controller attempts to select a disk on a different port than existing members. If more than one disk drive in the spareset matches the best performance criteria, the controller selects a disk drive that equals or exceeds the base member size of the RAIDset.
- ☐ Specify *NOPOLICY* to prevent the controller from automatically replacing a failed disk device. This causes the RAIDset to operate in a reduced state until either POLICY=BEST_PERFORMANCE or POLICY=BEST_FIT is selected, or a member is manually replaced in the mirrorset.

RECONSTRUCT = FASTRECONSTRUCT=NORMAL (default)

Sets the speed at which the controller reconstructs the data on the new RAIDset member replacing a failed member.

- □ Specify RECONSTRUCT=NORMAL to balance other controller operations against the reconstruct operation. The controller uses relatively few resources to perform the reconstruct, and there is little impact on performance.
- ☐ Specify *RECONSTRUCT=FAST* when the reconstruct operation must take precedence over other controller operations. The controller uses more resources to perform the reconstruction. Reconstruction takes less time, but overall controller performance is reduced during the reconstruction.

REMOVE=disk-name

Instructs the controller to remove a member from an existing RAIDset. The disk drive specified by disk-name is removed from the RAIDset specified by RAIDset-name. The removed disk drive is added to the failedset.

If a RAIDset is already in a reduced state, an error is displayed and the command is rejected. If a replacement policy is specified, the replacement is taken from the spareset to replace the removed member using the policy specified.

If the NOPOLICY switch is specified with the SET RAIDset-name command, the RAIDset continues to operate in a reduced state until a replacement policy is specified or the REPLACE switch is specified. See the REPLACE=disk-name switch for information on manually replacing a RAIDset member. See the POLICY and NOPOLICY switches for information regarding setting a policy for automatic member replacement.

NOTE: Do not specify other switches when you use the *REMOVE* switch.

REPLACE=disk-name

Instructs the controller to add a disk member to an existing RAIDset if the following conditions are met:

- ☐ The replacement policy is set to *NOPOLICY*.
- ☐ The disk member is not in any configuration, including a spareset.

An error is displayed and the command is rejected if the RAIDset is not in a reduced state, if a replacement policy is already specified, or if the disk specified is already being used by a configuration (including a spareset).

NOTE: Do not specify other switches when you use the *REPLACE* switch.

Examples

To change the replacement policy for RAIDset RAID9 to BEST_FIT, enter:

SET RAID9 POLICY=BEST_FIT

To remove member DISK10000 from the RAID9 RAIDset, enter:

SET RAID9 REMOVE=DISK10000

NOTE: If there is a replacement policy, the controller moves a disk from the spareset to the RAIDset automatically.

To add disk DISK20100 to the reduced RAIDset (RAID9) and immediately begin reconstruction on DISK20100, enter:

SET RAID9 REPLACE=DISK20100

See Also

ADD RAIDSETS SHOW RAIDSETS

SET *unit-number*

Changes the characteristics of the specified logical unit.

Syntax

SET unit-number

Parameters

unit-number

Specifies the logical unit number to modify. The unit-number is the name given to the unit when it was created using the ADD UNITS command.

Switches

Table 2–3 lists all switches for the SET unit-number command and shows which switches can be used with each type of device and storageset. Descriptions of the switches follow the table.

Table 2–3 SET unit-number Switches for Existing Containers								
Switch	container lype	RAIDset	Stripeset	Mirrorset	NOTransportable Disk	Transportable Disk		
ENABLE_ACCESS_PATH DISABLE_ACCESS_PATH		✓	✓	1	1	1		
IDENTIFIER NOIDENTIFIER		✓	1	1	1			
MAX_READ_CACHED_TRANSFER_SIZE		✓	✓	1	1	✓		
MAX_WRITE_CACHED_TRANSFER_SIZE		✓	✓	1	1	1		
MAXIMUM_CACHE_TRANSFER_SIZE		✓	✓	1	✓	✓		
PREFERRED_PATH NOPREFERRED_PATH		✓	✓	✓	√	1		

Table 2–3 SET unit-number Switches for Existing Containers (Continued)							
Switch	Container Type	RAIDset	Stripeset	Mirrorset	NOTransportable Disk	Transportable Disk	
READ_CACHE NOREAD_CACHE		1	1	1	1	1	
READAHEAD_CACHE NOREADAHEAD_CACHE		1	1	1	1	1	
RUN NORUN		1	1	1	1	1	
WRITE_PROTECT NOWRITE_PROTECT		1	1	1	1	1	
WRITEBACK_CACHE NOWRITEBACK_CACHE		1	1	1	1		

 $\textbf{NOTE:} \ \ \text{Regardless of storageset type, the } \textit{NORUN} \ \text{switch cannot be specified for units that are partitioned.}$

ENABLE_ACCESS_PATH=connection-names ENABLE ACCESS PATH=ALL DISABLE_ACCESS_PATH=connection-names $DISABLE_ACCESS_PATH=ALL$

Specifies the access path. It can be a single specific host ID, multiple host IDs, or all host IDs (ALL). If you have multiple hosts on the same bus, you can use this switch to restrict hosts from accessing certain units. This switch limits visibility of specific units from certain hosts. For example, if two hosts are on the same bus, you can restrict each host to access only specific units.

CAUTION: If the storage subsystem has more than one host connection, access path must be specified carefully to avoid giving undesirable host connections access to the unit. The default condition is that access paths to all host connections are enabled. To restrict host access to a set of host connections, specify

DISABLE ACCESS PATH=ALL when the unit is added, then use the SET unit command to specify the set of host connections that are to have access to the unit.

Enabling the access path to a particular host connection does not override previously enabled access paths. All access paths previously enabled are still valid; the new host connection is simply added to the list of connections that can access the unit.

The procedure of restricting access by enabling all access paths then disabling selected paths is particularly not recommended because of the potential data/security breach that occurs when a new host connection is added.

IDENTIFIER=n **NOIDENTIFIER**

The IDENTIFIER switch is used with the SCSI_VERSION switch when the SCSI version is set to SCSI-3 mode. The IDENTIFIER switch creates a unique unit identifier makes the unit visible to the host. This number can be a value between 1–9999.

Identifier is an alternative way (other than worldwide name) for OpenVMS operating systems to identify the unit.

```
MAX READ CACHED TRANSFER SIZE=n
MAX READ CACHED TRANSFER SIZE=32 (default)
```

Sets the largest number of read blocks to be cached by the controller. The controller will not cache any transfers over the size set. Acceptable values are 0 through 2048.

The MAXIMUM_CACHED_TRANSFER switch affects both read and write-back cache when set on a controller that has read and write-back caching.

```
MAX_WRITE_CACHED_TRANSFER_SIZE=n
MAX_WRITE_CACHED_TRANSFE_SIZE=32 (default)
```

Sets the largest number of write blocks to be cached by the controller. The controller will not cache any transfers over the size set. Acceptable write block sizes are 0 through 2048.

The *MAXIMUM_CACHED_TRANSFER* switch affects both read and write-back cache when set on a controller that has read and write-back caching.

```
MAXIMUM_CACHED_TRANSFER_SIZE=n
MAXIMUM_CACHED_TRANSFER_SIZE=32 (default)
```

Sets the largest number of write blocks to be cached by the controller. The controller will not cache any transfers over the set size. Acceptable write block sizes are 1 through 2048. The MAXIMUM_CACHED_TRANSFER_SIZE switch affects both read and write-back cache when set on a controller that has read and write-back caching. The use of this switch has the effect of setting both the MAX_READ_CACHED_TRANSFER_SIZE and the MAX_WRITE_CACHED_TRANSFER_SIZE switches.

PREFERRED_PATH=OTHER_CONTROLLER PREFERRED_PATH=THIS_CONTROLLER NOPREFERRED_PATH (default)

This command is only valid when in MULTIBUS_FAILOVER mode.

The *PREFERRED_PATH* switch allows you to balance the I/O load by specifying the controller through which the unit will be accessed. If you set *NOPREFERRED_PATH* for a unit, it can be accessed through either controller.

The controllers only use the *PREFERRED_PATH* setting if they are in a dual-redundant configuration. If one controller fails, all the devices are accessed through the remaining controller ignoring the *PREFERRED_PATH* setting.

When the failed controller is restarted, the drives automatically return to the controller specified by the *PREFERRED_PATH* switch.

You can specify the *PREFERRED_PATH* switch for a single controller configuration; however, the switch will not take effect until you add a second controller and configure the two controllers for dual-redundancy.

- ☐ When no preferred path is assigned, the unit is targeted through the controller that detects the unit first after the controllers start.
- □ Select *PREFERRED_PATH=THIS_CONTROLLER* to instruct "this controller" to bring the units online.

□ Select *PREFERRED_PATH=OTHER_CONTROLLER* to instruct the "other controller" to bring the units online.

NOTE: All partitions on a container must be addressed through the same controller. If you set *PREFERRED_PATH* for one partition, all partitions on that container inherit the same path.

READ_CACHE (default) NOREAD_CACHE

If *READ_CACHE* is selected, when the controller receives a read request from the host, it reads the data from the disk drives, delivers it to the host, and stores the data in its cache module. Subsequent reads for the same data will take the data from cache rather than accessing the data from the disks.

Read caching improves performance in almost all situations. Therefore, it is recommended you leave its default setting, *READ_CACHE*, enabled. However, under certain conditions, such as when performing a backup, read caching may not be necessary since only a small amount of data is cached. In such instances, it may be beneficial to disable the read cache function and remove the processing overhead associated with caching data.

READAHEAD_CACHE (default) NOREADAHEAD_CACHE

Enables the controller to keep track of read I/Os. If the controller detects sequential read I/Os from the host, it will then try to keep ahead of the host by reading the next sequential blocks of data (those the host has not yet requested) and put the data in cache. This process is sometimes referred to as prefetch. The controller can detect multiple sequential I/O requests across multiple units.

Read ahead caching improves host application performance since the data will be read from the controller cache instead of disk. Read ahead caching is the default for units.

If you are adding a unit that is not expected to get sequential I/O requests, select *NOREADAHEAD_CACHE* for the unit.

RUN (default) NORUN

Controls the unit's availability to the host.

- ☐ Specify *RUN* to make a unit available to the host.
- ☐ Specify *NORUN* to make a unit unavailable to the host and to cause any data in cache to be flushed to one or more drives. *NORUN* spins down all the disks used in the unit. The drives making up the unit spin down after the data has been completely flushed.

NOTE: Specifying *NORUN* and then *RUN* to a unit also causes the subsystem configuration to be updated to the selected disk unit.

WRITE_PROTECT (default)
NOWRITE_PROTECT

Specifies whether data contained on the selected unit can be overwritten.

- □ Specify WRITE_PROTECT to prevent host write operations to the unit. However, the controller may still write to a write-protected RAIDset to satisfy a reconstruct pass or to reconstruct a newly replaced member. Additionally, metadata, reconstruct, and copy writes are still allowed to RAIDsets and mirrorsets.
- □ Specify *NOWRITE_PROTECT* to allow the host to write data to the unit. This allows the controller to overwrite existing data. *NOWRITE_PROTECT* is the default for transportable disks.

WRITEBACK_CACHE (default) NOWRITEBACK CACHE

Enable or disable the write-back data caching function of the controller. The controller's write-back caching feature improves write performance.

□ Specify WRITEBACK_CACHE for all new RAIDsets, mirrorsets, and units you want to take advantage of the controller write-back caching feature. This switch allows the controller to declare the write operation "complete" as soon as the data reaches its cache memory. The controller performs the slower operation of writing the data to the disk drives at a later time.

CAUTION: Though there is built-in redundancy to protect data contained in cache, allowing data to be written to write-back cache may result in the loss of data if the controller fails.

☐ Specify *NOWRITEBACK_CACHE* for units you want to receive data directly from the host without being cached. This switch enables only write-through caching. In write-through caching, when the controller receives a write request from the host it places the data in its cache module, writes the data to the disk drives, then notifies the host when the write operation is complete. This process is called write-through caching because the data passes through—and is stored in—the cache memory on its way to the disk drives. Write-through caching is only enabled when write-back caching is disabled.

NOWRITEBACK_CACHE is the default on transportable disks.

NOTE: When specifying the NOWRITEBACK_CACHE switch, the controller might take 5 minutes to flush data contained within the write-back cache.

Examples

To enable write protect and turn off the read cache on unit D102, enter:

SET D102 WRITE_PROTECT NOREAD_CACHE

To allow only a host connection named Roger1 to access unit D0, enter:

SET DO DISABLE_ACCESS_PATH=ALL SET DO ENABLE_ACCESS_PATH=ROGER1

See Also

ADD UNITS SHOW UNITS SHOW unit-number

SHOW

Displays information about controllers, storagesets, devices, partitions, and units.

The SHOW command may not display some information for devices accessed through the companion controller in a dual-redundant configuration. When information regarding a device or parameter does not appear, enter the same SHOW command from a terminal on the other controller.

Syntax

SHOW parameter

Parameters

The following parameters are available to the SHOW command:

- association-set-name
- ASSOCIATIONS
- concatset-name
- connection-name
- CONNECTIONS
- **■** controller
- device-name
- device-type
- \blacksquare EMU
- remote-copy-set-name
- REMOTE_COPY_SETS
- storageset-name
- storageset-type
- unit-number
- UNITS

These parameters are described in the following paragraphs:

association-set-name

Specifies the name of the association set.

ASSOCIATIONS

Shows information on all association sets known to the controller pair.

concatset-name

Specifies the name of the concatset to be displayed.

connection-name

Specifies the name of a specific connection to be displayed.

CONNECTIONS

Shows the following connection information: connection name, operating system, controller, controller port, adapter ID address, online or offline status, and unit offset.

controller

Identifies the controller to be displayed. You must specify THIS_CONTROLLER (the one connected to the CLI maintenance terminal) or OTHER_CONTROLLER.

device-name

Specifies the name of a particular device to be displayed. For example, SHOW DISK20100 displays information about the device named DISK20100.

device-type

Specifies the type of devices you want to be displayed. Valid choices include:

- □ *DEVICES*—Shows all devices attached to the controller.
- □ *DISKS*—Shows all disks attached to the controller.
- □ PASSTHROUGH—Shows all passthrough containers attached to the controller.

