hp StorageWorks

HSG80 ACS Solution Software Version 8.7 for HP-UX Installation and Configuration Guide

Part Number: AA-RFBEJ-TE

Ninth Edition (August 2002)

Product Version: 8.7

This guide provides installation and configuration instructions and reference material for operation of the HSG80 ACS Solution Software Version 8.7 for HP-UX.

© Hewlett-Packard Company, 2002. All rights reserved.

Hewlett-Packard Company makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

This document contains proprietary information, which is protected by copyright. No part of this document may be photocopied, reproduced, or translated into another language without the prior written consent of Hewlett-Packard. The information contained in this document is subject to change without notice.

Microsoft, MS-DOS, Windows, and Windows NT are trademarks of Microsoft Corporation in the U.S. and/or other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Hewlett-Packard Company shall not be liable for technical or editorial errors or omissions contained herein. The information is provided "as is" without warranty of any kind and is subject to change without notice. The warranties for Hewlett-Packard Company products are set forth in the express limited warranty statements accompanying such products. Nothing herein should be construed as constituting an additional warranty.

Printed in the U.S.A.

HSG80 ACS Solution Software Version 8.7 for HP-UX Installation and Configuration Guide

Ninth Edition (August 2002)

Part Number: AA-RFBEJ-TE

1

Contents

About this Guide

Intended Audience
Related Documentationxi
Document Conventions
Configuration Flowchartxiv
Symbols in Text
Symbols on Equipmentxix
Rack Stability
Getting Help xxii
Technical Support xxii
Storage Website xxii
Authorized Reseller xxii

1 Planning a Subsystem

Defining Subsystems
Controller Designations A and B 1–2
Controller Designations "This Controller" and "Other Controller" 1–3
What is Failover Mode? 1–5
Transparent Failover Mode 1–5
Multiple-Bus Failover Mode 1–7
Selecting a Cache Mode
Read Caching 1–10
Read-Ahead Caching 1–10
Write-Back Caching 1–10
Write-Through Caching 1–10
Enabling Mirrored Caching 1–10
What is the Command Console LUN? 1–11
Determining the Address of the CCL 1–12
Enabling/Disabling the CCL in SCSI-2 Mode 1–12
Enabling the CCL 1–12
Disabling the CCL 1–12
Enabling/Disabling CCL in SCSI-3 Mode 1–12

Determining Connections
Naming Connections 1–13
Numbers of Connections 1–13
Assigning Unit Numbers 1–16
Matching Units to Host Connections in Transparent Failover Mode 1–17
Matching Units to Host Connections in Multiple-Bus Failover Mode 1–19
Assigning Unit Numbers Depending on SCSI_VERSION 1–19
Assigning Host Connection Offsets and Unit Numbers in SCSI-3 Mode 1–20
Assigning Host Connection Offsets and Unit Numbers in SCSI-2 Mode 1–20
What is Selective Storage Presentation?
Restricting Host Access in Transparent Failover Mode
Restricting Host Access by Separate Links
Restricting Host Access by Disabling Access Paths
Restricting Host Access by Offsets 1–23
Restricting Host Access in Multiple-Bus Failover Mode
Enable the Access Path of Selected Host Connections
Restricting Host Access by Offsets 1–26
Worldwide Names (Node IDs and Port IDs) 1–27
Restoring Worldwide Names (Node IDs) 1–28
Unit Worldwide Names (LUN IDs)

2 Planning Storage Configurations

Where to Start	
Determining Storage Requirements	
Configuration Rules for the Controller	
Addressing Conventions for Device PTL	
Examples - Model 2200 Storage Maps, PTL Addressing	
Choosing a Container Type	
Creating a Storageset Profile	
Planning Considerations for Storageset	
Stripeset Planning Considerations	
Mirrorset Planning Considerations	
Keep these points in mind when planning mirrorsets	
RAIDset Planning Considerations	
Keep these points in mind when planning RAIDsets	
Striped Mirrorset Planning Considerations	
Storageset Expansion Considerations	
Partition Planning Considerations	

77
27
27
27
28
28
28
28
29
29
29
30
30
32
32
32
33
33
33
34
35

3 Preparing the Host System

Installing RAID Array Storage System	3–1
Making a Physical Connection.	3–6
Preparing to Install Host Bus Adapter	3–6
Host Bus Adapter and Driver	3–7
Installing Host Bus Adapter	3–7
Connecting to Your Host System	3–8
Configuring a High Availability Cluster Using MC/ServiceGuard	3–9
Configuring HP-UX File System	3–10
Enable Volume Set Addressing for HP Host Mode	3–10
Solution Software Upgrade Procedures	3–16
Preparing Storage RAID Array	3–16
Preparing HP-UX System	3–17
Rolling Upgrades	3–17
Preparing Storage RAID Array	3–18
Preparing HP-UX System	3–19
Rolling Ungrades	0 10
Konnig Opgrades	

4	Installing and Configuring HSG Agent
	Why Use StorageWorks Command Console (SWCC)?
	Installation and Configuration Overview
	About the Network Connection for the Agent 4–3
	Before Installing the Agent
	Installing and Configuring the Agent 4–5
	Checking Disk Space
	/tmp
	/opt/steam (or install dir)
	/var/adm/syslog
	Preparing for the Install
	Installing the Agent
	Steps for entering data
	GUI Console Display Install Warning
	Character-based (CLI) Install Procedure
	Verify Entries
	Configure CCL 4–12
	Configure Email Notification 4–12
	Restart the Agent
	Installing and Configuring the Agent with MC/ServiceGuard
	Restarting the Agent
	Running the Agent
	Configuring the Agent for an Alternate Path 4–18
	Removing the Agent
_	
5	FC Configuration Procedures
	Establishing a Local Connection
	Setting Up a Single Controller 5–3
	Power On and Establish Communication 5–3
	Cabling a Single Controller 5–3
	Configuring a Single Controller Using CLI
	Verify the Node ID and Check for Any Previous Connections
	Configure Controller Settings
	Restart the Controller
	Set Time and Verify all Commands

Setting Up a Controller Pair	5-10
Power Up and Establish Communication	5-10
Cabling a Controller Pair	5-10
Configuring a Controller Pair Using CLI	5-11
Configure Controller Settings	5-12
Restart the Controller	5-13
Set Time and Verify All Commands.	5-13
Plug in the FC Cable and Verify Connections	5-16
Repeat Procedure for Each Host Adapter Connection	5-16
Verify Installation	5-17
Configuring Devices	5-17
Configuring Storage Containers.	5-17
Configuring a Stripeset	5-18
Configuring a Mirrorset.	5-19
Configuring a RAIDset	5-20
Configuring a Striped Mirrorset	5-20
Configuring a Single-Disk Unit (JBOD)	5-21
Configuring a Partition	5-21
Assigning Unit Numbers and Unit Qualifiers	5–23
Assigning a Unit Number to a Storageset	5–23
Assigning a Unit Number to a Single (JBOD) Disk	5–23
Assigning a Unit Number to a Partition	5–23
Preferring Units	5–24
Configuration Options	5–24
Changing the CLI Prompt	5–24
Mirroring cache	5-24
Adding Disk Drives	5-24
Adding a Disk Drive to the Spareset	5-25
Removing a Disk Drive from the Spareset	5–25
Enabling Autospare	5–26
Deleting a Storageset	5–26
Changing Switches for a Storageset or Device	5–26
Displaying the Current Switches.	5-27
Changing RAIDset and Mirrorset Switches	5-27
Changing Device Switches	5-27
Changing Initialize Switches	5-27
Changing Unit Switches	5–27
Verifying Storage Configuration from Host	5–28