EMU

Displays information regarding the status of the environmental monitoring unit.

remote-copy-set-name

Specifies the remote copy set to display.

REMOTE_COPY_SETS

Displays information on all remote copy sets known to the controller pair.

storageset-name

Specifies the name of a particular storageset to be displayed. For example, SHOW STRIPE1 displays information about the stripeset named STRIPE1.

storageset-type

Specifies the type of storageset to be displayed. Valid types include:

- □ *CONCATSETS*—Shows all concatsets configured to the controller.
- ☐ FAILEDSETS—Shows the failedset configured to the controller.
- ☐ *MIRRORSETS*—Shows all mirrorsets configured to the controller.
- ☐ *RAIDSETS*—Shows all RAIDsets configured to the controller.
- □ *SPARESETS*—Shows the failedset configured to the controller.
- □ *STORAGESETS*—Shows all storagesets configured with the controller.
- □ *STRIPESETS*—Shows all stripesets configured to the controller.

unit-number

Specifies the name of a particular unit to be displayed. For example, SHOW D102 displays information about the unit named D102.

UNITS

Displays information for all units configured to the controller.

Switches

FULL

Displays additional information about each device, storageset, or controller.

Examples

To display a listing of disks, enter:

SHOW DISKS

Name	Туре	Port	Targ	Lun	Used by
DISK20300	disk	1	0	0	D100
DISK10100	disk	1	1	0	D101

To show a full listing of devices attached to the controller, enter:

SHOW DEVICES FULL

Name		Port	_		Used by
DISK100	disk	1	0	0	R0
	Switches:				
	NOTRANSPORT	CABLE			
	TRANSFER_RA	ATE_REQUESTED=20MHZ	(synchronous	20.00 MH	Z negotiated)
	Size: 837802	8 blocks			
DISK200	disk	2	0	0	R0
	Switches:				
	NOTRANSPORT	CABLE			
	TRANSFER_RA	ATE_REQUESTED=20MHZ	(synchronous	20.00 MH	Z negotiated)
	Size: 837802	8 blocks			
DISK300	disk	3	0	0	R0
	Switches:				
	NOTRANSPORT	CABLE			
	TRANSFER_RA	ATE_REQUESTED=20MHZ	(synchronous	20.00 MH	Z negotiated)
	Size: 837802	8 blocks			
DISK400	disk	4	0	0	R0
	Switches:				
	NOTRANSPORT	TABLE			
	TRANSFER_RA	ATE_REQUESTED=20MHZ	(synchronous	20.00 MH	Z negotiated)
	Size: 837802	8 blocks			
	Configuratio	n being backed up o	n this contai	ner	

To display a complete listing of the mirrorset named MIRR1, enter:

SHOW MIRR1

Name	Storageset	Uses	Used by	
MIRR1	mirrorset	DISK50300 DISK60300	s0	
	POLICY (for replacement) = BEST_PERFORMANCE COPY (priority) = NORMAL READ_SOURCE=LEAST_BUSY MEMBERSHIP=2, 2 members present			
	State: NORMAL DISK60300 (member 0) is NOD DISK50300 (member 1) is NOD Size: 17769177 blocks			

To show the full information for a mirrorset, enter:

SHOW MIRRORSETS FULL

Name	Storageset	Uses	Used by
M0	mirrorset	DISK100 DISK200	D0
		DISK300	
		DISK400	
Switches:			
	COPY (priority) = NORMAL		
	READ_SOURCE=LEAST_BUSY		
	MEMBERSHIP=4, 4 MEMBER PRESENT		
	State:		
	RECONSTRUCTING		
	Size: 8378028 blocks		

To show the full information for a controller, enter:

SHOW THIS_CONTROLLER FULL

```
Controller:
HSG80 (c) Compaq xxxxxxxxxx Software xxxxxx, Hardware xxxx
           = 5000-1FE1-0005-9C10
NODE_ID
ALLOCATION_CLASS = 1
SCSI_VERSION = SCSI-2
Configured for MULTIBUS_FAILOVER with ZG95005203
In dual-redundant configuration
Device Port SCSI address 7
Time: NOT SET
Command Console LUN is lun 0 (NOIDENTIFIER)
Host PORT_1:
Reported PORT_ID = 5000-1FE1-0005-9C13
PORT_1_TOPOLOGY = FABRIC (connection down)
Host PORT 2:
Reported PORT_ID = 5000-1FE1-0005-9C14
PORT_2_TOPOLOGY = FABRIC (connection down)
NOREMOTE_COPY
Cache:
32 megabyte write cache, version 0012
Cache is GOOD
Unflushed data in cache
CACHE_FLUSH_TIMER = DEFAULT (10 seconds)
Mirrored Cache:
32 megabyte write cache, version 0012
Cache is GOOD
Unflushed data in cache
Battery:
NOUPS
```

CLI Command Descriptions 2–127

FULLY CHARGED

Expires: 04-DEC-2002

Extended information:

Terminal speed 19200 baud, eight bit, no parity, 1 stop bit Operation control: 00000000 Security state code: 25059

Configuration backup disabled

SHOW ID

This command displays a sorted list of any unit associated with an ID. If no units are associated with an ID, an informational message will be displayed stating "No Units with Identifiers."

Syntax

SHOW ID

Parameters

There are no parameters associated with this command.

Switches

There are no switches associated with this command.

Examples

To display a list of units associated with IDs, enter:

SHOW ID

Unit	ID
D0	12
D3	9
D7	24
D25	90
D123	1

See Also

SET UNITS IDENTIFIER

SHUTDOWN controller

Flushes all user data from the write-back cache (if present) of the specified controller and shuts down the controller. The controller does not automatically restart. All units accessed through the failed controller failover to the surviving controller.

Syntax

SHUTDOWN controller

Parameter

controller

Identifies the controller to shut down. You must specify THIS_CONTROLLER (the one connected to the CLI maintenance terminal) or OTHER_CONTROLLER.

Switches

The following switches are available to the SHUTDOWN controller command:

- IGNORE_ERRORS and NOIGNORE_ERRORS
- IMMEDIATE_SHUTDOWN and NOIMMEDIATE_SHUTDOWN

These switches are described in the following paragraphs.

IGNORE ERRORS NOIGNORE_ERRORS (default)

Controls the controller reaction based on the status of write-back cache.

CAUTION: The *IGNORE ERRORS* switch causes the controller to keep unflushed data in the write-back cache until it restarts and is able to write the data to devices. Do not perform any hardware changes until the controller flushes the cache.

- ☐ Specify IGNORE_ERRORS to instruct the controller to shutdown even if the data within write-back cache cannot be written to the devices.
- ☐ Specify NOIGNORE_ERRORS to instruct the controller to stop operation if the data within write-back cache cannot be written to the devices.

IMMEDIATE_SHUTDOWN NOIMMEDIATE_SHUTDOWN (default)

Instructs the controller when to shutdown.

CAUTION: The *IMMEDIATE_SHUTDOWN* switch causes the controller to keep unflushed data in the write-back cache until it restarts and is able to write the data to devices. Do not perform any hardware changes until the controller flushes the cache.

- ☐ Specify *IMMEDIATE_SHUTDOWN* to cause the controller to shutdown immediately without checking for online devices or before flushing data from the write-back cache to devices.
- ☐ Specify *NOIMMEDIATE_SHUTDOWN* to cause the controller not to shutdown without checking for online devices or before all data has been flushed from the write-back cache to devices.

Examples

To shut down "this controller," enter:

SHUTDOWN THIS CONTROLLER

To shut down the "other controller," even if the controller cannot write all of the write-back cached data to the units, enter:

SHUTDOWN OTHER_CONTROLLER IGNORE_ERRORS

See Also

RESTART controller SELFTEST controller

UNMIRROR

Converts a one-member mirrorset back to a non-mirrored disk drive and deletes the mirrorset from the list of known mirrorsets. This command can only be used on mirrorsets already members of higher-level containers (stripesets or units).

The UNMIRROR command is not valid for disk drives having a capacity greater than the capacity of the existing mirrorset. If a mirrorset is comprised of disk drives with different capacities, the mirrorset capacity is limited to the size of the smallest member; larger members contain unused capacity. If a member with unused capacity is the last remaining member of a mirrorset, the UNMIRROR command cannot be used to change the disk drive back to a single-disk unit. This change would cause a change in the reported disk capacity, possibly corrupting user data.

Syntax

UNMIRROR disk-name

Parameters

disk-name

Specifies the name of the normal mirrorset member to be removed from a mirror storageset.

Switches

There are no switches associated with this command.

Example

To convert DISK10300 back to a single device, enter: **UNMIRROR DISK10300**

See Also

ADD MIRRORSETS MIRROR REDUCE RUN CLONE SET mirrorset-name

Glossary

This glossary defines terms used in this guide or related to this product. This glossary is not a comprehensive glossary of computer terms.

ACS

Array Controller Software. The software component of the HS-series array controller storage systems. ACS executes on the controller and processes input/output requests from the host, performing the device-level operations required to satisfy the requests.

adapter

A device that converts the protocol and hardware interface of one bus type into that of another without changing functionality of the bus.

AL PA

Arbitrated loop physical address. A one-byte value used to identify a port in an Arbitrated Loop topology.

ANSI

Pronounced "ann-see." Acronym for the American National Standards Institute. An organization who develops standards used voluntarily by many manufacturers within the USA. ANSI is not a government agency.

arbitrated loop

In Fibre Channel Technology, a serial bus configuration in which device ports are connected in a loop. Each port has a unique loop address and it communicates with other ports on the loop by arbitrating for loop access. Loop addresses are assigned via cooperative port intercommunication during loop initialization, which occurs any time the device configuration on the loop is physically changed.

arbitrated loop physical address

See AL PA

array controller

See controller

array controller software

See ACS

association set

A group of remote copy sets that share selectable attributes for logging and failover. Members of an association set transition to the same state simultaneously. For example, if one association set member assumes the failsafe locked condition, then other members of the association set also assume the failsafe locked condition. An association set can also be used to share a log between a group of remote copy set members that require efficient use of the log space. *See also* remote copy set.

asynchronous

Pertaining to events that are scheduled as the result of a signal asking for the event; pertaining to that which is without any specified time relation. *See also* synchronous.

autospare

A controller feature that automatically replaces a failed disk drive. Autospare aids the controller in automatically replacing failed disk drives. You can enable the *AUTOSPARE* switch for the failedset causing physically replaced disk drives to be automatically placed into the spareset. *Also called* autonewspare.

backplane

The electronic printed circuit board into which you plug subsystem devices—for example, a controller or power supply.

bad block

A data block containing a physical defect.

bad block replacement

See BBR

battery hysteresis

The ability of the software to allow write-back caching during the time a battery is charging, but only when a previous down time has not drained more than 50 percent of rated battery capacity.

BBR

Bad Block Replacement. A replacement routine that substitutes defect-free disk blocks for those found to have defects. This process takes place in the controller, transparent to the host.

BIST

Built-in self-test. A diagnostic test performed by the array controller software on the controller's policy processor.

bit

A single binary digit having a value of either 0 or 1. A bit is the smallest unit of data a computer can process.

block

A number of consecutive bytes of data stored on a storage device. In most storage systems, a block is the same size as a physical disk sector. *Also called* sector.

bootstrapping

A method used to bring a system or device into a defined state by means of its own action. For example, a machine routine whose first few instructions are enough to bring the rest of the routine into the computer from an input device.

built-in self-test

See BIST

byte

A binary character string made up of 8 bits operated on as a unit.

cache memory

A portion of memory used to accelerate read and write operations. The objective of caching data in a system is to improve performance by placing the most frequently used data in the highest performance memory.

CDU

Cable distribution unit. The power entry device for StorageWorks racks (cabinets). The CDU provides the connections necessary to distribute power to the rack enclosures and fans.

channel

An interface which allows high speed transfer of large amounts of data. Another term for a SCSI bus. *See also* SCSI.

chunk

In any form of RAID that stripes data, data is stored in pieces called chunks. One chunk is stored on each member device in the unit. Taken together, the chunks make up a stripe. The chunk size can be used in some controllers to tune the stripeset for a specific application.

chunk size

The number of data blocks, assigned by a system administrator, written to the primary RAIDset or stripeset member before the remaining data blocks are written to the next RAIDset or stripeset member.

CI bus

Computer Interconnect bus. A serial 70 MHz, dual path, party-line, bus. It is the host bus for the HSJ-series controller-based storage systems. The CI bus is used by OpenVMS hosts to connect the nodes in a clustered subsystem.

CLCP

Code-Load Code-Patch utility. This utility can be used to download patches to the ACS software.

CLI

Command Line Interpreter. A command line entry utility used to interface with the HS-series controllers. CLI enables the configuration and monitoring of a storage subsystem through textual commands.

coax or coaxial cable

A two-conductor wire in which one conductor completely wraps the other with the two separated by insulation.

code-load code-patch utility

See CLCP

command line interpreter

See CLI

computer interconnect bus

See CI bus

configuration file

A file that contains a representation of a storage subsystem configuration.

container

(1) Any entity that is capable of storing data, whether it is a physical device or a group of physical devices. (2) A virtual, internal controller structure representing either a single disk or a group of disk drives linked as a storageset. Stripesets and mirrorsets are examples of storageset containers that the controller uses to create units.

See also storage unit.

controller

A hardware device that, with proprietary software, facilitates communications between a host and one or more storage devices organized in a storage array. The HS-series of the StorageWorks family of controllers are all array controllers.

copving

A state in which data to be copied to the mirrorset is inconsistent with other members of the mirrorset. *See also* normalizing.

copying member

Any member that joins the mirrorset after the mirrorset is created is regarded as a copying member. Once all the data from the normal member (or members) is copied to a normalizing or copying member, the copying member then becomes a normal member. *See also* normalizing member.

CSR

Control and Status Register.

DAEMON

Pronounced "demon." A program usually associated with a UNIX system that performs a utility (housekeeping or maintenance) function without being requested or even known of by the user. A daemon is a diagnostic and execution monitor.

data center cabinet (rack)

A generic reference to large subsystem racks, such as those in which StorageWorks products can be mounted.

data striping

The process of segmenting logically sequential data, such as a single file, so that segments can be written to multiple physical devices (usually disk drives) in a round-robin fashion. This technique is useful if the processor is capable of reading or writing data faster than a single disk can supply or accept the data. While data is being transferred from the first disk, the second disk can locate the next segment.

DDL

Dual data link. The ability to operate on the CI bus using both paths simultaneously to the same remote node.

device

In its physical form, a magnetic disk that can be attached to a SCSI bus. The term is also used to indicate a physical device that has been made part of a controller configuration; that is, a physical device that is known to the controller. Units (virtual disks) can be created from devices, once the devices have been made known to the controller.

The targets, initiators, hubs, converters, adapters, and similar items interconnected to form a SCSI bus. Connectors, expanders, and hubs do not use a SCSI bus ID. *See also* node; peripheral device.

differential I/O module

A 16-bit I/O module with SCSI bus converter circuitry for extending a differential SCSI bus. *See also* I/O module.

differential SCSI bus

A bus in which a signal level is determined by the potential difference between two wires. A differential bus is more robust and less subject to electrical noise than is a single-ended bus.

DILX

Disk Inline Exerciser. DILX is a diagnostic used to test the data transfer capabilities of disk drives in a way that simulates a high level of user activity.

DIMM

Dual Inline Memory Module.

dirty data

The write-back cached data that has not been written to storage media, even though the host operation processing the data has completed.

disaster tolerance

The ability to resume data center operations shortly after a significant event occurs at the primary data center. The ability to restart processing can require an alternate data center, with current copies of critical data in a usable state.

disk inline exerciser

See DILX

DMA

Direct Memory Access.

DOC

DWZZA-on-a-chip. An SYM53C120 SCSI bus extender chip used to connect a SCSI bus in one enclosure to the corresponding SCSI bus in another enclosure.

driver

A hardware device or a program that controls or regulates another device. For example, a device driver is a driver developed for a specific device that allows a computer to operate with the device, such as a printer or a disk drive.

dual data link

See DDL

dual-redundant configuration

A controller configuration consisting of two active controllers operating as a single controller. If one controller fails, the other controller assumes control of the failing controller devices.

dual-simplex

A communications protocol that allows simultaneous transmission in both directions in a link, usually with no flow control.

DUART

Dual Universal Asynchronous Receiver and Transmitter. An integrated circuit containing two serial, asynchronous transceiver circuits.

DWZZA

A StorageWorks SCSI-bus-signal converter used to connect 8-bit single-ended devices to hosts with 16-bit differential SCSI adapters. This converter extends the range of a single-ended SCSI cable to the limit of a differential SCSI cable. *See also* SCSI bus signal converter.

DWZZB

A StorageWorks SCSI bus signal converter used to connect a variety of 16-bit single-ended devices to hosts with 16-bit differential SCSI adapters. *See also* SCSI bus signal converter.

DWZZC

The 16-bit SCSI table-top SCSI bus signal converter used to extend a differential SCSI bus, or to connect a differential SCSI bus to a single-ended SCSI bus. *See also* SCSI bus signal converter.

ECB

External Cache Battery. The unit that supplies backup power to the cache module in the event the primary power source fails or is interrupted.

EIA

Electronic Industries Association. EIA is a standards organization specializing in the electrical and functional characteristics of interface equipment.

EMU

Environmental Monitoring Unit. A unit that provides increased protection against catastrophic failures. Some subsystem enclosures include an EMU which works with the controller to detect conditions such as failed power supplies, failed blowers, elevated temperatures, and external air sense faults. The EMU also controls certain cabinet hardware including DOC chips, alarms, and fan speeds.

environmental monitoring unit

See EMU

ESD

Electrostatic Discharge. The discharge of potentially harmful static electrical voltage as a result of improper grounding.

extended subsystem

A subsystem in which one or two enclosures are connected to the primary enclosure.

external cache battery

See ECB

F Port

A port in a fabric where an N_Port or NL_Port may attach.

fabric

A group of interconnections between ports that includes a fabric element.

failback

The process of restoring data access to the newly-restored controller in a dual-redundant controller configuration. *See also* failover.

failedset

A group of disk drives that have been removed from RAIDsets due to a failure or a manual removal. Disk drives in the failedset should be considered defective and should be tested and repaired before being placed back into the spareset. *See also* spareset.

failover

The process that takes place when one controller in a dual-redundant configuration assumes the workload of a failed companion controller. Failover continues until the failed controller is repaired or replaced. *See also* failback.

fault management utility

See FMU

FC-AL

The Fibre Channel Arbitrated Loop standard.

FC-ATM

ATM AAL5 over Fibre Channel.

FCC

Federal Communications Commission. The federal agency responsible for establishing standards and approving electronic devices within the United States.

FCC Class A

This certification label appears on electronic devices that can only be used in a commercial environment within the United States.

FCC Class B

This certification label appears on electronic devices that can be used in either a home or a commercial environment within the United States.

FC-FG

Fibre Channel Fabric Generic requirements.

FC-GS-1

Fibre Channel Generic Services-1.

FC-GS-2

Fibre Channel Generic Services-2.

FC-IG

Fibre Channel Implementation Guide.

FC-LE

Fibre Channel Link Encapsulation (ISO 8802.2).

FCP

The mapping of SCSI-3 operations to Fibre Channel.

FC-PH specification

The Fibre Channel Physical and Signaling standard.

FC-SB

Fibre Channel Single Byte Command Code Set.

FC-SW

Fibre Channel Switched Topology and Switch Controls.

FD SCSI

The fast, narrow, differential SCSI bus with an 8-bit data transfer rate of 10 MB/s. *See also* FWD SCSI; SCSI.

FDDI

Fiber Distributed Data Interface. An ANSI standard for 100 megabaud transmission over fiber optic cable.

FG-FP

Fibre Channel Framing Protocol (HIPPI on FC).

fiber

A fiber or optical strand. Spelled *fibre* in Fibre Channel.

fiber optic cable

A transmission medium designed to transmit digital signals in the form of pulses of light. Fiber optic cable is noted for its properties of electrical isolation and resistance to electrostatic contamination.

FL_Port

A port in a fabric where N_Port or an NL_Port may be connected.

flush

The act of writing dirty data from cache to a storage media. See also dirty data.

FMU

Fault Management Utility. A utility that is run to provide fault or error reporting information.

forced errors

A data bit indicating that a corresponding logical data block contains unrecoverable data.

frame

An invisible unit used to transfer information in Fibre Channel.

FRU

Field Replaceable Unit. A hardware component that can be replaced at a customer location by Compaq authorized service providers.

FRUTIL

Field Replacement Utility.

full duplex (adj)

Pertaining to a communications method in which data can be transmitted and received at the same time.

full duplex (n)

A communications system in which there is a capability for 2-way transmission and acceptance between two sites at the same time.

FWD SCSI

A fast, wide, differential SCSI bus with a maximum 16-bit data transfer rate of 20 MB/s. *See also* SCSI; FD SCSI.

GBIC

Gigabit Interface Converter. The devices that are inserted into the ports of the Fibre Channel switch and that hold the Fibre Channel cables.

giga

A prefix indicating a billion (10⁹) units, as in gigabaud or gigabyte.

gigabaud

An encoded bit transmission rate of one billion (10^9) bits per second.

gigabyte

A value normally associated with the storage capacity of a disk drive, meaning a billion (10^9) bytes. The decimal value 1024 is usually used for one thousand.

GLM

Gigabit Link Module.

half-duplex (adj)

Pertaining to a communications system in which data can be either transmitted or received but only in one direction at one time.

hard address

The AL_PA which an NL_Port attempts to acquire during loop initialization.

heterogeneous host support

Also called noncooperating host support.

HIPPI-FC

Fibre Channel over HIPPI.

host

The primary or controlling computer to which a storage subsystem is attached.

host adapter

A device that connects a host system to a SCSI bus. The host adapter usually performs the lowest layers of the SCSI protocol. This function may be logically and physically integrated into the host system.

host compatibility mode

A setting used by the controller to provide optimal controller performance with specific operating systems. This improves the controller performance and compatibility with the specified operating system.

hot disks

A disk containing multiple hot spots. Hot disks occur when the workload is poorly distributed across storage devices which prevents optimum subsystem performance. *See also* hot spots.

hot spots

A portion of a disk drive frequently accessed by the host. Because the data being accessed is concentrated in one area, rather than spread across an array of disks providing parallel access, I/O performance is significantly reduced. *See also* hot disks.

hot-pluggable

A replacement method that allows normal I/O activity on a device bus to remain active during device removal and insertion. The device being removed or inserted is the only device that cannot perform operations during this process. *See also* pluggable.

HSUTIL

Format and Device Code Load Utility.

1/0

Refers to input and output functions.

I/O driver

The set of code in the kernel that handles the physical I/O to a device. This is implemented as a fork process. *Also called* driver.

I/O interface

See interface

I/O module

A device that integrates an enclosure with either an 8-bit single-ended SCSI bus, 16-bit single-ended SCSI bus, 16-bit differential SCSI bus, or Fibre Channel bus.

I/O operation

The process of requesting a transfer of data from a peripheral device to memory (or visa versa), the actual transfer of the data, and the processing and overlaying activity to make the request and transfer occur.

initiator

A SCSI device that requests an I/O process to be performed by another SCSI device, namely, the SCSI target. The controller is the initiator on the device bus. The host is the initiator on the host bus.

instance code

A 4-byte value displayed in most text error messages and issued by the controller when a subsystem error occurs. The instance code indicates when during software processing the error was detected.

interface

A set of protocols used between components, such as cables, connectors, and signal levels.

IPI

Intelligent Peripheral Interface. An ANSI standard for controlling peripheral devices by a host computer.

IPI-3 Disk

Intelligent Peripheral Interface Level 3 for Disk.

IPI-3 Tape

Intelligent Peripheral Interface Level 3 for Tape.

JBOD

Just a bunch of disks. A term used to describe a group of single-device logical units not configured into any other container type.

kernel

The most privileged processor access mode.

L Port

A node or fabric port capable of performing Arbitrated Loop functions and protocols. NL_Ports and FL_Ports are loop-capable ports.

link

A connection between two Fibre Channel ports consisting of a transmit fibre and a receive fibre.

local connection

A connection to the subsystem, by way of the controller serial maintenance port, to a maintenance terminal or the host terminal. A local connection enables you to connect to one subsystem controller to perform maintenance tasks. *See also* maintenance terminal; local terminal.

local terminal

A terminal plugged into the EIA-423 maintenance port located on the front bezel of the controller. *See also* maintenance terminal; local connection.

logical bus

A single-ended bus connected to a differential bus by a SCSI bus signal converter.

logical unit

A physical or virtual device addressable through a target ID number. LUNs use their target's bus connection to communicate on the SCSI bus. *See also* unit; LUN.

logical unit number

See LUN

logon

Also called login. A procedure whereby a participant, either a person or network connection, is identified as being an authorized network participant.

loop

See arbitrated loop.

loop tenancy

The period of time between the following events: when a port wins loop arbitration and when the port returns to a monitoring state.

Loop_ID

A 7-bit value numbered contiguously from zero to 126-decimal and represent the 127 legal AL_PA values on a loop (not all of the 256 hex values are allowed as AL_PA values per FC-AL).

LUN

Logical Unit Number. A value that identifies a specific logical unit belonging to a SCSI target ID number. A number associated with a physical device unit during a task's I/O operations. Each task in the system must establish its own correspondence between logical unit numbers and physical devices. *See also* logical unit.

maintenance terminal

An EIA-423-compatible terminal used with the controller. This terminal is used to identify the controller, enable host paths, enter configuration information, and check the controller's status. The maintenance terminal is not required for normal operations. *See also* local terminal; local connection.

mass storage control protocol

See MSCP

Mbps

Approximately one million (10⁶) bits per second—that is, megabits per second.

MBps

Approximately one million (10⁶) bytes per second—that is, megabytes per second.

member

A container that is a storage element in a RAID array.

metadata

The data written to a disk for the purposes of controller administration. Metadata improves error detection and media defect management for the disk drive. It is also used to support storageset configuration and partitioning. Nontransportable disks also contain metadata to indicate they are uniquely configured for StorageWorks environments. Metadata can be thought of as "data about data."

mirrored write-back caching

A method of caching data that maintains two copies of the cached data. The copy is available if either cache module fails.

mirroring

The act of creating an exact copy or image of data.

mirrorset

See RAID level 1

MIST

Module Integrity Self-Test.

MSCP

Mass Storage Control Protocol. MSCP is the protocol by which blocks of information are transferred between the host and the subsystem controller on the CI bus.

multibus failover

Allows the host to control the failover process by moving the unit(s) from one controller to another.

N Port

A port attached to a node for use with point-to-point topology or fabric topology.

network

A data communication, a configuration in which two or more terminals or devices are connected to enable information transfer.

NL_Port

A port attached to a node for use in all three topologies.

node

In data communications, the point at which one or more functional units connect transmission lines. In Fibre Channel, a device that has at least one N_Port or NL_Port.

nominal membership

The desired number of mirrorset members when the mirrorset is fully populated with active devices. If a member is removed from a mirrorset, the actual number of members may fall below the "nominal" membership.

Non-L_Port

A node of fabric port that is not capable of performing the Arbitrated Loop functions and protocols. N_Ports and F_Ports are loop-capable ports.

non-participating mode

A mode within an L_Port that inhibits the port from participating in loop activities. L_Ports in this mode continue to retransmit received transmission words but are not permitted to arbitrate or originate frames. An L_Port in non-participating mode may or may not have an AL_PA. *See also* participating mode.

nonredundant controller configuration

(1) A single controller configuration. (2) A controller configuration that does not include a second controller.

normal member

A mirrorset member that, block-for-block, contains the same data as other normal members within the mirrorset. Read requests from the host are always satisfied by normal members.

normalizing

A state in which, block-for-block, data written by the host to a mirrorset member is consistent with the data on other normal and normalizing members. The normalizing state exists only after a mirrorset is initialized; therefore, no customer data is on the mirrorset.

normalizing member

A mirrorset member whose contents is the same as all other normal and normalizing members for data that has been written since the mirrorset was created or lost cache data was cleared. A normalizing member is created by a normal member when either all of the normal members fail or all of the normal members are removed from the mirrorset. *See also* copying member.