Using CLI for Configuration CLI Configuration Example	6–4
Backing Up, Cloning, and Moving Data Backing Up Subsystem Configurations Creating Clones for Backup Moving Storagesets	7–1 7–2 7–5
Subsystem Profile TemplatesStorageset Profile .Storage Map Template 1 for the BA370 Enclosure .Storage Map Template 2 for the second BA370 Enclosure .Storage Map Template 3 for the third BA370 Enclosure .Storage Map Template 4 for the Model 4214R Disk Enclosure .Storage Map Template 5 for the Model 4254 Disk Enclosure .Storage Map Template 6 for the Model 4310R Disk Enclosure .Storage Map Template 7 for the Model 4350R Disk Enclosure .Storage Map Template 8 for the Model 4314R Disk Enclosure .Storage Map Template 9 for the Model 4354R Disk Enclosure .	. A-2 . A-4 . A-5 . A-6 . A-7 . A-9 A-11 A-14 A-16 A-19
Installing, Configuring, and Removing the Client Why Install the Client? Before You Install the Client Installing the Client. Installing the Integration Patch. Should I Install the Integration Patch? How to Install the Integration Patch. Integrating Controller's SWCC Storage Window with CIM. Insight Manager Unable to Find Controller's Storage Window Removing the Integration Patch Will Corrupt Storage Window Troubleshooting Client Installation Invalid Network Port Assignments During Installation. "There is no disk in the drive" Message Adding Storage Subsystem and its Host to Navigation Tree Removing Command Console Client. Where to Find Additional Information. About the User Guide. About the User Guide.	 B-2 B-4 B-5 B-5 B-5 B-6 B-7 B-7 B-8 B-8 B-8 B-9 B-10 B-12 B-13 B-13 B-12
	Using CLI for Configuration CLI Configuration Example. Backing Up, Cloning, and Moving Data Backing Up Subsystem Configurations Creating Clones for Backup Moving Storagesets Subsystem Profile Templates Storage Map Template 1 for the BA370 Enclosure Storage Map Template 2 for the second BA370 Enclosure Storage Map Template 3 for the third BA370 Enclosure Storage Map Template 3 for the third BA370 Enclosure Storage Map Template 5 for the Model 4214R Disk Enclosure Storage Map Template 5 for the Model 4254 Disk Enclosure Storage Map Template 5 for the Model 4350R Disk Enclosure Storage Map Template 7 for the Model 4350R Disk Enclosure Storage Map Template 7 for the Model 4350R Disk Enclosure Storage Map Template 8 for the Model 4354R Disk Enclosure Storage Map Template 9 for the Model 4354R Disk Enclosure Storage Map Template 9 for the Model 4354R Disk Enclosure Storage Map Template 9 for the Model 4354R Disk Enclosure Storage Map Template 9 for the Model 4354R Disk Enclosure Storage Map Template 9 for the Model 4354R Disk Enclosure Storage Map Template 9 for the Model 4354R Disk Enclosure Storage Map Template 9 for the Model 4354R Disk Enclosure Storage Map Template 9 for the Model 4354R Disk Enclosure Storage Map Template 9 for the Model 4354R Disk Enclosure Storage Map Template 9 for the Model 4354R Disk Enclosure Storage You Install the Client . Installing the Client . Installing the Integration Patch. Integring Controller's SWCC Storage Window with CIM. Insight Manager Unable to Find Controller's Storage Window Removing the Integration Patch Will Corrupt Storage Window Removing the Integration Patch Will Corrupt Storage Window Removing Client Installation Invalid Network Port Assignments During Installation. "There is no disk in the drive" Message Adding Storage Subsystem and its Host to Navigation Tree Removing Command Console Client. Where to Find Additional Information. About the Online Help.