OCP

Operator control panel. The control and indicator panel associated with an array controller. The OCP is mounted on the controller and is accessible to the operator

operator control panel

See OCP

other controller

The controller in a dual-redundant pair that is connected to the controller serving your current CLI session. *See also* "this controller."

outbound fiber

One fiber in a link that carries information away from a port.

parallel data transmission

A data communication technique in which more than one code element (for example, bit) of each byte is sent or received simultaneously.

parity

A method of checking if binary numbers or characters are correct by counting the ONE bits. In odd parity, the total number of ONE bits must be odd; in even parity, the total number of ONE bits must be even. Parity information can be used to correct corrupted data. RAIDsets use parity to improve the availability of data.

parity bit

A binary digit added to a group of bits that checks to see if errors exist in the transmission.

parity check

A method of detecting errors when data is sent over a communications line. With even parity, the number of ones in a set of binary data should be even. With odd parity, the number of ones should be odd.

parity RAID

See RAIDset

participating mode

A mode within an L_Port that allows the port to participate in loop activities. A port must have a valid AL_PA to be in participating mode.

partition

A logical division of a container represented to the host as a logical unit.

PCMCIA

Personal Computer Memory Card Industry Association. An international association formed to promote a common standard for PC card-based peripherals to be plugged into notebook computers. The card, commonly known as a PCMCIA card or program card, is about the size of a credit card. *See also* program card.

peripheral device

Any unit, distinct from the CPU and physical memory, that can provide the system with input or accept any output from it. Terminals, printers, tape drives, and disks are peripheral devices.

pluggable

A replacement method that allows the complete system to remain online during device removal or insertion. The system bus must be halted, or quiesced, for a brief period of time during the replacement procedure. *See also* hot-pluggable.

point-to-point connection

A network configuration in which a connection is established between two, and only two, terminal installations. The connection might include switching facilities.

port

In general terms, the port is: (1) A logical channel in a communications system. (2) The hardware and software used to connect a host controller to a communications bus, such as a SCSI bus or serial bus.

Regarding the controller, the port is: (1) The logical route for data in and out of a controller that can contain one or more channels, all of which contain the same type of data. (2) The hardware and software that connects a controller to a SCSI device.

port name

A 64-bit unique identifier assigned to each Fibre Channel port. The Port_Name is communicated during the logon and port discovery process.

preferred address

The AL PA which an NL Port attempts to acquire first during initialization.

primary enclosure

The subsystem enclosure that contains the controllers, cache modules, external cache batteries, and the PVA module.

private NL Port

An NL_Port which does not attempt login with the fabric and only communicates with NL_Ports on the same loop.

program card

The PCMCIA card containing the controller operating software. See also PCMCIA.

protocol

The conventions or rules for the format and timing of messages sent and received.

PTL

Port-Target-LUN. The controller method of locating a device on the controller device bus.

public NL_Port

An NL_Port that attempts login with the fabric and can observe the rules of either public or private loop behavior. A public NL_Port may communicate with both private and public NL_Ports.

PVA module

Power Verification and Addressing module.

RAID

Redundant array of independent disks. Represents multiple levels of storage access developed to improve performance or availability or both.

RAID level 0

A RAID storageset that stripes data across an array of disk drives. A single logical disk spans multiple physical disks, allowing parallel data processing for increased I/O performance. While the performance characteristics of RAID level 0 is excellent, this RAID level is the only one that does not provide redundancy. Raid level 0 storagesets are referred to as stripesets.

RAID level 0+1

A RAID storageset that stripes data across an array of disks (RAID level 0) and mirrors the striped data (RAID level 1) to provide high I/O performance and high availability. Raid level 0+1 storagesets are referred to as striped mirrorsets.

RAID level 1

A RAID storageset of two or more physical disks that maintains a complete and independent copy of the entire virtual disk's data. This type of storageset has the advantage of being highly reliable and extremely tolerant of device failure. Raid level 1 storagesets are referred to as mirrorsets.

RAID level 3

A RAID storageset that transfers data parallel across the array's disk drives a byte at a time, causing individual blocks of data to be spread over several disks serving as one enormous virtual disk. A separate redundant check disk for the entire array stores parity on a dedicated disk drive within the storageset. *See also* RAID level 5.

RAID level 3/5

A specially developed RAID storageset that stripes data and parity across three or more members in a disk array. A RAIDset combines the best characteristics of RAID level 3 and RAID level 5. A RAIDset is the best choice for most applications with small to medium I/O requests, unless the application is write intensive. A RAIDset is sometimes called parity RAID. Raid level 3/5 storagesets are referred to as RAIDsets.

RAID level 5

A RAID storageset that, unlike RAID level 3, stores the parity information across all of the disk drives within the storageset. *See also* RAID level 3.

RAIDset

See RAID level 3/5

read caching

A cache management method used to decrease the subsystem response time to a read request by allowing the controller to satisfy the request from the cache memory rather than from the disk drives.

read-ahead caching

A caching technique for improving performance of synchronous sequential reads by prefetching data from disk.

reconstruction

The process of regenerating the contents of a failed member's data. The reconstruct process writes the data to a spareset disk and then incorporates the spareset disk into the mirrorset, striped mirrorset, or RAIDset from which the failed member came. *See also* regeneration.

reduced

A term that indicates that a mirrorset or RAIDset is missing one member because the member has failed or has been physically removed.

redundancy

The provision of multiple interchangeable components to perform a single function in order to cope with failures and errors. A RAIDset is considered to be redundant when user data is recorded directly to one member and all of the other members include associated parity information.

regeneration

(1) The process of calculating missing data from redundant data. (2) The process of recreating a portion of the data from a failing or failed drive using the data and parity information from the other members within the storageset.

The regeneration of an entire RAIDset member is called reconstruction. *See also* reconstruction.

remote copy

A feature intended for disaster tolerance and replication of data from one storage subsystem or physical site to another subsystem or site. Remote copy also provides methods of performing a backup at either the local or remote site. With remote copy, user applications continue to run while data movement goes on in the background. Data warehousing, continuous computing, and enterprise applications all require remote copy capabilities.

remote copy set

A bound set of two units, one located locally and one located remotely for long distance mirroring. The units can be a single disk, or a storageset, mirrorset, or RAIDset. A unit on the local controller is designated as the "initiator" and a corresponding unit on the remote controller is designated as the "target." *See also* association set.

replacement policy

The policy specified by a switch with the SET FAILEDSET command indicating whether a failed disk from a mirrorset or RAIDset is to be automatically replaced with a disk from the spareset. The two switch choices are *AUTOSPARE* and *NOAUTOSPARE*.

request rate

The rate at which requests are arriving at a servicing entity.

RFI

Radio Frequency Interference. The disturbance of a signal by an unwanted radio signal or frequency.

SCSI

Small Computer System Interface. (1) An American National Standards Institute (ANSI) interface standard defining the physical and electrical parameters of a parallel I/O bus used to connect initiators to devices. (2) A processor-independent standard protocol for system-level interfacing between a computer and intelligent devices including hard drives, floppy disks, CD-ROMs, printers, scanners, and others.

SCSI bus signal converter

(1) A device used to interface between the subsystem and a peripheral device unable to be mounted directly into the SBB shelf of the subsystem. (2) A device used to connect a differential SCSI bus to a single-ended SCSI bus. (3) A device used to extend the length of a differential or single-ended SCSI bus.

Also called adapter. See also DWZZA, DWZZB, DWZZC, and I/O module.

SCSI device

(1) A host computer adapter, a peripheral controller, or an intelligent peripheral that can be attached to the SCSI bus. (2) Any physical unit that can communicate on a SCSI bus.

SCSI device ID number

A bit-significant representation of the SCSI address referring to one of the signal lines, numbered 0 through 7 for an 8-bit bus, or 0 through 15 for a 16-bit bus. *See also* target ID number.

SCSI ID number

The representation of the SCSI address that refers to one of the signal lines numbered 0 through 15.

SCSI port

(1) Software: The channel controlling communications to and from a specific SCSI bus in the system. (2) Hardware: The name of the logical socket at the back of the system unit to which a SCSI device is connected.

SCSI-A cable

A 50-conductor (25 twisted-pair) cable generally used for single-ended, SCSI-bus connections.

SCSI-P cable

A 68-conductor (34 twisted-pair) cable generally used for differential bus connections.

selective storage presentation

Selective Storage presentation is a feature of the HSG80 controller that enables the user to control the allocation of storage space and shared access to storage across multiple hosts. This is also known as "Restricting Host Access."

serial transmission

A method transmission in which each bit of information is sent sequentially on a single channel rather than simultaneously as in parallel transmission.

service rate

The rate at which an entity is able to service requests. For example, the rate at which an Arbitrated Loop is able to service arbitrated requests.

signal converter

See SCSI bus signal converter

single ended I/O module

A 16-bit I/O module. See also I/O module.

single-ended SCSI bus

An electrical connection where one wire carries the signal and another wire or shield is connected to electrical ground. Each signal logic level is determined by the voltage of a single wire in relation to ground. This is in contrast to a differential connection where the second wire carries an inverted signal.

spareset

A collection of disk drives used by the controller to replace failed members of a storageset.

star coupler

The physical hub of the CI cluster subsystem cabling. The star coupler is a set of connection panels contained within a cabinet containing cable connections and transformers through which the nodes of a cluster connect to one another through the CI bus. *See also* node and CI bus.

storage array

An integrated set of storage devices.

storage array subsystem

See storage subsystem

storage subsystem

The controllers, storage devices, shelves, cables, and power supplies used to form a mass storage subsystem.

storage unit

The general term that refers to storagesets, single-disk units, and all other storage devices that are installed in your subsystem and accessed by the host. A storage unit can be any entity that is capable of storing data, whether it is a physical device or a group of physical devices. *See also* container.

storageset

- (1) A group of devices configured with RAID techniques to operate as a single container.
- (2) Any collection of containers, such as stripesets, mirrorsets, striped mirrorsets, and RAIDsets.

storageset expansion

The dynamic expansion of the storage capacity (size) of a unit. A storage container is created in the form of a concatenation set which is added to the existing storage set defined as a unit.

StorageWorks

A family of modular data storage products that allow customers to design and configure their own storage subsystems. Components include power, packaging, cabling, devices, controllers, and software. Customers can integrate devices and array controllers in StorageWorks enclosures to form storage subsystems. StorageWorks systems include integrated devices and array controllers to form storage subsystems.

stripe

The data divided into blocks and written across two or more member disks in an array.

stripe size

The stripe capacity as determined by n-1 times the chunksize, where n is the number of RAIDset members.

striped mirrorset

See RAID level 0+1

stripeset

See RAID level 0

striping

The technique used to divide data into segments, also called chunks. The segments are striped, or distributed, across members of the stripeset. This technique helps to distribute hot spots across the array of physical devices to prevent hot spots and hot disks.

Each stripeset member receives an equal share of the I/O request load, improving performance.

surviving controller

The controller in a dual-redundant configuration pair that serves its companion's devices when the companion controller fails.

switch

A method that controls the flow of functions and operations in software.

synchronous

Pertaining to a method of data transmission which allows each event to operate in relation to a timing signal. *See also* asynchronous.

tape

A storage device supporting sequential access to variable sized data records.

target

(1) A SCSI device that performs an operation requested by an initiator. (2) Designates the target identification (ID) number of the device.

target ID number

The address a bus initiator uses to connect with a bus target. Each bus target is assigned a unique target address.

this controller

The controller that is serving your current CLI session through a local or remote terminal. *See also* "other controller."

TILX

Tape inline exerciser. The controller diagnostic software to test the data transfer capabilities of tape drives in a way that simulates a high level of user activity.

topology

An interconnection scheme that allows multiple Fibre Channel ports to communicate with each other. For example, point-to-point, Arbitrated Loop, and switched fabric are all Fibre Channel topologies.

transfer data rate

The speed at which data may be exchanged with the central processor, expressed in thousands of bytes per second.

transparent failover

Keeps the storage array available to the host(s) by allowing the surviving controller of a dual redundant pair to take over total control of the subsystem and is transparent (invisible) to the host(s).

ULP

Upper Layer Protocol.

ULP process

A function executing within a Fibre Channel node which conforms to the ULP requirements when interacting with other ULP processes.

Ultra SCSI bus

A Fast-20 SCSI bus. See also Wide Ultra SCSI.

uninterruptible power supply

See UPS

unit

A container made accessible to a host. A unit may be created from a single disk drive. A unit may also be created from a more complex container such as a RAIDset. *See also* target; target ID number.

unwritten cached data

Sometimes called unflushed data. See also dirty data.

UPS

Uninterruptible power supply. A battery-powered power supply guaranteed to provide power to an electrical device in the event of an unexpected interruption to the primary power supply. Uninterruptible power supplies are usually rated by the amount of voltage supplied and the length of time the voltage is supplied.

VHDCI

Very High-Density-Cable Interface. A 68-pin interface that is required for Ultra SCSI connections.

virtual terminal

A software path from an operator terminal on the host to the controller CLI interface, sometimes called a host console. The path can be established via the host port on the controller or via the maintenance port through an intermediary host. *See also* maintenance terminal.

VTDPY

Virtual terminal display. A utility that allows viewing of specific informational displays using CLI commands.

wide Ultra SCSI

Fast-20 on a Wide SCSI bus.

worldwide name

A unique 64-bit number assigned to a subsystem by the Institute of Electrical and Electronics Engineers (IEEE) and set by DIGITAL manufacturing prior to shipping. *Also called* node ID within the CLI.

write hole

The period of time in a RAID level 1 or RAID level 5 write operation when an opportunity emerges for undetectable RAIDset data corruption. Write holes occur under conditions such as power outages, where the writing of multiple members can be abruptly interrupted. A battery backed-up cache design eliminates the write hole because data is preserved in cache and unsuccessful write operations can be retried.

write-back caching

A cache management method used to decrease the subsystem's response time to write requests by allowing the controller to declare the write operation "complete" as soon as the data reaches its cache memory. The controller performs the slower operation of writing the data to the disk drives at a later time.

write-through cache

A cache management technique for retaining host write requests in read cache. When the host requests a write operation, the controller writes data directly to the storage device. This technique allows the controller to complete some read requests from the cache, greatly improving the response time to retrieve data. The operation is complete only after the data to be written is received by the target storage device.

Glossary–32 HSG60 Array Controller ACS Version 8.6 CLI Reference Guide

This cache management method may update, invalidate, or delete data from the cache memory accordingly, to ensure that the cache contains the most current data.

write-through caching

A cache management method used to decrease the subsystem's response time to a read. This method allows the controller to satisfy the request from the cache memory rather than from the disk drives.

Index

\mathbf{A}	related commands
ADAPTER_ID, parameter for ADD	ADD UNITS 2–8
CONNECTIONS 2–5	DELETE connections 2–8
ADD CONCATSETS	SET connection-name 2–8
command parameters 2-2	switches
concatenation set 2–2	OPERATING_SYSTEM 2–6
description 2–2	RESERVATION_STYLE 2–6
dynamic volume expansion 2–2	UNIT_OFFSET 2–7
parameters	syntax 2–4
concatset-name 2–2	ADD DISKS
storageset-name 2–2	command parameters 2–9
related commands	description 2–9
DELETE concatset-name 2-3	parameters
SET concatset-name 2–3	disk-name 2–9
SHOW concatset-name 2-3	scsi-port-target-lun 2–9
SHOW CONCATSETS 2-3	related commands
storageset expansion 2–2	ADD PASSTHROUGH 2–11
syntax 2–2	ADD UNITS 2–11
ADD CONNECTIONS	DELETE container-name 2–11
command parameters 2-4	INITIALIZE 2–11
description 2–4	LOCATE 2–11
parameters	SET container-name 2–11
ADAPTER_ID 2–5	SHOW DEVICES 2–11
connection-name 2–5	SHOW DISKS 2–11
CONTROLLER 2–5	SHOW PASSTHOUGH 2–11
HOST_ID 2–5	switches
PORT 2–5	NOTRANSPORTABLE 2–10
physically connecting 2-4	TRANSFER_RATE_REQUESTED 2–10

Index-2 HSG60 Array Controller ACS Version 8.6 CLI Reference Guide

TRANSPORTABLE 2-10	disk-name 2–17
syntax 2–9	RAIDset-name 2–17
ADD MIRRORSETS	related commands
command parameters 2–12	ADD UNITS 2–20
description 2–12	DELETE container-name 2–20
parameters	INITIALIZE 2–20
disk-name 2–12	SET RAIDSETS 2–20
mirrorset-name 2–12	SHOW RAIDset-name 2-20
related commands	SHOW RAIDSETS 2–20
ADD DISKS 2–14	STORAGESETS 2-20
ADD UNITS 2–14	switches
DELETE container-name 2-14	NOPOLICY 2–18
INITIALIZE 2–14	NOREDUCED 2–19
MIRROR 2–14	POLICY 2–18
REDUCE 2–14	RECONSTRUCT 2–19
SHOW mirrorset-name 2-14	REDUCED 2-19
SHOW MIRRORSETS 2–14	syntax 2–17
SHOW STORAGESETS 2-14	ADD SPARESETS
UNMIRROR 2–14	command parameters 2–21
switches	description 2–21
COPY 2-13	parameter, disk-name 2–21
NOPOLICY 2–13	related commands
POLICY 2–13	DELETE SPARESETS 2–21
READ_SOURCE 2–13	SHOW SPARESETS 2–21
syntax 2–12	STORAGESETS 2–21
ADD PASSTHROUGH	syntax 2–21
command parameters 2–15	ADD STRIPESETS
description 2–15	command parameters 2-22
parameters	descriptions 2–22
passthrough-name 2-15	parameters
related commands	container-name 2–22
ADD UNITS 2–16	stripeset-name 2–22
DELETE container-name 2–16	related commands
LOCATE 2–16	ADD UNITS 2–23
SET container-name 2–16	DELETE container-name 2–23
SHOW DEVICES 2–16	INITIALIZE 2–23
SHOW DISKS 2–16	MIRRORSETS 2–23
SHOW PASSTHROUGH 2–16	SHOW STORAGESETS 2–23
syntax 2–15	SHOW stripeset-name 2–23
ADD RAIDSETS 2–17	syntax 2–22
command parameters 2-17	ADD UNITS
parameters	command parameters 2–24

description 2–24	units 2–24
parameters	ALL, parameter for LOCATE 2–68
container-name 2–25	ALLOCATION_CLASS, switch for SET control-
unit-number 2–25	ler 2–92
related commands	ASSOCIATIONS, parameter for SHOW 2–123
CREATE_PARTITION 2–31	association-set-name, parameter for
DELETE unit-number 2–31	SHOW 2-123
SET unit-number 2–31	AUTOSPARE, switch for SET FAILEDSET
SHOW UNITS 2–31	2–100
switches	C.
DISABLE_ACCESS_PATH 2–27	С
ENABLE_ACCESS_PATH 2–27	CACHE_FLUSH_TIMER, switch for SET con-
MAX_READ_CACHED_TRANSFER_	troller 2–92
SIZE 2–27	CANCEL, parameter for LOCATE 2–69
MAX_WRITE_CACHED_TRANSFER_	CAPACITY, switch for
SIZE 2–27	CREATE_PARTITION 2–47
MAXIMUM_CACHED_TRANSFER_	INITIALIZE 2–64
SIZE 2–28	changing sparesets/failedsets commands 1–4
NOPREFERRED_PATH 2-28	CHUNKSIZE
NOREAD_CACHE 2–29	setting storageset size 2–65
NOREADAHEAD_CACHE 2–29	switch for INITIALIZE 2–65
NORUN 2–29	CHVSN, running 2–81
NOWRITE_PROTECT 2-30	CLCP, running 2–81
NOWRITEBACK_CACHE 2–30	CLEAR_ERRORS CLI
PARTITION 2–28	command parameters 2–32
PREFERRED_PATH 2–28	description 2–32
READ_CACHE 2–29	related commands, CLEAR_ERRORS
READAHEAD_CACHE 2–29	controller INVALID_CACHE 2–32
RUN 2–29	device-name UNKNOWN 2–32
WRITE_PROTECT 2-30	unit-number LOST_DATA 2-32
WRITEBACK_CACHE 2–30	unit-number UNWRITEABLE_DATA
syntax 2–24	2–32
ADD, switch for	syntax 2–32
SET concatsets 2–85	CLEAR_ERRORS controller
adding	INVALID_CACHE
disk drives 2–9	command parameters 2–33
mirrorsets 2–12	description 2–33
passthrough devices 2–15	parameters
physical devices, general commands 1–3	controller 2–33
RAIDsets 2–17	data-retention-policy 2-33
sparesets 2–21	related commands, CLEAR_ERRORS
stripesets 2–22	CLI 2–34
r	

Index-4 HSG60 Array Controller ACS Version 8.6 CLI Reference Guide

LOST_DATA 2–34	for changing sparesets/failedsets 1–4
UNKNOWN 2–34	for customizing the prompt 2–96
UNWRITEABLE_DATA 2-34	general controller commands 1–2
syntax 2–33	getting help 1–6
CLEAR_ERRORS device-name UNKNOWN	overview 1–2
command parameters 2–35	partitions 1–5
description 2–35	rules for entering 1–6
parameters, device-name 2–35	selective presentation 1–4
related commands, CLEAR_ERRORS	shortcuts 1–6
CLI 2–35	storagesets 1–4
INVALID_CACHE 2–35	syntax 1–7
UNWRITEABLE_DATA 2–35	transparent failover 1–3
syntax 2–35	definition 1–1
CLEAR_ERRORS unit-number LOST_DATA	overview 1–1
command parameters 2–36	program termination 2–61
description 2–36	prompt, changing display appearance 1–8
parameter, <i>unit-number</i> 2–36	running 2–81
related commands, CLEAR_ERRORS	CLI commands
CLI 2–37	ADD
INVALID_CACHE 2–37	CONCATSETS 2–2
UNKNOWN 2–37	CONNECTIONS 2–4
UNWRITEABLE_DATA 2–37	DISKS 2–9
syntax 2–36	MIRRORSETS 2–12
CLEAR_ERRORS unit-number	PASSTHROUGH 2–15
UNWRITEABLE_DATA	RAIDSETS 2–17
command parameters 2–38	SPARESETS 2–21
description 2–38	STRIPESETS 2–22
parameter, <i>unit-number</i> 2–38	UNITS 2–24
related commands	CLEAR_ERRORS
CLEAR_ERRORS	CLI 2–32
CLI 2–39	controller INVALID_CACHE 2–33
INVALID_CACHE 2–39	device-name UNKNOWN 2–35
LOST_DATA 2–39	unit-number LOST_DATA 2–36
UNKNOWN 2–39	unit-number UNWRITEABLE_DATA
RETRY_ERRORS UNWRITEABLE_	2–38
DATA 2–39	CONFIGURATION
syntax 2–38	RESET 2–40
CLI	RESTORE 2–42
commands	SAVE 2–44
abbreviating commands 1–6	CREATE_PARTITION 2–46
for adding or configuring physical devices	DELETE
1–3	concatsets 2–49
1 3	CONCUMENT 2 77

connections 2–50	concatset-name, parameter for
container-name 2–52	ADD CONCATSETS 2–2
FAILEDSETS 2–54	DELETE concatsets 2–49
SPARESETS 2–55	SET concatsets 2–85
unit-number 2–56	SHOW 2-123
DESTROY_PARTITION 2–58	concatsets, showing 2–124
DIRECTORY 2–60	CONFIG, running 2–81
EXIT 2–61	configuration
HELP 2–62	modifying controller configurations
INITIALIZE 2–63	resetting 2–40
LOCATE 2–68	restoring 2–42, 2–66
MIRROR 2–71	CONFIGURATION RESET
REDUCE 2–74	command parameters 2–41
RENAME 2–77	description 2–40
RESTART controller 2–78	related commands
RETRY_ERRORS unit-number	CONFIGURATION RESTORE 2–41
UNWRITEABLE_DATA 2–80	CONFIGURATION SAVE 2–41
RUN 2–81	INITIALIZE 2–41
SELFTEST controller 2–83	syntax 2–41
SET	CONFIGURATION RESTORE
concatsets 2–85	command parameters 2–43
connection-name 2–87	description 2–42
controller 2–90	related commands
device-name 2–98	CONFIGURATION RESET 2-43
FAILEDSET 2–100	CONFIGURATION SAVE 2–43
FAILOVER COPY=controller 2–102	INITIALIZE 2–43
mirrorset-name 2–104	syntax 2–43
MULTIBUS_FAILOVER 2–108	CONFIGURATION SAVE
NOFAILOVER 2–110	command parameters 2-44
NOMULTIBUS_FAILOVER 2-110	description 2–44
RAIDset-name 2–112	related commands
unit-number 2–115	CONFIGURATION RESET 2-45
SHOW 2-122	CONFIGURATION RESTORE 2–45
SHOW ID 2–128	INITIALIZE 2–45
SHUTDOWN controller 2–129	syntax 2–44
UNMIRROR 2–131	configuring physical devices, general
CLONE, running 2–81	commands 1–3
command line interpreter. See CLI.	connection-name, parameter for
command syntax, general attributes 1–7	ADD CONNECTIONS 2–5
COMMAND_CONSOLE_LUN, switch for SET	DELETE connections 2–50
controller 2–92	SET connection-name 2–87
concantenation set. See ADD CONCATSETS.	SHOW 2-123

Index-6 HSG60 Array Controller ACS Version 8.6 CLI Reference Guide

CONNECTIONS, parameter for SHOW 2–123	description 2–46
container initializing 2–63	parameter, container-name 2-46
container-name, parameter for	related commands
ADD	ADD UNITS 2–48
STRIPESETS 2–22	DELETE unit-number 2–48
UNITS 2–25	DESTROY PARTITION 2–48
CREATE_PARTITION 2–46	SET unit-number 2–48
DELETE container-name 2–52	SHOW 2-48
DESTROY_PARTITION 2-58	switches
INITIALIZE 2–64	geometry
LOCATE 2–69	CAPACITY 2–47
containers, naming a	CYLINDERS 2–47
disk drive 2–9	HEADS 2-47
passthrough device 2–15	SECTORS_PER_TRACK 2-47
unit 2–25	SIZE 2–47
controller	syntax 2–46
behavior at shutdown 2–130	creating
displaying information 2-122	disk drives 2–9
error handling at shutdown 2–129	mirrorsets 2–12
general command information 1–2	passthrough devices 2–15
purging old configuration information 2–42	RAIDsets 2–17
showing 2–122	single-disk units 2–31
shutting down 2–129	sparesets 2–21
controller, parameter for	stripesets 2–22
CLEAR_ERRORS controller	units 2–24
INVALID_CACHE 2–33	CYLINDERS, switch for
RESTART controller 2–78	CREATE_PARTITION 2-47
SELFTEST controller 2–83	INITIALIZE 2–64
SET controller 2–90	D
SHOW 2-123	-
SHUTDOWN controller 2–129	data-retention-policy, parameter for
CONTROLLER, parameter for ADD	CLEAR_ERRORS controller
CONNECTIONS 2–5	INVALID_CACHE 2–33
COPY, switch for	DELETE concatsets
ADD MIRRORSETS 2–13	command parameters 2–49
MIRROR 2–72	description 2–49
SET	parameter, <i>concatset-name</i> 2–49 related commands
FAILOVER COPY 2–102	
mirrorset-name 2–104	DELETE unit-number 2–49
MULTIBUS_FAILOVER 2–108	SET concatsets 2–49
CREATE_PARTITION	syntax 2–49 DELETE connections
command parameters 2–46	DELETE ConnectionS

command parameters 2-50	LOST_DATA 2–57
description 2–50	UNWRITEABLE_DATA 2–57
parameter, connection-name 2-50	DELETE
related commands	container-name 2–57
ADD CONNECTIONS 2-51	FAILEDSETS 2–57
ADD UNITS 2–51	SPARESETS 2–57
SET connection-name 2–51	DESTROY_PARTITION 2-57
SET unit-number 2–51	syntax 2–56
syntax 2–50	deleting
DELETE container-name	containers 2–52
command parameters 2-52	devices 2–50, 2–52
description 2–52	mirrorsets 2–50
parameter, container-name 2–52	RAIDsets 2–50, 2–52
related commands	storagesets 2–50, 2–52
DELETE FAILEDSET 2–53	stripesets 2–50
DELETE SPARESET 2–53	DESTROY, switch for INITIALIZE 2–65
UNMIRROR 2–53	DESTROY_PARTITION
syntax 2–52	command parameters 2–58
DELETE FAILEDSETS	description 2–58
command parameters 2–54	parameters
description 2–54	container-name 2–58
parameter, disk-name 2–54	partition-number 2–58
related commands	related commands
SET FAILEDSETS 2–54	CREATE_PARTITION 2-59
SHOW FAILEDSETS 2–54	DELETE unit-name 2–59
syntax 2–54	SHOW 2-59
DELETE SPARESETS	syntax 2–58
command parameters 2–55	DESTROY_UNFLUSHABLE_DATA, switch
description 2–55	for
parameter, disk-name 2–55	SET NOFAILOVER 2-111
related commands	SET NOMULTIBUS_FAILOVER 2-111
ADD SPARESETS 2–55	device-name, parameter for
SHOW SPARESETS 2-55	CLEAR_ERRORS device-name
syntax 2–55	UNKNOWN 2–35
DELETE unit-number	SET device-name 2–98
command parameters 2–56	SHOW 2-123
description 2–56	devices
parameters	locating 2–68
unit-number 2–56	setting data transfer rate 2–10, 2–98
related commands	showing 2–122
ADD UNITS 2–57	DEVICES, showing 2–123
CLEAR_ERRORS 2–57	device-type, parameter for SHOW 2–123
-	** : *