Figures

1 General configuration flowchart (panel 1) xxx 2 General configuring storage with SWCC xxi 1-1 Location of controllers and cache modules in a Model 2200 enclosure. 1-2 1-2 Location of controllers and cache modules in a BA370 enclosure. 1-3 1-3 "This controller" and "other controller" for the Model 2200 enclosure. 1-4 1-4 "This controller" and "other controller" for the BA370 enclosure. 1-4 1-5 Transparent failover—normal operation. 1-6 1-6 Transparent failover—after failover from controller B to controller A 1-7 1-7 Typical multiple-bus configuration. 1-19 1-8 Mirrored caching. 1-11 1-9 Connections in separate-link, transparent failover mode configurations 1-14 10 Connections in single-link, transparent failover mode configurations 1-15 1-11 Connections in multiple-bus failover mode 1-25 1-12 LUN presentation to hosts, as determined by offset. 1-18 1-13 Limiting host access in mansparent failover mode 1-25 1-14 Limiting host access in multiple-bus failover mode 1-25 1-15	1	
2 General configuration flowchart (panel 2) xxi 3 Configuring storage with SWCC xxii 1 Location of controllers and cache modules in a Model 2200 enclosure 1–2 1–2 Location of controllers and cache modules in a BA370 enclosure 1–3 1–3 "This controller" and "other controller" for the Model 2200 enclosure 1–4 1–4 "This controller" and "other controller" for the BA370 enclosure 1–4 1–5 Transparent failover—normal operation 1–6 1–6 Transparent failover—after failover from controller B to controller A 1–7 1–9 Mirrored caching 1–11 1–9 Connections in single-link, transparent failover mode configurations 1–14 1–10 Connections in multiple-bus failover mode 1–15 1–11 Connections in multiple-bus failover mode 1–16 1–12 LUN presentation to hosts, as determined by offset 1–18 1–13 Limiting host access in transparent failover mode 1–25 1–14 Limiting host access in multiple-bus failover mode 1–26 1–14 Limiting host access in multiple-bus failover mode 1–25 1–15 Placement of th	1	General configuration flowchart (panel 1) xx
3 Configuring storage with SWCC xxii 1-1 Location of controllers and cache modules in a Model 2200 enclosure. 1-2 1-2 Location of controller' and 'other controller'' for the Model 2200 enclosure. 1-4 1-3 "This controller' and 'other controller'' for the BA370 enclosure. 1-4 1-4 "This controller" and 'other controller'' for the BA370 enclosure. 1-4 1-5 Transparent failover—normal operation. 1-6 1-6 Transparent failover—normal operation. 1-6 1-7 Typical multiple-bus configuration. 1-9 8 Mirrored caching. 1-11 9 Connections in separate-link, transparent failover mode configurations 1-14 1-10 Connections in single-link, transparent failover mode configurations 1-14 1-10 Connections in single-link, transparent failover mode 1-25 1-11 Connections in multiple-bus failover mode 1-22 1-12 LUN presentation to hosts, as determined by offset. 1-18 1-13 Limiting host access in multiple-bus failover mode 1-25 1-14 Limiting host access in multiple-bus failover mode 1-25 1-15 <td< td=""><td>2</td><td>General configuration flowchart (panel 2)</td></td<>	2	General configuration flowchart (panel 2)
1-1 Location of controllers and cache modules in a Model 2200 enclosure. 1-2 1-2 Location of controllers and cache modules in a BA370 enclosure. 1-3 ''This controller' and 'other controller' for the Model 2200 enclosure. 1-4 ''This controller' and 'other controller' for the BA370 enclosure. 1-4 1-5 Transparent failover—oremal operation. 1-6 1-6 Transparent failover—after failover from controller B to controller A 1-7 1-7 Typical multiple-bus configuration. 1-9 0 Connections in separate-link, transparent failover mode configurations 1-14 1-10 Connections in separate-link, transparent failover mode configurations 1-14 1-10 Connections in sugle-link, transparent failover mode configurations 1-15 1-11 Connections in multiple-bus failover mode 1-16 1-12 LUN presentation to hosts, as determined by offset 1-18 1-13 Limiting host access in multiple-bus failover mode 1-25 1-14 Limiting host access in multiple-bus failover mode 1-22 1-14 Limiting host access in multiple-bus failover mode 1-25 1-15 Placement of the worldwide name label on the Model 2200 enclosure </td <td>3</td> <td>Configuring storage with SWCC xxii</td>	3	Configuring storage with SWCC xxii
1-2 Location of controllers and cache modules in a BA370 enclosure. 1-3 "This controller" and "other controller" for the Model 2200 enclosure 1-4 "Transparent failover—after failover from controller B to controller A 1-6 Transparent failover—after failover from controller B to controller A 1-7 Typical multiple-bus configuration. 1-9 1-8 Mirrored caching 1-11 1-9 Connections in single-link, transparent failover mode configurations 1-14 1-10 Connections in multiple-bus failover mode 1-15 1-11 Connections in multiple-bus failover mode 1-16 1-12 LUN presentation to hosts, as determined by offset 1-18 1-13 Limiting host access in multiple-bus failover mode 1-22 1-14 Limiting host access in multiple-bus failover mode 1-22 1-14 Limiting host access in multiple-bus failover mode 1-22 1-14 Limiting nost access in multiple-bus failover mode 1-22 1-14 Limiting nost access in multiple-bus failover mode 1-22 1-14 Limiting nost access in multiple-bus failover mode 1-29 2-1 Mapping a unit to physical disk drives 2-4	1-1	Location of controllers and cache modules in a Model 2200 enclosure $1-2$
1-3 "This controller" and "other controller" for the Model 2200 enclosure 1-4 1-4 "This controller" and "other controller" for the BA370 enclosure 1-4 1-5 Transparent failover—normal operation 1-6 1-6 Transparent failover—after failover from controller B to controller A 1-7 7 Typical multiple-bus configuration 1-9 1-8 Mirrored caching 1-11 1-9 Connections in separate-link, transparent failover mode configurations 1-14 1-10 Connections in single-link, transparent failover mode configurations 1-15 1-11 Connections in multiple-bus failover mode 1-16 1-12 LUN presentation to hosts, as determined by offset 1-18 1-13 Limiting host access in transparent failover mode 1-22 1-14 Limiting host access in multiple-bus failover mode 1-22 1-14 Limiting host access in multiple-bus failover mode 1-22 1-14 Limiting host access in multiple-bus failover mode 1-22 1-14 Placement of the worldwide name label on the Model 2200 enclosure 1-28 1-15 Placement of the worldwide name label on the BA370 enclosure configuration 2-6	1–2	Location of controllers and cache modules in a BA370 enclosure 1–3
1-4 "This controller" and "other controller" for the BA370 enclosure 1–4 1-5 Transparent failover—normal operation 1–6 1-6 Transparent failover—after failover from controller B to controller A 1–7 1-7 Typical multiple-bus configuration 1–9 1-8 Mirrored caching 1–11 1-9 Connections in separate-link, transparent failover mode configurations 1–14 1-10 Connections in single-link, transparent failover mode configurations 1–15 1-11 Connections in multiple-bus failover mode 1–16 1-12 LUN presentation to hosts, as determined by offset 1–18 1-13 Limiting host access in transparent failover mode 1–22 1-14 Limiting host access in multiple-bus failover mode 1–25 1-14 Limiting host access in multiple-bus failover mode 1–22 1-14 Limiting host access in multiple-bus failover mode 1–25 1-15 Placement of the worldwide name label on the Model 2200 enclosure 1–29 2-1 Mapping a unit to physical disk drives 2–4 2-2 PTL naming convention 2–5 3- How data is laid out on disks in BA370 enclosure confi	1–3	"This controller" and "other controller" for the Model 2200 enclosure 1–4
1-5Transparent failover—normal operation.1-61-6Transparent failover—after failover from controller B to controller A1-71-7Typical multiple-bus configuration.1-91-8Mirrored caching.1-111-9Connections in separate-link, transparent failover mode configurations1-141-10Connections in single-link, transparent failover mode configurations1-151-11Connections in multiple-bus failover mode1-161-12LUN presentation to hosts, as determined by offset.1-181-13Limiting host access in transparent failover mode1-221-14Limiting host access in multiple-bus failover mode1-251-15Placement of the worldwide name label on the Model 2200 enclosure1-292-1Mapping a unit to physical disk drives2-42-2PTL naming convention2-52-3How data is laid out on disks in BA370 enclosure configuration2-62-4Storage container types2-142-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-212-95-member RAIDset using parity2-232-10Striped mirrorset (example 1)2-252-12One example 0f a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-43-2Single-	1–4	"This controller" and "other controller" for the BA370 enclosure 1–4
1-6 Transparent failover—after failover from controller B to controller A 1-7 Typical multiple-bus configuration	1–5	Transparent failover—normal operation
1-7Typical multiple-bus configuration.1-91-8Mirrored caching.1-111-9Connections in separate-link, transparent failover mode configurations1-141-10Connections in single-link, transparent failover mode configurations1-151-11Connections in multiple-bus failover mode1-161-12LUN presentation to hosts, as determined by offset.1-181-13Limiting host access in transparent failover mode1-221-14Limiting host access in multiple-bus failover mode1-251-15Placement of the worldwide name label on the Model 2200 enclosure1-281-16Placement of the worldwide name label on the BA370 enclosure1-292-1Mapping a unit to physical disk drives2-42-2PTL naming convention2-52-3How data is laid out on disks in BA370 enclosure configuration.2-62-4Storage container types2-142-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-212-7Mirrorset samintain two copies of the same data2-212-8Mirrorset (example 2)2-252-10Striped mirrorset (example 2)2-252-11Striped mirrorset (example 2)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID	1–6	Transparent failover—after failover from controller B to controller A 1–7
1-8Mirrored caching.1-111-9Connections in separate-link, transparent failover mode configurations1-141-10Connections in single-link, transparent failover mode configurations1-151-11Connections in multiple-bus failover mode1-161-12LUN presentation to hosts, as determined by offset1-181-13Limiting host access in transparent failover mode1-221-14Limiting host access in multiple-bus failover mode1-251-15Placement of the worldwide name label on the Model 2200 enclosure1-281-16Placement of the worldwide name label on the BA370 enclosure1-292-1Mapping a unit to physical disk drives2-42-2PTL naming convention2-52-3How data is laid out on disks in BA370 enclosure configuration.2-62-4Storage container types2-142-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-212-95-member RAID 0 stripeset (example 2)2-212-92-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 2)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RA	1–7	Typical multiple-bus configuration
1-9Connections in separate-link, transparent failover mode configurations1-141-10Connections in single-link, transparent failover mode configurations1-151-11Connections in multiple-bus failover mode1-161-12LUN presentation to hosts, as determined by offset1-181-13Limiting host access in transparent failover mode1-221-14Limiting host access in multiple-bus failover mode1-221-14Limiting host access in multiple-bus failover mode1-251-15Placement of the worldwide name label on the Model 2200 enclosure1-281-16Placement of the worldwide name label on the BA370 enclosure1-292-1Mapping a unit to physical disk drives2-42-2PTL naming convention2-52-3How data is laid out on disks in BA370 enclosure configuration2-62-4Storage container types2-142-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-192-7Mirrorset smaintain two copies of the same data2-212-8Mirrorset example 22-252-10Striped mirrorset (example 1)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-44-2RAID Array V8.7 Configuration Menu4-7 <t< td=""><td>1–8</td><td>Mirrored caching</td></t<>	1–8	Mirrored caching
1-10Connections in single-link, transparent failover mode configurations1-151-11Connections in multiple-bus failover mode1-161-12LUN presentation to hosts, as determined by offset1-181-13Limiting host access in transparent failover mode1-221-14Limiting host access in multiple-bus failover mode1-251-15Placement of the worldwide name label on the Model 2200 enclosure1-281-16Placement of the worldwide name label on the BA370 enclosure1-292-1Mapping a unit to physical disk drives2-42-2PTL naming convention2-52-3How data is laid out on disks in BA370 enclosure configuration2-62-4Storage container types2-142-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-192-7Mirrorset smaintain two copies of the same data2-212-8Mirrorset example 22-232-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 2)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-14Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-42RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection4-4 </td <td>1–9</td> <td>Connections in separate-link, transparent failover mode configurations 1-14</td>	1–9	Connections in separate-link, transparent failover mode configurations 1-14
1-11Connections in multiple-bus failover mode1-161-12LUN presentation to hosts, as determined by offset1-181-13Limiting host access in transparent failover mode1-221-14Limiting host access in multiple-bus failover mode1-251-15Placement of the worldwide name label on the Model 2200 enclosure1-281-16Placement of the worldwide name label on the BA370 enclosure1-292-1Mapping a unit to physical disk drives2-42-2PTL naming convention2-52-3How data is laid out on disks in BA370 enclosure configuration2-62-4Storage container types2-142-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-192-7Mirrorsets maintain two copies of the same data2-212-8Mirrorset example 22-232-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 1)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	1–10	Connections in single-link, transparent failover mode configurations 1–15
1-12LUN presentation to hosts, as determined by offset1-181-13Limiting host access in transparent failover mode1-221-14Limiting host access in multiple-bus failover mode1-251-15Placement of the worldwide name label on the Model 2200 enclosure1-281-16Placement of the worldwide name label on the BA370 enclosure1-292-1Mapping a unit to physical disk drives2-42-2PTL naming convention2-52-3How data is laid out on disks in BA370 enclosure configuration2-62-4Storage container types2-142-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-192-7Mirrorsets maintain two copies of the same data2-212-8Mirrorset example 22-252-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 1)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	1–11	Connections in multiple-bus failover mode 1–16
1-13Limiting host access in transparent failover mode1-221-14Limiting host access in multiple-bus failover mode1-251-15Placement of the worldwide name label on the Model 2200 enclosure1-281-16Placement of the worldwide name label on the BA370 enclosure1-292-1Mapping a unit to physical disk drives2-42-2PTL naming convention2-52-3How data is laid out on disks in BA370 enclosure configuration2-62-4Storage container types2-142-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-192-7Mirrorsets maintain two copies of the same data2-212-8Mirrorset example 22-232-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 1)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	1–12	LUN presentation to hosts, as determined by offset 1–18
1-14Limiting host access in multiple-bus failover mode1-251-15Placement of the worldwide name label on the Model 2200 enclosure1-281-16Placement of the worldwide name label on the BA370 enclosure1-292-1Mapping a unit to physical disk drives2-42-2PTL naming convention2-52-3How data is laid out on disks in BA370 enclosure configuration2-62-4Storage container types2-142-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-192-7Mirrorsets maintain two copies of the same data2-212-8Mirrorset example 22-232-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 1)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection4-4	1–13	Limiting host access in transparent failover mode 1–22
1-15Placement of the worldwide name label on the Model 2200 enclosure1-281-16Placement of the worldwide name label on the BA370 enclosure1-292-1Mapping a unit to physical disk drives2-42-2PTL naming convention2-52-3How data is laid out on disks in BA370 enclosure configuration2-62-4Storage container types2-142-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-192-7Mirrorsets maintain two copies of the same data2-212-8Mirrorset example 22-212-95-member RAIDset using parity2-232-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 2)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	1–14	Limiting host access in multiple-bus failover mode 1–25
1-16Placement of the worldwide name label on the BA370 enclosure1-292-1Mapping a unit to physical disk drives2-42-2PTL naming convention2-52-3How data is laid out on disks in BA370 enclosure configuration2-62-4Storage container types2-142-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-192-7Mirrorsets maintain two copies of the same data2-212-8Mirrorset example 22-212-95-member RAIDset using parity2-232-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 2)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	1–15	Placement of the worldwide name label on the Model 2200 enclosure 1–28
2-1Mapping a unit to physical disk drives2-42-2PTL naming convention2-52-3How data is laid out on disks in BA370 enclosure configuration2-62-4Storage container types2-142-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-192-7Mirrorsets maintain two copies of the same data2-212-8Mirrorset example 22-212-95-member RAIDset using parity2-232-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 2)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	1–16	Placement of the worldwide name label on the BA370 enclosure 1–29
2-2PTL naming convention2-52-3How data is laid out on disks in BA370 enclosure configuration2-62-4Storage container types2-142-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-192-7Mirrorsets maintain two copies of the same data2-212-8Mirrorset example 22-212-95-member RAIDset using parity2-232-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 2)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	2-1	Mapping a unit to physical disk drives
2-3How data is laid out on disks in BA370 enclosure configuration.2-62-4Storage container types.2-142-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-192-7Mirrorsets maintain two copies of the same data2-212-8Mirrorset example 22-212-95-member RAIDset using parity.2-232-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 2)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	2-2	PTL naming convention 2–5
2-4Storage container types2-142-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-192-7Mirrorsets maintain two copies of the same data2-212-8Mirrorset example 22-212-95-member RAIDset using parity2-232-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 2)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	2–3	How data is laid out on disks in BA370 enclosure configuration
2-53-member RAID 0 stripeset (example 1)2-182-63-member RAID 0 stripeset (example 2)2-192-7Mirrorsets maintain two copies of the same data2-212-8Mirrorset example 22-212-95-member RAIDset using parity2-232-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 2)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-7Maintenance port connection5-2	2–4	Storage container types 2–14
2-63-member RAID 0 stripeset (example 2)2-192-7Mirrorsets maintain two copies of the same data2-212-8Mirrorset example 22-212-95-member RAIDset using parity2-232-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 2)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	2–5	3-member RAID 0 stripeset (example 1) 2–18
2-7Mirrorsets maintain two copies of the same data2-212-8Mirrorset example 22-212-95-member RAIDset using parity2-232-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 2)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	2–6	3-member RAID 0 stripeset (example 2) 2–19
2-8Mirrorset example 22-212-95-member RAIDset using parity2-232-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 2)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	2–7	Mirrorsets maintain two copies of the same data
2-95-member RAIDset using parity.2-232-10Striped mirrorset (example 1).2-252-11Striped mirrorset (example 2).2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	2-8	Mirrorset example 2
2-10Striped mirrorset (example 1)2-252-11Striped mirrorset (example 2)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	2–9	5-member RAIDset using parity
2-11Striped mirrorset (example 2)2-252-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	2-10	Striped mirrorset (example 1)
2-12One example of a partitioned single-disk unit2-262-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	2-11	Striped mirrorset (example 2)
2-13Large chunk size increases request rate2-313-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	2-12	One example of a partitioned single-disk unit
3-1Dual-Bus Enterprise Storage RAID Array Storage System3-43-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	2-13	Large chunk size increases request rate
3-2Single-Bus Enterprise Storage RAID Array Storage System3-54-1An example of a network connection4-44-2RAID Array V8.7 Configuration Menu4-75-1Maintenance port connection5-2	3-1	Dual-Bus Enterprise Storage RAID Array Storage System
4-1An example of a network connection	3–2	Single-Bus Enterprise Storage RAID Array Storage System
 4–2 RAID Array V8.7 Configuration Menu	4–1	An example of a network connection
5–1 Maintenance port connection	4–2	RAID Array V8.7 Configuration Menu 4–7
	5-1	Maintenance port connection

5-2	Single controller cabling
5–3	Controller pair failover cabling
5–4	Storage container types
6–1	Example storage map for the BA370 Enclosure
6–2	Example, three non-clustered host systems
6–3	Example, logical or virtual disks comprised of storagesets
6–4	Example, virtual system layout from hosts' point of view
7–1	CLONE utility steps for duplicating unit members
B-1	Navigation Window B-10
В-2	Navigation window showing storage host system "Atlanta" B-11
В-3	Navigation window showing expanded "Atlanta" host icon B-11

Tables

1	Document Conventions xvii
2	Summary of Chapter Contents xviii
1–1	Unit Assignments and SCSI_VERSION
2-1	PTL addressing, single-bus configuration, six Model 4310R enclosures 2-8
2-2	PTL addressing, dual-bus configuration, three Model 4350R enclosures 2-10
2–3	PTL addressing, single-bus configuration, six Model 4314R enclosures 2–11
2–4	PTL addressing, dual-bus configuration, three Model 4354A enclosures 2-13
2–5	Comparison of Container Types 2–15
2–6	Example of Storageset Profile
2–7	Example Chunk Sizes
2-8	Model 4310R disk enclosure, example of storage map 2–35
3-1	StorageWorks Solution Software Packages
4–1	SWCC Features and Components
4–2	Installation and Configuration Overview
5-1	Case 1: Active-Passive (Describes the controller pair)
5–2	Case 2: Active-Active (Describes the controller pair)
5–3	Example of Active-Passive with a Single Controller

About this Guide

This guide describes how to install and configure the HSG80 ACS Solution Software Version 8.7 for HP-UX.

This guide describes:

- How to plan the storage array subsystem; and,
- How to install and configure the storage array subsystem on individual operating system platforms.

This book does not contain information about the operating environments to which the controller may be connected; nor does it contain detailed information about subsystem enclosures or their components. See the documentation that accompanied these peripherals for information about them.

Intended Audience

This book is intended for use by system administrators and system technicians who have a basic experience with storage and networking.

Related Documentation

In addition to this guide, corresponding information can be found in:

- ACS v8.7 controller documentation (software delivered via PCMCIA cards)
- HSG80 CLI Reference Guide, EK-G80CL-RA.B01
- HSG80 Maintenance and Service Guide, EK-G80MS-SA.B01
- HSG80 Troubleshooting and Reference Guide, EK-G80TR-SA.B01
- SWCC v2.5 documentation (client software delivered in solutions kits)
- Command Console User Guide, AA-RFA2J-TE
- Command Console Release Notes, AV-RPBKB-TE
- Command Console Help Files, AA-RS20A-TE and AA-RS21A-TE
- Host-specific documentation (SWCC Agent and HBA software delivered in solutions kits)

- Installation and Configuration Guide (platform-specific) the guide you are reading
- Solution Software Release Notes (platform-specific)
- FC-AL Application Note (AA-RS1ZA-TE) Solution software host support includes the following platforms:
 - IBM AIX
 - HP-UX
 - Linux (Red Hat x86/Alpha, SuSE x86/Alpha, Caldera x86)
 - Novell NetWare
 - Open VMS
 - Sun Solaris
 - Tru64 UNIX
 - Windows NT/2000

Additional support required by HSG80 ACS Solution Software Version 8.7, but delivered through external programs, include the following:

- Heterogeneous "rules based" SAN configurations
- Host-Bus Adapter (HBA) products
- Applicable Storage Utility Management Suite (SUMS) components
- Vendor-specific switch products
- Secure Path Products (Windows, NetWare, Sun, AIX, HP-UX)
- Data Replication Manager (DRM) under ACS 8.7P
- Enterprise Volume Manager (EVM) under ACS 8.7S
- Enterprise Backup Solution (EBS)
- Additional ACS Variants (W, R)

Document Conventions

The conventions included in Table 1 apply.

Table 1: Document Conventions

Element	Convention
Cross-reference links	Blue text: Figure 1
Key names, menu items, buttons, and dialog box titles	Bold
File names, application names, and text emphasis	Italics
User input, command names, system responses (output and messages)	Monospace font
	COMMAND NAMES are uppercase unless they are case sensitive
Variables	Monospace, italic font
Website addresses	Sans serif font (<u>http://www.compaq.com</u>)

Configuration Flowchart

A three-part flowchart (Figures 1-3) is shown on the following pages. Refer to these charts while installing and configuring a new storage subsystem. All references in the flowcharts pertain to pages in this guide, unless otherwise indicated.

Table 2 below summarizes the content of the chapters.

Chapters	Description
1. Planning a Subsystem	This chapter focuses on technical terms and knowledge needed to plan and implement storage array subsystems.
2. Planning Storage Configurations	Plan the storage configuration of your subsystem, using individual disk drives (JBOD), storageset types (mirrorsets, stripesets, and so on), and/or partitioned drives. This chapter describes addressing conventions, configuration rules, creating storage profiles, and creating storage maps.
3. Preparing the host system	How to prepare your HP-UX host computer to accommodate the HSG80 controller storage subsystem.
4. Installing, Configuring the HSG Agent	The Agent for HSG for a specific operating system polls the storage.
5. FC Configuration Procedures	How to configure a subsystem that uses Fibre Channel (FC) fabric topology. In fabric topology, the controller connects to its hosts through switches.
	How to verify that LUNs (virtual disk units) are being correctly presented to HP-UX.
6. Configuration using CLI	How-to example of configuring a storage subsystem using the Command Line Interpreter (CLI).
7. Backup, Clone, Move Data	Description of common procedures that are not mentioned elsewhere in this guide.
	Backing Up Subsystem Configuration
	Cloning Data for Backup
	Moving Storagesets

 Table 2: Summary of Chapter Contents

Chapters	Description
Appendix A.	This appendix contains storageset profiles to copy and use to create your system profiles. It also contains an enclosure template
Templates	to use to help keep track of the location of devices and storagesets in your shelves. Four (4) templates will be needed for the subsystem.
Appendix B.	The Client monitors and manages a storage subsystem.
Install, Configure, Remove the Client	The following information is included in this appendix:
	Why Install the Client?
	Before You Install the Client
	Installing the Client
	Installing Integration Patch
	Troubleshooting the Client Installation
	Adding Storage Subsystem and its Host to the Navigation Tree
	Removing the Command Console Client
	Where to Find Additional Information

Table 2: Summary of Chapter Contents (Continued)

Figure 1: General configuration flowchart (panel 1)

Figure 2: General configuration flowchart (panel 2)

Figure 3: Configuring storage with SWCC

Symbols in Text

These symbols may be found in the text of this guide. They have the following meanings.