Index-8 HSG60 Array Controller ACS Version 8.6 CLI Reference Guide

diagnostics	DRM, CLI commands
listing of 2–60	ADD REMOTE_COPY_SETS 2–21
running 2–81	DSTAT, running 2–82
DILX, running 2–81	dual-redundant controller configuration
DIRECT, running. See also DIRECTORY. 2–82	enabling 2–102, 2–108
DIRECTORY	multibus failover mode 2–108
command parameters 2-60	transparent failover mode 2–102
description 2–60	dynamic volume expansion. See ADD
related command, RUN 2–60	CONCATSETS.
syntax 2–60	•
DISABLE_ACCESS_PATH, switch for	${f E}$
ADD UNITS 2–27	edit and recall command keys (table) 1–7
SET unit-number 2–117	EMU
disk drives	parameter for SHOW 2–123
adding to configuration 2–9	ENABLE_ACCESS_PATH, switch for
deleting 2–52	ADD UNITS 2–27
displaying information 2–122	SET unit-number 2–117
initializing 2–63	error messages
making transportable 2–99	clearing from CLI 2–32
mirroring 2–71	clearing unwriteable data errors 2–38
naming with ADD command 2–9	EXIT
removing from the	command parameters 2–61
failedset 2–54	description 2–61
spareset 2–55	syntax 2–61
renaming 2–77	F
setting device data transfer rate 2–10	-
showing 2–122	failedsets, deleting members 2–54
transfer rate 2–10	failedsets, showing 2–124
disk-name, parameter for	finding devices and storagesets 2–68
ADD	FMU, running 2–82 FRUTIL, running 2–82
DISKS 2–9	FULL, switch for SHOW 2–124
MIRRORSETS 2–12	FULL, SWICH for SHOW 2–124
RAIDSETS 2–17	G
SPARESETS 2–21	geometry switches for
DELETE FAILEDSETS 2–54	CREATE_PARTITION 2–47
DELETE SPARESETS 2–55	INITIALIZE 2–64
MIRROR 2–71	**
REDUCE 2–75	Н
UNMIRROR 2–131	HEADS, switch for
DISKS	CREATE_PARTITION 2–47
parameter for LOCATE 2-69	INITIALIZE 2–64
showing 2–123	HELP

Index-10 HSG60 Array Controller ACS Version 8.6 CLI Reference Guide

command parameters 2-71	NOCOMMAND_CONSOLE_LUN, switch for
description 2–71	SET controller 2–92
parameters	NODE_ID, switch for SET controller 2-93
disk-name 2–71	NODESTROY, switch for INITIALIZE 2-65
mirrorset-name 2–71	NODESTROY_UNFLUSHABLE_DATA,
related commands	switch for
ADD MIRRORSETS 2–73	SET NOFAILOVER 2–111
REDUCE 2–73	SET NOMULTIBUS_FAILOVER 2-111
SHOW MIRRORSETS 2-73	NOIDENTIFIER, switch for
UNMIRROR 2–73	SET controller 2–92
switches	SET unit-number 2–117
COPY 2-72	NOIGNORE_ERRORS, switch for
NOPOLICY 2–72	RESTART controller 2–78
POLICY 2–72	SELFTEST controller 2–83
syntax 2–71	SHUTDOWN controller 2–129
MIRRORED_CACHE, switch for SET controller	NOIMMEDIATE_SHUTDOWN, switch for
2–93	RESTART controller 2–79
mirrorset-name, parameter for	SELFTEST controller 2–84
ADD MIRRORSETS 2–12	SHUTDOWN controller 2–130
MIRROR 2–71	NOMIRRORED_CACHE, switch for SET con
SET mirrorset-name 2–104	troller 2–93
mirrorsets	NOPOLICY, switch for
actual number of members 2–74	ADD MIRRORSETS 2–13
adding to configuration 2–12	ADD RAIDSETS 2–18
converting back to a single device 2–131	MIRROR 2–72
creating from a single disk 2–71	SET mirrorset-name 2–105
deleting 2–52	SET RAIDset-name 2–112
displaying information 2–122	NOPREFERRED_PATH, switch for
manually removing a member 2–106	ADD UNITS 2–28
removing a member 2–74	SET unit-number 2–118
renaming 2–77	NOREAD_CACHE, switch for
showing 2–124	ADD UNITS 2–29
showing 2 121 showing stripesets 2–122	SET unit-number 2–119
unmirroring 2–131	NOREADAHEAD_CACHE, switch for
multibus failover mode. See SET	ADD UNITS 2–29
MULTIBUS_FAILOVER.	SET <i>unit-number</i> 2–119
MOLTIDOS_I AILO VER.	NOREDUCED, switch for ADD RAIDSETS
N	2–19
new-container-name, parameter for RENAME	NORUN, switch for
2–77	ADD UNITS 2–29
NOAUTOSPARE, switch for SET FAILEDSET	SET unit-number 2–120
2–100	511 mm-mmoet 2–120

NOSAVE_CONFIGURATION, switch for	ADD PASSTHROUGH
INITIALIZE 2–66	passthrough-name 2–15
NOTERMINAL_PARITY, switch for SET con-	ADD RAIDSETS
troller 2–96	disk-name 2–17
NOTRANSPORTABLE, switch for	RAIDset-name 2–17
ADD DISKS 2–10	ADD SPARESETS, disk-name 2-21
SET device-name 2–99	ADD STRIPESETS
NOUPS, switch for SET controller 2–97	container-name 2–22
NOWRITE_PROTECT, switch for	stripeset-name 2–22
ADD UNITS 2–30	ADD UNITS
SET unit-number 2–120	container-name 2–25
NOWRITEBACK_CACHE, switch for	unit-number 2–25
ADD UNITS 2–30	ALL 2-68
SET unit-number 2–120	ASSOCIATIONS 2–123
	association-set-name 2–123
0	CANCEL 2–69
old-container-name, parameter for RENAME	CLEAR_ERRORS
2–77	controller INVALID_CACHE
OPERATING_SYSTEM, switch for	controller 2–33
ADD CONNECTIONS 2–6	data-retention-policy 2–33
SET connection-name 2–87	device-name UNKNOWN, device-name
other controller	2–35
explained 1–2	unit-number LOST_DATA, unit-number
P	2–36
	unit-number UNWRITEABLE_DATA,
parameters	unit-number 2–38
ADAPTER_ID 2–5	CLEAR_ERRORS controller
ADD CONCATSETS	INVALID_CACHE
concatset-name 2–2	
	data-retention-policy 2–33
storageset-name 2–2	data-retention-policy 2–33 concatset-name 2–2, 2–49, 2–85, 2–123
ADD CONNECTIONS	concatset-name 2-2, 2-49, 2-85, 2-123
ADD CONNECTIONS ADAPTER_ID 2–5	concatset-name 2–2, 2–49, 2–85, 2–123 connection-name 2–5, 2–50, 2–87, 2–123
ADD CONNECTIONS ADAPTER_ID 2–5 connection-name 2–5	concatset-name 2–2, 2–49, 2–85, 2–123 connection-name 2–5, 2–50, 2–87, 2–123 CONNECTIONS 2–123
ADD CONNECTIONS ADAPTER_ID 2–5 connection-name 2–5 CONTROLLER 2–5	concatset-name 2–2, 2–49, 2–85, 2–123 connection-name 2–5, 2–50, 2–87, 2–123 CONNECTIONS 2–123 container-name 2–22, 2–25, 2–46, 2–52,
ADD CONNECTIONS ADAPTER_ID 2–5 connection-name 2–5 CONTROLLER 2–5 HOST_ID 2–5	concatset-name 2–2, 2–49, 2–85, 2–123 connection-name 2–5, 2–50, 2–87, 2–123 CONNECTIONS 2–123 container-name 2–22, 2–25, 2–46, 2–52, 2–58, 2–64, 2–69
ADD CONNECTIONS ADAPTER_ID 2–5 connection-name 2–5 CONTROLLER 2–5 HOST_ID 2–5 PORT 2–5	concatset-name 2–2, 2–49, 2–85, 2–123 connection-name 2–5, 2–50, 2–87, 2–123 CONNECTIONS 2–123 container-name 2–22, 2–25, 2–46, 2–52, 2–58, 2–64, 2–69 controller 2–33, 2–78, 2–83, 2–90, 2–123,
ADD CONNECTIONS ADAPTER_ID 2–5 connection-name 2–5 CONTROLLER 2–5 HOST_ID 2–5 PORT 2–5 ADD DISKS	concatset-name 2–2, 2–49, 2–85, 2–123 connection-name 2–5, 2–50, 2–87, 2–123 CONNECTIONS 2–123 container-name 2–22, 2–25, 2–46, 2–52, 2–58, 2–64, 2–69 controller 2–33, 2–78, 2–83, 2–90, 2–123, 2–129
ADD CONNECTIONS ADAPTER_ID 2–5 connection-name 2–5 CONTROLLER 2–5 HOST_ID 2–5 PORT 2–5 ADD DISKS disk-name 2–9	concatset-name 2–2, 2–49, 2–85, 2–123 connection-name 2–5, 2–50, 2–87, 2–123 CONNECTIONS 2–123 container-name 2–22, 2–25, 2–46, 2–52, 2–58, 2–64, 2–69 controller 2–33, 2–78, 2–83, 2–90, 2–123, 2–129 CONTROLLER, for ADD CONNECTIONS
ADD CONNECTIONS ADAPTER_ID 2–5 connection-name 2–5 CONTROLLER 2–5 HOST_ID 2–5 PORT 2–5 ADD DISKS disk-name 2–9 scsi-port-target-lun 2–9	concatset-name 2–2, 2–49, 2–85, 2–123 connection-name 2–5, 2–50, 2–87, 2–123 CONNECTIONS 2–123 container-name 2–22, 2–25, 2–46, 2–52, 2–58, 2–64, 2–69 controller 2–33, 2–78, 2–83, 2–90, 2–123, 2–129 CONTROLLER, for ADD CONNECTIONS 2–5
ADD CONNECTIONS ADAPTER_ID 2–5 connection-name 2–5 CONTROLLER 2–5 HOST_ID 2–5 PORT 2–5 ADD DISKS disk-name 2–9 scsi-port-target-lun 2–9 ADD MIRRORSETS	concatset-name 2–2, 2–49, 2–85, 2–123 connection-name 2–5, 2–50, 2–87, 2–123 CONNECTIONS 2–123 container-name 2–22, 2–25, 2–46, 2–52, 2–58, 2–64, 2–69 controller 2–33, 2–78, 2–83, 2–90, 2–123, 2–129 CONTROLLER, for ADD CONNECTIONS 2–5 CREATE_PARTITION, container-name
ADD CONNECTIONS ADAPTER_ID 2–5 connection-name 2–5 CONTROLLER 2–5 HOST_ID 2–5 PORT 2–5 ADD DISKS disk-name 2–9 scsi-port-target-lun 2–9 ADD MIRRORSETS disk-name 2–12	concatset-name 2–2, 2–49, 2–85, 2–123 connection-name 2–5, 2–50, 2–87, 2–123 CONNECTIONS 2–123 container-name 2–22, 2–25, 2–46, 2–52, 2–58, 2–64, 2–69 controller 2–33, 2–78, 2–83, 2–90, 2–123, 2–129 CONTROLLER, for ADD CONNECTIONS 2–5 CREATE_PARTITION, container-name 2–46
ADD CONNECTIONS ADAPTER_ID 2–5 connection-name 2–5 CONTROLLER 2–5 HOST_ID 2–5 PORT 2–5 ADD DISKS disk-name 2–9 scsi-port-target-lun 2–9 ADD MIRRORSETS	concatset-name 2–2, 2–49, 2–85, 2–123 connection-name 2–5, 2–50, 2–87, 2–123 CONNECTIONS 2–123 container-name 2–22, 2–25, 2–46, 2–52, 2–58, 2–64, 2–69 controller 2–33, 2–78, 2–83, 2–90, 2–123, 2–129 CONTROLLER, for ADD CONNECTIONS 2–5 CREATE_PARTITION, container-name