WARNING: Text set off in this manner indicates that failure to follow directions in the warning could result in bodily harm or loss of life.

CAUTION: Text set off in this manner indicates that failure to follow directions could result in damage to equipment or data.

IMPORTANT: Text set off in this manner presents clarifying information or specific instructions.

NOTE: Text set off in this manner presents commentary, sidelights, or interesting points of information.

Symbols on Equipment

Any enclosed surface or area of the equipment marked with these symbols indicates the presence of electrical shock hazards. Enclosed area contains no operator serviceable parts.

WARNING: To reduce the risk of injury from electrical shock hazards, do not open this enclosure.

defined; Any RJ-45 receptacle marked with these symbols indicates a network interface connection.

WARNING: To reduce the risk of electrical shock, fire, or damage to the equipment, do not plug telephone or telecommunications connectors into this receptacle.

Any surface or area of the equipment marked with these symbols indicates the presence of a hot surface or hot component. Contact with this surface could result in injury.

WARNING: To reduce the risk of injury from a hot component, allow the surface to cool before touching.

Power supplies or systems marked with these symbols indicate the presence of multiple sources of power.

WARNING: To reduce the risk of injury from electrical shock, remove all power cords to completely disconnect power from the power supplies and systems.

Any product or assembly marked with these symbols indicates that the component exceeds the recommended weight for one individual to handle safely.

WARNING: To reduce the risk of personal injury or damage to the equipment, observe local occupational health and safety requirements and guidelines for manually handling material.

Rack Stability

WARNING: To reduce the risk of personal injury or damage to the equipment, be sure that:

- The leveling jacks are extended to the floor.
- The full weight of the rack rests on the leveling jacks.
- In single rack installations, the stabilizing feet are attached to the rack.
- In multiple rack installations, the racks are coupled.
- Only one rack component is extended at any time. A rack may become unstable if more than one rack component is extended for any reason.

Getting Help

If you still have a question after reading this guide, contact an authorized service provider or access our website.

Technical Support

In North America, call technical support at 1-800-OK-COMPAQ, available 24 hours a day, 7 days a week.

NOTE: For continuous quality improvement, calls may be recorded or monitored.

Outside North America, call technical support at the nearest location. Telephone numbers for worldwide technical support are listed on the following website: http://www.compaq.com.

Be sure to have the following information available before calling:

- Technical support registration number (if applicable)
- Product serial numbers
- Product model names and numbers
- Applicable error messages
- Operating system type and revision level
- Detailed, specific questions

Storage Website

The Storage website has the latest information on this product, as well as the latest drivers. Access the Storage website at: <u>http://www.compaq.com/storage</u>. From this website, select the appropriate product or solution.

Authorized Reseller

For the name of your nearest Authorized Reseller:

- In the United States, call 1-800-345-1518
- In Canada, call 1-800-263-5868
- Elsewhere, see the Storage website for locations and telephone numbers

1

Planning a Subsystem

This chapter provides information that helps you plan how to configure the storage array subsystem. This chapter focuses on the technical terms and knowledge needed to plan and implement storage subsystems.

NOTE: This chapter frequently references the command line interface (CLI). For the complete syntax and descriptions of the CLI commands, see the *StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide*.

The following information is included in this chapter:

- "Defining Subsystems," page 1–2
- "What is Failover Mode?," page 1–5
- "Selecting a Cache Mode," page 1–9
- "Enabling Mirrored Caching," page 1–10
- "What is the Command Console LUN?," page 1–11
- "Determining Connections," page 1–13
- "Assigning Unit Numbers," page 1–16
- "What is Selective Storage Presentation?," page 1–21

IMPORTANT: DILX should be run for ten minutes on all units to delete the 8 MB EISA partition. Refer to *StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide* for details.

Refer to Chapter 2 when planning the types of storage containers you need. Storage containers are individual disk drives (JBOD), storageset types (mirrorsets, stripesets, and so on), and/or partitioned drives.

Defining Subsystems

This section describes the terms *this controller* and *other controller*. It also presents graphics of the Model 2200 and BA370 enclosures.

NOTE: The HSG80 controller uses the BA370 or Model 2200 enclosure.

Controller Designations A and B

The terms A, B, "this controller," and "other controller," respectively are used to distinguish one controller from another in a two-controller (also called dual-redundant) subsystem.

Controllers and cache modules are designated either A or B depending on their location in the enclosure, as shown in Figure 1–1 for the Model 2200 enclosure and in Figure 1–2 for the BA370 enclosure.

Model 2200 Enclosure

Figure 1–1: Location of controllers and cache modules in a Model 2200 enclosure

Controller Designations "This Controller" and "Other Controller"

Some CLI commands use the terms "this" and "other" to identify one controller or the other in a dual-redundant pair. These designations are a shortened form of "this controller" and "other controller." These terms are defined as follows:

- "this controller"—the controller that is the focus of the CLI session. "This controller" is the controller to which the maintenance terminal is attached and through which the CLI commands are being entered. "This controller" can be abbreviated to "this" in CLI commands.
- "other controller"—the controller that is not the focus of the CLI session and through which CLI commands are not being entered. "Other controller" can be abbreviated to "other" in CLI commands.

Figure 1–3 shows the relationship between "this controller" and "other controller" in a Model 2200 enclosure. Figure 1–4 shows the same relationship in a BA370 enclosure.

Figure 1–3: "This controller" and "other controller" for the Model 2200 enclosure

Figure 1–4: "This controller" and "other controller" for the BA370 enclosure

What is Failover Mode?

Failover is a way to keep the storage array available to the host if one of the controllers becomes unresponsive. A controller can become unresponsive because of a controller hardware failure or, in multiple-bus mode only, due to a failure of the link between host and controller or host-bus adapter. Failover keeps the storage array available to the hosts by allowing the surviving controller to take over total control of the subsystem.

There are two failover modes:

- **Transparent**, which is handled by the surviving controller and is invisible (transparent) to the hosts.
- **Multiple-bus**, which is handled by the surviving controller and which is handled by the hosts through either additional software or as a feature of the operating system.

Either mode of failover can work with loop or fabric topology.

NOTE: Multiple-bus failover mode is only supported when Secure Path is used. Refer to the Secure Path documentation for more information on using multiple-bus mode.

Transparent Failover Mode

Transparent failover mode has the following characteristics:

- Hosts do not know failover has taken place
- Units are divided between host ports 1 and 2

A unit or storageset is a physical or virtual device of the subsystem. It is typically assigned a logical unit number (LUN) and is managed by the HSG80 controller and presented to a server through the Fibre Channel bus and the server's host bus adapter. Disks that are set up as independent disks (JBODs) or RAIDsets are referred to as storagesets.

In transparent failover mode, host port 1 of controller A and host port 1 of controller B must be on the same Fibre Channel link. Host port 2 of controller A and host port 2 of controller B must also be on the same Fibre Channel link. Depending on operating system restrictions and requirements, the port 1 link and the port 2 link can be separate links, or they can be the same link.

At any time, host port 1 is active on only one controller, and host port 2 is active on only one controller. The other ports are in standby mode. In normal operation, both host port 1 on controller A and host port 2 on controller B are active. A representative

configuration is shown in Figure 1–5. The active and standby ports share port identity, enabling the standby port to take over for the active one. If one controller fails, its companion controller (known as the surviving controller) takes control by making both its host ports active, as shown in Figure 1–6.

Units are divided between the host ports:

- Units 0-99 are on host port 1 of both controllers (but accessible only through the active port).
- Units 100-199 are on host port 2 of both controllers (but accessible only through the active port).

Transparent failover only compensates for a controller failure, and not for failures of either the Fibre Channel link or host Fibre Channel adapters.

Figure 1–5: Transparent failover—normal operation

Figure 1–6: Transparent failover—after failover from controller B to controller A

Multiple-Bus Failover Mode

Multiple-bus failover mode has the following characteristics:

- Host controls the failover process by moving the units from one controller to another
- All units (0 through 199) are visible at all host ports
- Each host has two or more paths to the units

All hosts must have operating system software that supports multiple-bus failover mode. With this software, the host sees the same units visible through two (or more) paths. When one path fails, the host can issue commands to move the units from one path to another. A typical multiple-bus failover configuration is shown in Figure 1–7.

In multiple-bus failover mode, you can specify which units are normally serviced by a specific controller of a controller pair. Units can be preferred to one controller or the other by the *PREFERRED_PATH* switch of the ADD UNIT (or SET *unit*) command. For example, use the following command to prefer unit D101 to "this controller":

```
SET D101 PREFERRED_PATH=THIS_CONTROLLER
```

NOTE: This is an initial preference, which can be overridden by the hosts.

Keep the following points in mind when configuring controllers for multiple-bus failover:

- Multiple-bus failover can compensate for a failure in any of the following:
 - Controller
 - Switch or hub
 - Fibre Channel link
 - Host Fibre Channel adapter
- A host can redistribute the I/O load between the controllers
- All hosts must have operating system software that supports multiple-bus failover mode

NOTE: FCA = Fibre Channel Adapter

CXO7094B

Selecting a Cache Mode

The cache module supports read, read-ahead, write-through, and write-back caching techniques. The cache technique is selected separately for each unit. For example, you can enable only read and write-through caching for some units while enabling only write-back caching for other units.