Index-12 HSG60 Array Controller ACS Version 8.6 CLI Reference Guide

concatsets, concatset-name 2–49	old-container-name 2–77
connections, connection-name 2–50	RESTART controller, controller 2–78
container-name, container-name 2–52	RETRY_ERRORS unit-number
FAILEDSETS, disk-name 2-54	UNWRITEABLE_DATA
SPARESETS, disk-name 2-55	unit-number 2–80
unit-number, unit-number 2–56	RUN program-name 2–81
DESTROY_PARTITION	scsi-port-target-lun 2–9
container-name 2–58	SELFTEST controller, controller 2–83
partition-number 2–58	SET
device-name 2-35, 2-98, 2-123	concatsets, concatset-name 2-85
device-type 2–123	connection-name, connection-name 2–87
disk-name 2-9, 2-12, 2-17, 2-21, 2-54,	controller, controller 2–90
2–55, 2–71, 2–75, 2–131	device-name, device-name 2–98
DISKS 2-69	mirrorset-name, mirrorset-name 2–104
EMU 2-123	RAIDset-name, RAIDset-name 2-112
HOST_ID 2–5	unit-number, unit-number 2–115
INITIALIZE, container-name 2-64	SHOW
LOCATE	ASSOCIATIONS 2–123
ALL 2–68	association-set-name 2-123
CANCEL 2–69	concatset-name 2–123
container-name 2–69	connection-name 2–123
DISKS 2-69	CONNECTIONS 2-123
ptl 2–69	controller 2–123
unit-number 2–69	device-name 2–123
UNITS 2-69	device-type 2–123
MIRROR	EMU 2–123
disk-name 2–71	REMOTE_COPY_SETS 2-123
mirrorset-name 2–71	remote-copy-set-name 2–123
mirrorset-name 2-12, 2-71, 2-104	storageset-name 2–124
new-container-name 2–77	storageset-type 2–124
old-container-name 2–77	unit-number 2–124
partition-number 2–58	UNITS 2-124
passthrough-name 2–15	SHUTDOWN controller, controller 2–129
PORT 2–5	storageset-name 2-2, 2-124
program-name 2–81	storageset-type 2–124
ptl (scsi-port-target-lun) 2–69	stripeset-name 2–22
<i>RAIDset-name</i> 2–17, 2–112	unit-number 2–25, 2–36, 2–38, 2–56, 2–69,
REDUCE, disk-name 2–75	2–80, 2–115, 2–124
REMOTE_COPY_SETS 2-123	UNITS 2-69, 2-124
remote-copy-set-name 2-55, 2-123	UNMIRROR, disk-name 2–131
RENAME	PARTITION, switch for ADD UNITS 2-28
new-container-name 2–77	partitioned container, initializing 2-63

partition-number, parameter for	adding to configuration 2–17
DESTROY_PARTITION 2–58	adding while missing a member 2–19
partitions	changing characteristics 2–112
creating 2–46	choosing a replacement member 2–18
displaying size 2–122	deleting 2–52
general commands 1–5	displaying information 2–122
setting size 2–47	initializing 2–63
showing 2–122	removing a member 2–113
passthrough containers	renaming 2–77
deleting 2–52	replacing a member 2–114
PASSTHROUGH containers, showing 2–123	setting a replacement policy 2-18
passthrough devices	showing 2–122, 2–124
adding to configuration 2–15	specifying chunksize 2–65
naming with ADD command 2–15	specifying replacement policy 2–112
passthrough-name, parameter for ADD	read requests
PASSTHROUGH 2–15	See also write requests.
physically connecting host adapter. See ADD	setting for improved host application
CONNECTIONS.	performance 2–29, 2–119
POLICY, switch for	setting read cache for improved performance
ADD MIRRORSETS 2–13	2–29, 2–119
ADD RAIDSETS 2–18	READ_CACHE, switch for
MIRROR 2–72	ADD UNITS 2–29
SET mirrorset-name 2–105	SET unit-number 2–119
SET RAIDset-name 2–112	READ_SOURCE, switch for
PORT, parameter for ADD CONNECTIONS 2–5	ADD MIRRORSETS 2–13
PORT_n_TOPOLOGY, switch for SET <i>control</i> -	SET mirrorset-name 2–106
ler 2–95	READAHEAD_CACHE, switch for
PREFERRED_PATH, switch for	ADD UNITS 2–29
ADD UNITS 2–28	SET unit-number 2–119
SET unit-number 2–118	recall and edit command keys (table) 1–7
program-name, parameter for RUN 2–81	RECONSTRUCT, switch for
prompt, CLI. See CLI prompt. 1–8	ADD RAIDSETS 2–19
PROMPT, switch for SET <i>controller</i> 2–96	SET RAIDset-name 2–113
ptl, parameter for LOCATE 2–69	REDUCE
purging a controller old configuration	command parameters 2–75
information 2–42	description 2–74
information 2 42	parameter, disk-name 2–75
R	related commands
RAIDset-name, parameter for	ADD MIRRORSETS 2–76
ADD RAIDSETS 2–17	MIRROR 2–76
SET RAIDset-name 2–112	RUN CLONE 2–76
RAIDsets	SET mirrorset-name 2–76
	SET IIIITOISEL-HAIRE 2-10

SHOW MIRRORSETS 2–76	RETRY_ERRORS unit-number		
syntax 2–75	UNWRITEABLE_DATA		
REDUCED, switch for ADD RAIDSETS 2–19	description 2-80		
REMOTE_COPY_SETS, parameter for SHOW	parameter, unit-number 2-80		
2–123	related command, CLEAR_ERRORS		
remote-copy-set-name, parameter for	UNWRITEABLE_DATA 2-80		
SHOW 2-123	syntax 2–80		
REMOVE, switch for	RUN		
SET mirrorset-name 2–106	command parameters 2–81		
SET RAIDset-name 2–113	description 2–81		
RENAME	parameter, program-name 2-81		
command parameters 2–77	programs		
description 2–77	CHVSN 2-81		
parameters	CLCP 2–81		
new-container-name 2–77	CLI 2–81		
old-container-name 2–77	CLONE 2–81		
syntax 2–77	CONFIG 2–81		
renaming 2–77	DILX 2–81		
REPLACE, switch for	DIRECT 2–82		
SET mirrorset-name 2–107	DSTAT 2–82		
SET RAIDset-name 2–114	FMU 2-82		
RESERVATION_STYLE, switch for	FRUTIL 2–82		
ADD CONNECTIONS 2–6	HSUTIL 2–82		
SET connection-name 2–88	VTDPY 2–82		
resetting configuration 2–40	related command, DIRECTORY 2-82		
RESTART	switch for		
physically connecting a host adapter. See also	ADD UNITS 2–29		
ADD CONNECTIONS. 2–4	SET unit-number 2–120		
RESTART controller	syntax 2–81		
command parameters 2–78	S		
description 2–78			
parameter, controller 2–78	SAVE_CONFIGURATION, switch for		
related commands	INITIALIZE 2–66		
SELFTEST controller 2–79	SCSI_VERSION, switch for SET controller 2–96		
SHUTDOWN controller 2–79	scsi-port-target-lun, parameter for		
switches	ADD DISKS 2–9		
IGNORE_ERRORS 2–78	SECTORS_PER_TRACK, switch for		
IMMEDIATE_SHUTDOWN 2–79	CREATE_PARTITION 2–47 INITIALIZE 2–64		
NOIGNORE_ERRORS 2–78			
NOIMMEDIATE_SHUTDOWN 2–79	selective presentation commands 1–4		
syntax 2–78	SELFTEST controller		
restoring a configuration 2–42	command parameters 2–83		

description 2–83 parameter, controller 2–83 related commands RESTART controller 2–84 SHUTDOWN controller 2–84 switches IGNORE_ERRORS 2–83 IMMEDIATE_SHUTDOWN 2–84 NOIGNORE_ERRORS 2–83 NOIMMEDIATE_SHUTDOWN 2–84 syntax 2–83	ALLOCATION_CLASS 2–92 CACHE_FLUSH_TIMER 2–92 COMMAND_CONSOLE_LUN 2–92 IDENTIFIER 2–92 MIRRORED_CACHE 2–93 NOCOMMAND_CONSOLE_LUN 2–92 NODE_ID 2–93 NOIDENTIFIER 2–92 NOMIRRORED_CACHE 2–93 NOTERMINAL_PARITY 2–96 NOUPS 2–97
SET concatsets	PORT_n_TOPOLOGY 2–95
command parameters 2–85	PROMPT 2–96
description 2–85	SCSI_VERSION 2–96
parameter, <i>concatset-name</i> 2–85	TERMINAL_PARITY 2–96
related commands	TERMINAL_SPEED 2–96
ADD CONCATSETS 2–86	TIME 2–96
DELETE concatsets 2–86	UPS 2-97
SHOW CONCATSETS 2–86	syntax 2–90
switch, ADD 2–85	SET device-name
syntax 2–85	command parameters 2–98
SET connection-name	description 2–98
command parameters 2–87	parameter, device-name 2-98
description 2–87	related commands
parameter, connection-name 2-87	ADD DISKS 2–99
related commands	SHOW DEVICES 2–99
ADD CONNECTIONS 2–89	SHOW DISKS 2–99
ADD UNITS 2–89	switches
DELETE connections 2–89	NOTRANSPORTABLE 2–99
RENAME 2–89	TRANSFER_RATE_REQUESTED 2–98
switches	TRANSPORTABLE 2–99
OPERATING_SYSTEM 2–87	syntax 2–98
RESERVATION_STYLE 2–88	SET FAILEDSET
UNIT_OFFSET 2–88	command parameters 2–100
syntax 2–87	description 2–100
SET controller	related commands
command parameters 2–90	DELETE FAILEDSET 2–101
description 2–90	SHOW FAILEDSET 2–101
parameter, controller 2–90	switches
related commands	AUTOSPARE 2–100
SHOW controller 2–97	NOAUTOSPARE 2–100
switches	syntax 2–100

Index-16 HSG60 Array Controller ACS Version 8.6 CLI Reference Guide

SET FAILOVER COPY=controller	DESTROY_UNFLUSHABLE_DATA		
command parameters 2–102	2–111		
description 2–102	NODESTROY_UNFLUSHABLE_DA		
related commands	A 2–111		
SET MULTIBUS_FAILOVER 2-103	syntax 2–110		
SET NOFAILOVER 2–103	SET NOMULTIBUS_FAILOVER		
SET NOMULTIBUS_FAILOVER 2–103			
switch, COPY 2-102	description 2–110		
syntax 2–102	related command, SET		
SET mirrorset-name	MULTIBUS_FAILOVER 2-111		
command parameters 2–104	switches		
description 2–104	DESTROY_UNFLUSHABLE_DATA		
parameter, mirrorset-name 2–104	2–111		
related commands	NODESTROY_UNFLUSHABLE_DAT		
ADD MIRRORSET 2–107	A 2–111		
MIRROR 2–107	syntax 2–110		
REDUCE 2–107	SET RAIDset-name		
SHOW MIRRORSET 2-107	command parameters 2–112		
UNMIRROR 2–107	description 2–112		
switches	parameter, RAIDset-name 2–112		
COPY 2-104	related commands		
MEMBERSHIP 2–105	ADD RAIDSETS 2–114		
NOPOLICY 2–105	SHOW RAIDSETS 2–114		
POLICY 2–105	switches		
READ_SOURCE 2–106	NOPOLICY 2–112		
REMOVE 2–106	POLICY 2–112		
REPLACE 2–107	RECONSTRUCT 2–113		
syntax 2–104	REMOVE 2–113		
SET MULTIBUS_FAILOVER	REPLACE 2–114		
command parameters 2–108	syntax 2–112		
description 2–108	SET unit-number		
related commands, SET	command parameters 2–115		
FAILOVER 2–109	description 2–115		
NOFAILOVER 2–109	parameter, unit-number 2-115		
NOMULTIBUS_FAILOVER 2-109	related commands		
switch, COPY 2–108	ADD UNITS 2–121		
syntax 2–108	SHOW unit-number 2–121		
SET NOFAILOVER	SHOW UNITS 2–121		
command parameters 2-110	switches		
description 2–110	DISABLE_ACCESS_PATH 2-117		
related command, SET FAILOVER 2-111	ENABLE_ACCESS_PATH 2-117		
switches	IDENTIFIER 2–117		

MAX_READ_CACHED_TRANSFER_ SIZE 2-117 MAX_WRITE_CACHED_TRANSFER_ SIZE 2-118 MAXIMUM_CACHED_TRANSFER_ SIZE 2-118 NOIDENTIFIER 2-117 NOPREFERRED_PATH 2-118 NOREAD_CACHE 2-119 NOREADAHEAD_CACHE 2-119 NORUN 2-120	blocks cached by controller 2–27, 2–117, 2–118 mirrorset members 2–105 unit partitions 2–28 number of blocks cached by controller 2–27, 2–28, 2–118 partition size 2–33, 2–47 RAIDsets member reconstruct policy 2–19, 2–113 member replacement policy 2–13, 2–18, 2–106
NOWRITE_PROTECT 2–120 NOWRITEBACK_CACHE 2–120	read cache for units 2–29, 2–119 storageset chunksize 2–65
PREFERRED_PATH 2–118	terminal parity 2–96
READ_CACHE 2–119	terminal speed 2–96
READAHEAD_CACHE 2–119	time 2–96
RUN 2–120	transportability of devices 2-99
WRITE_PROTECT 2-120	transportability of disks 2–10, 2–99
WRITEBACK_CACHE 2–120	unit availability to the host 2–29, 2–120
syntax 2–115	write-back cache for units 2-30, 2-120
setting	SHOW
CLI prompt 2–96	command parameters 2–122
control of metadata 2-65	description 2–122
controller	parameters
behavior at restart 2–79	ASSOCIATIONS 2–123
behavior selftest 2–84	association-set-name 2–123
cache UPS policy 2–97	concatset-name 2–123
configuration handling 2–66	connection-name 2–123
error handling at selftest 2–79, 2–83	CONNECTIONS 2–123
data retention policy 2–33 device data transfer rate 2–10, 2–98	controller 2–123 device-name 2–123
faildedset autospare feature 2–100	device-name 2–123 device-type 2–123
mirrorset	EMU 2–123
spareset replacement policy 2–13, 2–72	REMOTE_COPY_SETS 2–123
mirrorsets	remote-copy-set-name 2–123
copy data 2–72	storageset-name 2–124
copy speed 2–13, 2–72, 2–104	storageset-type 2–124
member read source 2–13, 2–106	unit-number 2–124
read source 2–13, 2–106	UNITS 2–124
spareset replacement policy 2-105	switch, FULL 2-124
nofailover cached data policy 2-111	syntax 2–122
number of	SHOW ID