Read Caching

When the controller receives a read request from the host, it reads the data from the disk drives, delivers it to the host, and stores the data in its cache module. Subsequent reads for the same data will take the data from cache rather than accessing the data from the disks. This process is called read caching.

Read caching can improve response time to many of the host's read requests. By default, read caching is enabled for all units.

Read-Ahead Caching

During read-ahead caching, the controller anticipates subsequent read requests and begins to prefetch the next blocks of data from the disks as it sends the requested read data to the host. This is a parallel action. The controller notifies the host of the read completion, and subsequent sequential read requests are satisfied from the cache memory. By default, read-ahead caching is enabled for all units.

Write-Back Caching

Write-back caching improves the subsystem's response time to write requests by allowing the controller to declare the write operation complete as soon as the data reaches cache memory. The controller performs the slower operation of writing the data to the disk drives at a later time.

By default, write-back caching is enabled for all units, but only if there is a backup power source for the cache modules (either batteries or an uninterruptable power supply).

Write-Through Caching

Write-through caching is enabled when write-back caching is disabled. When the controller receives a write request from the host, it places the data in its cache module, writes the data to the disk drives, then notifies the host when the write operation is complete. This process is called write-through caching because the data actually passes through—and is stored in—the cache memory on its way to the disk drives.

Enabling Mirrored Caching

In mirrored caching, half of each controller's cache mirrors the companion controller's cache, as shown in Figure 1–8.

The total memory available for cached data is reduced by half, but the level of protection is greater.

Figure 1–8: Mirrored caching

Before enabling mirrored caching, make sure the following conditions are met:

- Both controllers support the same size cache.
- Diagnostics indicate that both caches are good.
- No unit errors are outstanding, for example, lost data or data that cannot be written to devices.
- Both controllers are started and configured in failover mode.

What is the Command Console LUN?

StorageWorks Command Console (SWCC) software communicates with the HSG80 controllers through an existing storage unit, or logical unit number (LUN). The dedicated LUN that SWCC uses is called the Command Console LUN (CCL). The CCL serves as the communication device for the HS-Series Agent and identifies itself to the host by a unique identification string. By default, a CCL device is enabled within the HSG80 controller on host port 1. The HSG80 uses SCSI-2 or SCSI-3 with your platform.

The CCL does the following:

• Allows the RAID Array to be recognized by the host as soon as it is attached to the SCSI bus and configured into the operating system.

• Serves as a communications device for the HS-Series Agent. The CCL identifies itself to the host by a unique identification string.

In dual-redundant controller configurations, the commands described in the following sections alter the setting of the CCL on both controllers. The CCL is enabled only on host port 1. At least one storage device of any type must be configured on host port 2 before installing the Agent on a host connected to host port 2.

Select a storageset that you plan to configure and that is not likely to change. This storageset can be used by the Agent to communicate with the RAID Array. Deleting this storageset (LUN) later breaks the connection between the Agent and the RAID Array.

Determining the Address of the CCL

CCL is enabled by default. Its address can be determined by entering the following CLI command:

```
HSG80 > SHOW THIS_CONTROLLER
```

Enabling/Disabling the CCL in SCSI-2 Mode

Enabling the CCL

To enable the CCL, enter the following CLI command:

HSG80 > SET THIS_CONTROLLER COMMAND_CONSOLE_LUN

Disabling the CCL

To disable the CCL, enter the following CLI command:

HSG80 > SET THIS_CONTROLLER NOCOMMAND_CONSOLE_LUN

To see the state of the CCL, use the SHOW *THIS CONTROLLER/OTHER CONTROLLER* command. Because the CCL is not an actual LUN, the SHOW UNITS command will not display the CCL location.

Enabling/Disabling CCL in SCSI-3 Mode

The CCL is enabled all the time. There is no option to enable/disable.

Determining Connections

The term "connection" applies to every path between a Fibre Channel adapter in a host computer and an active host port on a controller.

NOTE: In ACS Version 8.7, the maximum number of supported connections is 96.

Naming Connections

It is highly recommended that you assign names to connections that have meaning in the context of your particular configuration. One system that works well is to name each connection after its host, its adapter, its controller, and its controller host port, as follows:

Examples:

A connection from the first adapter in the host named RED that goes to port 1 of controller A would be called RED1A1.

A connection from the third adapter in host GREEN that goes to port 2 of controller B would be called GREEN3B2.

NOTE: Connection names can have a maximum of 9 characters.

Numbers of Connections

The number of connections resulting from cabling one adapter into a switch or hub depends on failover mode and how many links the configuration has:

• If a controller pair is in transparent failover mode and the port 1 link is separate from the port 2 link (that is, ports 1 of both controllers are on one loop or fabric, and port 2 of both controllers are on another), each adapter will have one connection, as shown in Figure 1–9.

- If a controller pair is in transparent failover mode and port 1 and port 2 are on the same link (that is, all ports are on the same loop or fabric), each adapter will have two connections, as shown in Figure 1–10.
- If a controller pair is in multiple-bus failover mode, each adapter has two connections, as shown in Figure 1–11.

CXO7081B

Figure 1–9: Connections in separate-link, transparent failover mode configurations

NOTE: FCA = Fibre Channel Adapter

CXO7079B

Figure 1–10: Connections in single-link, transparent failover mode configurations

NOTE: FCA = Fibre Channel Adapter

CXO7080B

Figure 1–11: Connections in multiple-bus failover mode

Assigning Unit Numbers

The controller keeps track of the unit with the unit number. The unit number can be from 0-199 prefixed by a D, which stands for disk drive. A unit can be presented as different LUNs to different connections. The interaction of a unit and a connection is determined by several factors:

- Failover mode of the controller pair
- The *ENABLE_ACCESS_PATH* and *PREFERRED_PATH* switches in the ADD UNIT (or SET *unit*) commands

- The UNIT_OFFSET switch in the ADD CONNECTIONS (or SET connections) commands
- The controller port to which the connection is attached
- The SCSI_VERSION switch of the SET THIS_CONTROLLER/OTHER_CONTROLLER command

The considerations for assigning unit numbers are discussed in the following sections.

Matching Units to Host Connections in Transparent Failover Mode

In transparent failover mode, the ADD UNIT command creates a unit for host connection to access and assigns it to either port 1 or port 2 of both controllers.

Unit numbers are assigned to ports as follows:

- 0-99 are assigned to host port 1 of both controllers.
- 100-199 are assigned to host port 2 of both controllers.

For example, unit D2 is on port 1, and unit D102 is available through port 2.

The LUN number that a host connection assigns to a unit is a function of the *UNIT_OFFSET* switch of the ADD (or SET) CONNECTIONS command. The relationship of offset, LUN number, and unit number is shown in the following equation:

LUN number = unit number – offset

Where...

- LUN number is relative to the host (what the host sees the unit as)
- Unit number is relative to the controller (what the controller sees the unit as)

If no value is specified for offset, then connections on port 1 have a default offset of 0 and connections on port 2 have a default offset of 100.

For example, if all host connections use the default offset values, unit D2 will be presented to a port 1 host connection as LUN 2 (unit number of 2 minus offset of 0). Unit D102 will be presented to a port 2 host connection as LUN 2 (unit number of D102 minus offset of 100).

Figure 1–12 shows how units are presented as different LUNs, depending on the offset of the host. In this illustration, host connection 1 and host connection 2 would need to be on host port 1; host connection 3 would need to be on host port 2.

Figure 1–12: LUN presentation to hosts, as determined by offset

Offsets other than the default values can be specified. For example, unit D17 would be visible to a host connection on port 1 that had an offset of 10 as LUN 7 (unit number of 17 minus offset of 10). The unit would not be visible to a host connection with a unit offset of 18 or greater, because that offset is not within the unit's range (unit number of 17 minus offset of 18 is a negative number).

Similarly, unit D127 would be visible to a host connection on port 2 that had an offset of 120 as LUN 7 (unit number of 127 minus offset of 120). The unit would not be visible to a host connection with a unit offset of 128 or greater, because that offset is not within the unit's range (unit number of 127 minus offset of 128 is a negative number).

An additional factor to consider when assigning unit numbers and offsets is SCSI version. If the SCSI_VERSION switch of the SET *THIS_CONTROLLER/OTHER_CONTROLLER* command is set to SCSI-3, the CCL is presented as LUN 0 to every connection, superseding any unit assignments. The interaction between SCSI version and unit numbers is explained further in the next section.

In addition, the access path to the host connection must be enabled for the connection to access the unit. See "Restricting Host Access in Transparent Failover Mode," page 1–21.

Matching Units to Host Connections in Multiple-Bus Failover Mode

In multiple-bus failover mode, the ADD UNIT command creates a unit for host connections to access. All unit numbers (0 through 199) are potentially visible on all four controller ports, but are accessible only to those host connections for which access path is enabled and which have offsets in the unit's range.

The LUN number a host connection assigns to a unit is a function of the *UNIT_OFFSET* switch of the ADD (or SET) CONNECTIONS command. The default offset is 0. The relationship of offset, LUN number, and unit number is shown in the following equation:

LUN number = unit number – offset

Where...

- LUN number is relative to the host (number the host sees the unit as)
- Unit number is relative to the controller (number the controller sees the unit as)

For example, unit D7 would be visible to a host connection with an offset of 0 as LUN 7 (unit number of 7 minus offset of 0). Unit D17 would be visible to a host connection with an offset of 10 as LUN 7 (unit number of 17 minus offset of 10). The unit would not be visible at all to a host connection with a unit offset of 18 or greater, because that offset is not within the units range (unit number of 17 minus offset of 18 is a negative number).

In addition, the access path to the host connection must be enabled for the connection to access the unit. This is done through the *ENABLE_ACCESS_PATH* switch of the ADD UNIT (or SET *unit*) command.

The *PREFERRED_PATH* switch of the ADD UNIT (or SET *unit*) command determines which controller of a dual-redundant pair initially accesses the unit. Initially, *PREFERRED_PATH* determines which controller presents the unit as Ready. The other controller presents the unit as Not Ready. Hosts can issue a SCSI Start Unit command to move the unit from one controller to the other.

Assigning Unit Numbers Depending on SCSI_VERSION

The SCSI_VERSION switch of the SET *THIS_CONTROLLER/OTHER_CONTROLLER* command determines how the CCL is presented. There are two choices: SCSI-2 and SCSI-3. The choice for SCSI_VERSION affects how certain unit numbers and certain host connection offsets interact.

Assigning Host Connection Offsets and Unit Numbers in SCSI-3 Mode

If SCSI_VERSION is set to SCSI-3, the CCL is presented as LUN 0 to all connections. The CCL supersedes any other unit assignment. Therefore, in SCSI-3 mode, a unit that would normally be presented to a connection as LUN 0 is not visible to that connection at all.

The following methods are recommended for assigning host connection offsets and unit numbers in SCSI-3 mode:

- Offsets should be divisible by 10 (for consistency and simplicity).
- Unit numbers should not be assigned at connection offsets (to avoid being masked by the CCL at LUN 0).

For example, if a host connection has an offset of 20 and SCSI-3 mode is selected, the connection will see LUNs as follows:

LUN 0 - CCL

LUN 1 - unit 21

LUN 2 - unit 22, etc.

In this example, if a unit 20 is defined, it will be superseded by the CCL and invisible to the connection.

Assigning Host Connection Offsets and Unit Numbers in SCSI-2 Mode

Some operating systems expect or require a disk unit to be at LUN 0. In this case, it is necessary to specify SCSI-2 mode.

If *SCSI_VERSION* is set to SCSI-2 mode, the CCL floats, moving to the first available LUN location, depending on the configuration.

StorageWorks recommends to use the following conventions when assigning host connection offsets and unit numbers in SCSI-2 mode:

- Offsets should be divisible by 10 (for consistency and simplicity).
- Unit numbers should be assigned at connection offsets (so that every host connection has a unit presented at LUN 0).

Table 1–1 summarizes the recommendations for unit assignments based on the SCSI_VERSION switch.

SCSI_VERSI ON	Offset	Unit Assignment	What the connection sees LUN 0 as
SCSI-2	Divisible by 10	At offsets	Unit whose number matches offset
SCSI-3	Divisible by 10	Not at offsets	CCL

Table 1–1: Unit Assignments and SCSI_VERSION

What is Selective Storage Presentation?

Selective Storage presentation is a feature of the HSG80 controller that enables the user to control the allocation of storage space and shared access to storage across multiple hosts. This is also known as *Restricting Host Access*.

In a subsystem that is attached to more than one host or if the hosts have more than one adapter, it is possible to reserve certain units for the exclusive use of certain host connections.

For a controller pair, the method used to restrict host access depends on whether the controllers are in transparent or multiple-bus failover mode. For a single controller, the methods are the same as for a controller pair in transparent failover.

NOTE: The default condition is ENABLE_ACCESS_PATH=ALL. This specifies that access paths to ALL hosts are enabled. StorageWorks recommends that the user restrict host access and that the access path be carefully specified to avoid providing undesired host connections access to the unit.

Restricting Host Access in Transparent Failover Mode

Three methods can be used to restrict host access to storage units in transparent failover mode:

- Using separate Fibre Channel links (either loop or fabric)
- Enabling the access path of selected host connections on a shared loop or fabric
- Setting offsets

NOTE: These techniques also work for a single controller.

Restricting Host Access by Separate Links

In transparent failover mode, host port 1 of controller A and host port 1 of controller B share a common Fibre Channel link. Host port 2 of controller A and host port 2 of controller B also share a common Fibre Channel link. If the host 1 link is separate from the host 2 link, the simplest way to limit host access is to have one host or set of hosts on the port 1 link, and another host or set of hosts on the port 2 link. Each host can then see only units assigned to its respective controller port. This separation of host buses is shown in Figure 1–13. This method applies only if the host 1 link and host 2 link are separate links.

NOTE: It is highly recommended that you provide access to only specific connections. This way, if new connections are added, they will not have automatic access to all units. See the following section Restricting Host Access by Disabling Access Paths.

Figure 1–13: Limiting host access in transparent failover mode

Restricting Host Access by Disabling Access Paths

If more than one host is on a link (that is, attached to the same port), host access can be limited by enabling the access of certain host connections and disabling the access of others. This is done through the *ENABLE_ACCESS_PATH* and

DISABLE_ACCESS_PATH switches of the ADD UNIT (or SET *unit*) commands. The access path is a unit switch, meaning it must be specified for each unit. Default access enables the unit to be accessible to all hosts.

For example:

In Figure 1–14, restricting the access of unit D101 to host 3, the host named BROWN can be done by enabling only the connection to host 3. Enter the following commands:

SET D101 DISABLE_ACCESS_PATH=ALL SET D101 ENABLE_ACCESS_PATH=BROWN1B2

If the storage subsystem has more than one host connection, carefully specify the access path to avoid providing undesired host connections access to the unit. The default condition for a unit is that access paths to all host connections are enabled. To restrict host access to a set of host connections, specify

DISABLE_ACCESS_PATH=ALL for the unit, then specify the set of host connections that are to have access to the unit.

Enabling the access path to a particular host connection does not override previously enabled access paths. All access paths previously enabled are still valid; the new host connection is simply added to the list of connections that can access the unit.

NOTE: The procedure of restricting access by enabling all access paths then disabling selected paths is **not recommended** because of the potential data/security breach that occurs when a new host connection is added.

Restricting Host Access by Offsets

Offsets establish the start of the range of units that a host connection can access.

For example:

In Figure 1–13, assume both host connections on port 2 (connections BLACK1B2 and BROWN1B2) initially have the default port 2 offset of 100. Setting the offset of connection BROWN1B2 to 120 will present unit D120 to host BROWN as LUN 0.

```
SET BROWN1B2 UNIT_OFFSET=120
```

Host BROWN cannot see units lower than its offset, so it cannot access units D100 and D101. However, host BLACK can still access D120 as LUN 20 if the operating system permits. To restrict access of D120 to only host BROWN, enable only host BROWN's access, as follows:

SET D120 DISABLE_ACCESS_PATH=ALL SET D120 ENABLE_ACCESS_PATH=BROWN1B2

NOTE: StorageWorks recommends that you provide access to only specific connections, even if there is just one connection on the link. This way, if new connections are added, they will not have automatic access to all units.

Restricting Host Access in Multiple-Bus Failover Mode

In multiple-bus mode, the units assigned to any port are visible to all ports. There are two ways to limit host access in multiple-bus failover mode:

- Enabling the access path of selected host connections
- Setting offsets

Enable the Access Path of Selected Host Connections

Host access can be limited by enabling the access of certain host connections and disabling the access of others. This is done through the *ENABLE_ACCESS_PATH* and *DISABLE_ACCESS_PATH* switches of the ADD UNIT (or SET *unit*) commands. Access path is a unit switch, meaning it must be specified for each unit. Default access means that the unit is accessible to all hosts. It is important to remember that at least two paths between the unit and the host must be enabled in order for multiple-bus failover to work.

NOTE: FCA = Fibre Channel Adapter

CXO7078B

Figure 1–14: Limiting host access in multiple-bus failover mode

For example:

Figure 1–14 shows a representative multiple-bus failover configuration. Restricting the access of unit D101 to host BLUE can be done by enabling only the connections to host BLUE. At least two connections must be enabled for multiple-bus failover to work. For most operating systems, it is desirable to have all connections to the host enabled. To enable all connections for host BLUE, enter the following commands:

```
SET D101 DISABLE_ACCESS_PATH=ALL
SET D101 ENABLE_ACCESS_PATH=BLUE1A1,BLUE1B1,BLUE2A2,BLUE2B2
```

To enable only two connections for host BLUE (if it is a restriction of the operating system), select two connections that use different adapters, different switches or hubs, and different controllers:

```
SET D101 DISABLE_ACCESS_PATH=ALL
SET D101 ENABLE_ACCESS_PATH=(BLUE1A1, BLUE2B2)
Or
SET D101 DISABLE_ACCESS_PATH=ALL
SET D101 ENABLE_ACCESS_PATH=(BLUE1B1, BLUE2A2)
```

If the storage subsystem has more than one host connection, the access path must be specified carefully to avoid giving undesirable host connections access to the unit. The default condition for a unit is that access paths to all host connections are enabled. To restrict host access to a set of host connections, specify

DISABLE_ACCESS_PATH=ALL when the unit is added, then use the SET *unit* command to specify the set of host connections that are to have access to the unit.