Index-18 HSG60 Array Controller ACS Version 8.6 CLI Reference Guide

command parameters 2–128	displaying information 2–122		
description 2–128	initializing 2–63		
related command, SET UNITS IDENTIFIER	mirroring 2–71		
2–128	renaming 2–77		
syntax 2–128	showing 2–124		
SHUTDOWN controller	specifying chunksize 2–65		
command parameters 2–129	switches		
description 2–129	ADD CONNECTIONS		
parameter, controller 2–129	OPERATING_SYSTEM 2-6		
related commands	RESERVATION_STYLE 2-6		
RESTART controller 2–130	UNIT_OFFSET 2-7		
SELFTEST controller 2–130	ADD DISKS		
switches	NOTRANSPORTABLE 2–10		
IGNORE_ERRORS 2–129	TRANSFER_RATE_REQUESTED 2-10		
IMMEDIATE_SHUTDOWN 2-130	TRANSPORTABLE 2-10		
NOIGNORE_ERRORS 2-129	ADD MIRRORSETS		
NOIMMEDIATE_SHUTDOWN 2-130	COPY 2-13		
syntax 2–129	NOPOLICY 2–13		
SIZE, switch for CREATE_PARTITION 2–47	POLICY 2–13		
sparesets	READ_SOURCE 2–13		
adding to configuration 2–21	ADD RAIDSETS		
removing a disk drive 2–55	NOPOLICY 2–18		
showing 2–124	NOREDUCED 2–19		
storageset expansion. See ADD CONCATSETS.	POLICY 2–18		
2–2	RECONSTRUCT 2-19		
storageset-name, parameter for	REDUCED 2–19		
ADD CONCATSETS 2–2	ADD UNITS		
SHOW 2-124	DISABLE_ACCESS_PATH 2-27		
storagesets	ENABLE_ACCESS_PATH 2-27		
displaying information 2–122	MAX_READ_CACHED_TRANSFER_		
general commands 1–4	SIZE 2-27		
initializing 2–63	MAX_WRITE_CACHED_TRANSFER_		
locating 2–68	SIZE 2-27		
renaming 2–77	MAXIMUM_CACHED_TRANSFER_		
showing 2–122, 2–124	SIZE 2–28		
storageset-type, parameter for SHOW 2–124	NOPREFERRED_PATH 2-28		
StorageWorks array controller	NOREAD_CACHE 2–29		
stripeset-name, parameter for ADD	NOREADAHEAD_CACHE 2–29		
STRIPESETS 2–22	NORUN 2–29		
stripesets	NOWRITE_PROTECT 2-30		
adding to configuration 2–22	NOWRITEBACK_CACHE 2–30		
deleting 2–52	PARTITION 2–28		

PREFERRED_PATH 2–28	MAX_WRITE_CACHED_TRANSFER_
READ_CACHE 2–29	SIZE= 2-26, 2-118
READAHEAD_CACHE 2–29	MAXIMUM_CACHED_TRANSFER_SIZE
RUN 2–29	= 2-26, 2-118
WRITE_PROTECT 2–30	MEMBERSHIP= 2–105
WRITE_FROTECT 2=30 WRITEBACK_CACHE 2=30	MIRROR
ADD= 2-85	COPY 2–72
ALLOCATION_CLASS 2–92	NOPOLICY 2–72
AUTOSPARE 2–100	POLICY 2–72
CACHE_FLUSH_TIMER= 2–92	MIRRORED_CACHE 2–93
CAPACITY= 2–47, 2–64	NOCOMMAND_CONSOLE_LUN 2–92
CHUNKSIZE= 2–65	NODE_ID= 2–93
COMMAND_CONSOLE_LUN 2–92	NODE_ID= 2-95 NODESTROY 2-65
COPY= 2-13, 2-72, 2-104	NOIDENTIFIER 2–92, 2–117
CREATE_PARTITION	NOIGNORE_ERRORS 2–78, 2–83, 2–129
CAPACITY 2–47	NOIMMEDIATE_SHUTDOWN 2–79,
	2–84, 2–130
CYLINDERS 2–47 HEADS 2–47	NOMIRRORED_CACHE 2–93
SECTORS_PER_TRACK 2–47	NOPOLICY 2–13, 2–18, 2–72, 2–105,
SIZE 2–47	2–112 NORDEEERRED DATH 2 26 2 119
CYLINDERS= 2–47, 2–64	NOPREFERRED_PATH 2–26, 2–118
DESTROY 2–65	NOREAD_CACHE 2 26
DISABLE_ACCESS_PATH= 2-26, 2-117	NOREAD CACHE 2, 110
ENABLE_ACCESS_PATH= 2–26, 2–117	NOREAD-CACHE 2–119
FULL 2–124	NOREDUCED 2–19
HEADS= 2-47, 2-64	NORUN 2–26, 2–120
IDENTIFIER= 2–92, 2–117	NOSAVE_CONFIGURATION 2–66
IGNORE_ERRORS 2–78, 2–83, 2–129	NOTERMINAL_PARITY 2–96
IMMEDIATE_SHUTDOWN 2–79, 2–84,	NOTRANSPORTABLE 2–10, 2–99
2–130	NOUPS 2–97
INITIALIZE	NOWRITE_PROTECT 2–26, 2–120
CAPACITY 2–64	NOWRITEBACK_CACHE 2–26, 2–120
CHUNKSIZE 2–65	OPERATING_SYSTEM= 2-6, 2-87
CYLINDERS 2–64	PARTITION= 2-26
DESTROY 2–65	POLICY= 2–13, 2–18, 2–72, 2–105, 2–112
HEADS 2–64	PORT_n_TOPOLOGY= 2-95
NODESTROY 2–65	PREFERRED_PATH= 2–26, 2–118
NOSAVE_CONFIGURATION 2–66	PROMPT= 2–96
SAVE_CONFIGURATION 2–66	READ_CACHE 2–26, 2–119
SECTORS_PER_TRACK 2-64	READ_SOURCE= 2–13, 2–106 READAHEAD_CACHE 2–26, 2–119
MAX_READ_CACHED_TRANSFER_SIZ E= 2-26, 2-117	RECONSTRUCT= 2–19, 2–113
L- 2-20, 2-11/	RECONSTRUCT = 2-19, 2-113

Index-20 HSG60 Array Controller ACS Version 8.6 CLI Reference Guide

REDUCED 2–19	SET device-name		
REMOVE= 2–106, 2–113	NOTRANSPORTABLE 2–99		
REPLACE= 2–107, 2–114	TRANSFER_RATE_REQUESTED 2-9		
RESERVATION_STYLE= 2-6, 2-88	TRANSPORTABLE 2–99		
RESTART controller	SET FAILEDSET		
IGNORE_ERRORS 2–78	AUTOSPARE 2–100		
IMMEDIATE_SHUTDOWN 2-79	NOAUTOSPARE 2–100		
NOIGNORE_ERRORS 2–78	SET FAILOVER COPY, COPY 2–102		
NOIMMEDIATE_SHUTDOWN 2-79	SET mirrorset-name		
RUN 2–26, 2–120	COPY 2-104		
SAVE_CONFIGURATION 2–66	MEMBERSHIP 2–105		
SCSI_VERSION= 2-96	NOPOLICY 2-105		
SECTORS_PER_TRACK= 2-47, 2-64	POLICY 2–105		
SELFTEST controller	READ_SOURCE 2–106		
IGNORE_ERRORS 2–83	REMOVE 2–106		
IMMEDIATE_SHUTDOWN 2-84	REPLACE 2–107		
NOIGNORE_ERRORS 2-83	SET MULTIBUS_FAILOVER, COPY 2-108		
NOIMMEDIATE_SHUTDOWN 2-84	SET NOFAILOVER		
SET concatsets, ADD 2-85	DESTROY_UNFLUSHABLE_DATA		
SET connection-name	2–111		
OPERATING_SYSTEM 2-87	NODESTROY_UNFLUSHABLE_DAT		
RESERVATION_STYLE 2-88	A 2–111		
UNIT_OFFSET 2–88	SET NOMULTIBUS_FAILOVER		
SET controller	DESTROY_UNFLUSHABLE_DATA		
ALLOCATION_CLASS 2-92	2–111		
CACHE_FLUSH_TIMER 2–92	NODESTROY_UNFLUSHABLE_DAT		
COMMAND_CONSOLE_LUN 2–92	A 2–111		
IDENTIFIER 2–92	SET RAIDset-name		
MIRRORED_CACHE 2–93	NOPOLICY 2–112		
NOCOMMAND_CONSOLE_LUN 2-92	POLICY 2–112		
NODE_ID 2–93	RECONSTRUCT 2–113		
NOIDENTIFIER 2–92	REMOVE 2–113		
NOMIRRORED_CACHE 2–93	REPLACE 2–114		
NOTERMINAL_PARITY 2–96	SET unit-number		
NOUPS 2–97	DISABLE_ACCESS_PATH 2-117		
PORT_n_TOPOLOGY 2–95	ENABLE_ACCESS_PATH 2-117		
PROMPT 2–96	IDENTIFIER 2–117		
SCSI_VERSION 2–96	MAX_READ_CACHED_TRANSFER_		
TERMINAL_PARITY 2–96	SIZE 2–117		
TERMINAL_SPEED 2–96	MAX_WRITE_CACHED_TRANSFER_		
TIME 2–96	SIZE 2-118		
UPS 2-97			

MAXIMUM_CACHED_TRANSFER_	RAIDSETS 2–17
SIZE 2-118	SPARESETS 2–21
NOIDENTIFIER 2-117	STRIPESETS 2-22
NOPREFERRED_PATH 2-118	UNITS 2-24
NOREAD_CACHE 2–119	CLEAR_ERRORS
NOREADAHEAD_CACHE 2–119	CLI 2–32
NORUN 2–120	controller INVALID CACHE 2-33
NOWRITE_PROTECT 2-120	device-name UNKNOWN 2-35
NOWRITEBACK_CACHE 2–120	unit-number LOST_DATA 2-36
PREFERRED_PATH 2–118	unit-number UNWRITEABLE_DATA
READ_CACHE 2-119	2–38
READAHEAD_CACHE 2–119	CONFIGURATION
RUN 2-120	RESET 2-41
WRITE_PROTECT 2-120	RESTORE 2–43
WRITEBACK_CACHE 2-120	SAVE 2–44
SHOW, FULL 2-124	CREATE_PARTITION 2-46
SHUTDOWN controller	DELETE
IGNORE_ERRORS 2–129	concatsets 2–49
IMMEDIATE_SHUTDOWN 2–130	connections 2–50
NOIGNORE_ERRORS 2–129	container-name 2–52
NOIMMEDIATE_SHUTDOWN 2-130	FAILEDSETS 2–54
SIZE= 2-47	SPARESETS 2–55
TERMINAL_PARITY= 2-96	unit-number 2–56
TERMINAL_SPEED= 2-96	DESTROY_PARTITION 2-58
TIME=2-96	DIRECTORY 2–60
TRANSFER_RATE_REQUESTED= 2–10,	EXIT 2-61
2–16, 2–98	general command attributes 1–7
TRANSPORTABLE 2–10, 2–99	HELP 2–62
UNIT_OFFSET. (See also SET connec-	INITIALIZE 2–63
tion-name 2–88	LOCATE 2–68
UNIT_OFFSET=. See also ADD	MIRROR 2–71
CONNECTIONS. 2–7	REDUCE 2–75
UPS= 2–97	RENAME 2–77
WRITE_PROTECT 2–26, 2–120	RESTART controller 2–78
WRITEBACK_CACHE 2–26, 2–120	RETRY_ERRORS unit-number
syntax	UNWRITEABLE_DATA 2–80
ADD	RUN 2–81
CONCATSETS 2–2	SELFTEST controller 2–83
CONNECTIONS 2–4	SET
DISKS 2–9	concatsets 2–85
MIRRORSETS 2–12	connection-name 2–87
PASSTHROUGH 2–15	controller 2–90

device-name 2–98 FAILEDSET 2–100 FAILOVER COPY=controllert 2–102 mirrorset-name 2–104 MULTIBUS_FAILOVER 2–108 NOFAILOVER 2–110 NOMULTIBUS_FAILOVER 2–110 RAIDset-name 2–112 unit-number 2–115 SHOW 2–122 SHOW ID 2–128 SHUTDOWN controller 2–129 UNMIRROR 2–131 T tables recall and edit command keys 1–7 terminal setting parity 2–96 setting speed 2–96 TERMINAL_PARITY, switch for SET controller 2–96 TERMINAL_SPEED, switch for SET controller 2–96 terminating CLI program 2–61 testing controllers 2–83 this controller explained 1–2 starting diagnostic or utility programs 2–81 TIME, switch for SET controller 2–96 transfer rate, setting device 2–10, 2–98	U UNIT_OFFSET, switch for ADD CONNECTIONS 2–7 SET connection-name 2–88 unit-number, parameter for ADD UNITS 2–25 CLEAR_ERRORS unit-number LOST_DATA 2–36 unit-number UNWRITEABLE_DATA 2–38 DELETE unit-number 2–56 LOCATE 2–69 RETRY_ERRORS unit-number UNWRITEABLE_DATA 2–80 SET unit-number 2–115 SHOW 2–124 units adding to configuration 2–24 changing characteristics 2–115 clearing lost data error 2–36 deleting from the configuration 2–56 displaying configured units 2–124 displaying information 2–122 mirroring 2–71 naming with ADD command 2–25 showing 2–122 UNITS, parameter for LOCATE 2–69 SHOW 2–124 UNMIRROR
this controller explained 1–2 starting diagnostic or utility programs 2–81 TIME, switch for SET <i>controller</i> 2–96	UNITS, parameter for LOCATE 2–69 SHOW 2–124

Index-23

utilities	\mathbf{v}
listing of 2–60	VTDPY, running 2–82
programs CHVSN 2–81 CLCP 2–81	W write requests
CLI 2–81 CLONE 2–81	improving the subsystem response time with write-back caching 2–120
CONFIG 2–81 DILX 2–81	placing data with write-through caching 2–30, 2–121
DIRECT 2–82 DSTAT 2–82	See also read requests. WRITE_PROTECT, switch for
FMU 2–82 FRUTIL 2–82	ADD UNITS 2–30 SET <i>unit-number</i> 2–120
HSUTIL 2–82 VTDPY 2–82	write-back caching, setting the flush timer 2–92 WRITEBACK_CACHE, switch for
running 2–81	ADD UNITS 2–30 SET <i>unit-number</i> 2–120