Enabling the access path to a particular host connection does not override previously enabled access paths. All access paths previously enabled are still valid; the new host connection is simply added to the list of connections that can access the unit.

IMPORTANT: The procedure of restricting access by enabling all access paths then disabling selected paths is **not recommended** because of the potential data/security breach that occurs when a new host connection is added.

Restricting Host Access by Offsets

Offsets establish the start of the range of units that a host connection can access. However, depending on the operating system, hosts that have lower offsets may be able to access the units in the specified range.

NOTE: All host connections to the same host computer must be set to the same offset.

For example:

In Figure 1–14, assume all host connections initially have the default offset of 0. Giving all connections access to host BLUE, an offset of 120 will present unit D120 to host BLUE as LUN 0. Enter the following commands:

```
SET BLUE1A1 UNIT_OFFSET=120
SET BLUE1B1 UNIT_OFFSET=120
SET BLUE2A2 UNIT_OFFSET=120
SET BLUE2B2 UNIT_OFFSET=120
```

Host BLUE cannot see units lower than its offset, so it cannot access any other units. However, the other two hosts can still access D120 as LUN 20 if their operating system permits. To restrict access of D120 to only host BLUE, enable only host BLUE's access, as follows:

```
SET D120 DISABLE_ACCESS_PATH=ALL
SET D120 ENABLE_ACCESS_PATH=(BLUE1A1,BLUE1B1,BLUE12A2,BLUE2B2)
```

NOTE: StorageWorks recommends that you always provide access to only specific connections. This way, if new connections are added, they will not have automatic access to all units.

NOTE: See "Restricting Host Access by Disabling Access Paths," page 1–23.

Worldwide Names (Node IDs and Port IDs)

A worldwide name—also called a node ID—is a unique, 64-bit number assigned to a subsystem prior to shipping. The node ID belongs to the subsystem itself and never changes.

Each subsystem's node ID ends in zero, for example 5000-1FE1-FF0C-EE00. The controller port IDs are derived from the node ID.

In a subsystem with two controllers in transparent failover mode, the controller port IDs are incremented as follows:

- Controller A and controller B, port 1—worldwide name + 1, for example 5000-1FE1-FF0C-EE01
- Controller A and controller B, port 2—worldwide name + 2, for example 5000-1FE1-FF0C-EE02

In multiple-bus failover mode, each of the host ports has its own port ID:

- Controller B, port 1—worldwide name + 1, for example 5000-1FE1-FF0C-EE01
- Controller B, port 2—worldwide name + 2, for example 5000-1FE1-FF0C-EE02

- Controller A, port 1—worldwide name + 3, for example 5000-1FE1-FF0C-EE03
- Controller A, port 2—worldwide name + 4, for example 5000-1FE1-FF0C-EE04

Use the CLI command, SHOW THIS_CONTROLLER/OTHER_CONTROLLER to display the subsystem's worldwide name.

Restoring Worldwide Names (Node IDs)

If a situation occurs that requires you to restore the worldwide name, you can restore it using the worldwide name and checksum printed on the sticker on the frame into which the controller is inserted.

Figure 1–15 shows the placement of the worldwide name label for the Model 2200 enclosure, and Figure 1–16 for the BA370 enclosure.

Figure 1–15: Placement of the worldwide name label on the Model 2200 enclosure

Figure 1–16: Placement of the worldwide name label on the BA370 enclosure

CAUTION: Each subsystem has its own unique worldwide name (node ID). If you attempt to set the subsystem worldwide name to a name other than the one that came with the subsystem, the data on the subsystem will not be accessible. Never set two subsystems to the same worldwide name, or data corruption will occur.

Unit Worldwide Names (LUN IDs)

In addition, each unit has its own worldwide name, or LUN ID. This is a unique, 128-bit value that the controller assigns at the time of unit initialization. It cannot be altered by the user but does change when the unit is reinitialized. Use the SHOW command to list the LUN ID.

Planning Storage Configurations

This chapter provides information to help you plan the storage configuration of your subsystem. Storage containers are individual disk drives (JBOD), storageset types (mirrorsets, stripesets, and so on), and/or partitioned drives. Use the guidelines found in this section to plan the various types of storage containers needed.

This chapter also focuses on the required design and implementation aspects, such as addressing conventions, configuration rules, creating storage profiles, and creating storage maps.

The following storage configuration information can be found in this chapter:

- "Where to Start," page 2–2
- "Determining Storage Requirements," page 2–3
- "Configuration Rules for the Controller," page 2–3
- "Addressing Conventions for Device PTL," page 2-4
- "Choosing a Container Type," page 2–14
- "Creating a Storageset Profile," page 2–16
- "Planning Considerations for Storageset," page 2–18
- "Changing Characteristics through Switches," page 2–27
- "Specifying Storageset and Partition Switches," page 2–28
- "Specifying Initialization Switches," page 2–29
- "Specifying Unit Switches," page 2–33
- "Creating Storage Maps," page 2–33

Refer to Chapter 3 for instructions on how to prepare your host computer to accommodate the HSG80 controller storage subsystem.

Where to Start

The following procedure outlines the steps to follow when planning your storage configuration.

See Appendix A to locate the blank templates for keeping track of the containers being configured.

- 1. Determine your storage requirements. Use the questions in "Determining Storage Requirements," page 2–3, to help you.
- 2. Review configuration rules. See "Configuration Rules for the Controller," page 2–3.
- 3. Familiarize yourself with the current physical layout of the devices and their addressing scheme. See "Addressing Conventions for Device PTL," page 2–4.
- 4. Choose the type of storage containers you need to use in your subsystem. See "Choosing a Container Type," page 2–14, for a comparison and description of each type of storageset.
- 5. Create a storageset profile (described in "Creating a Storageset Profile," page 2–16). Fill out the storageset profile while you read the sections that pertain to your chosen storage type:
 - "Planning Considerations for Storageset," page 2–18
 - "Mirrorset Planning Considerations," page 2–21
 - "RAIDset Planning Considerations," page 2–22
 - "Partition Planning Considerations," page 2–26
 - "Striped Mirrorset Planning Considerations," page 2-24
- 6. Decide which switches you need for your subsystem. General information on switches is detailed in "Specifying Storageset and Partition Switches," page 2–28.
 - Determine the unit switches you want for your units ("Specifying Unit Switches," page 2–33).
 - Determine the initialization switches you want for your planned storage containers ("Specifying Initialization Switches," page 2–29).
- 7. Create a storage map ("Creating Storage Maps," page 2–33).
- 8. Configure the storage you have now planned using one of the following methods:
 - Use SWCC. See the SWCC documentation for details.

Use the Command Line Interpreter (CLI) commands. This method allows you flexibility in defining and naming your storage containers. See the StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide.

Determining Storage Requirements

It is important to determine your storage requirements. Here are a few of the questions you should ask yourself regarding the subsystem usage:

- What applications or user groups will access the subsystem? How much capacity do they need?
- What are the I/O requirements? If an application is data transfer-intensive, what is the required transfer rate? If it is I/O request-intensive, what is the required response time? What is the read/write ratio for a typical request?
- Are most I/O requests directed to a small percentage of the disk drives? Do you want to keep it that way or balance the I/O load?
- Do you store mission-critical data? Is availability the highest priority or would standard backup procedures suffice?

Configuration Rules for the Controller

The following list defines maximum configuration rules for the controller:

- 128 visible LUNs/200 assignable unit numbers
 - In SCSI-2 mode, if the CCL is enabled, the result is 127 visible LUNs and one CCL.
 - In SCSI-3 mode, if the CCL is enabled, the result is 126 visible LUNs and two CCLs.
- 1.024 TB storageset size
- 96 host connections
- 84 physical devices
- 20 RAID 3/5 storagesets
- 30 RAID 3/5 and RAID 1 storagesets (see note)
- 45 RAID 3/5, RAID 1, and RAID 0 storagesets (see note)

NOTE: For the previous two storageset configurations, this is a combined maximum, limited to no more than 20 RAID 3/5 storagesets in the individual combination.

- 8 partitions of a storageset or individual disk
- 6 physical devices per RAID 1 storageset (mirrorset)
- 14 physical devices per RAID 3/5 storageset (RAIDset)
- 24 physical devices per RAID 0 storageset (stripeset)
- 45 physical devices per RAID 0+1 storageset (striped mirrorset)

Addressing Conventions for Device PTL

The HSG80 controller has six SCSI device ports, each of which connects to a SCSI bus. In dual-controller subsystems, these device buses are shared between the two controllers. (The *StorageWorks* Command Console calls the device ports "channels.") The standard BA370 enclosure provides a maximum of four SCSI target identifications (ID) for each device port. If more target IDs are needed, expansion enclosures can be added to the subsystem. For an example of how units are mapped to physical disk drives, see Figure 2–1.

Figure 2–1: Mapping a unit to physical disk drives

The HSG80 controller identifies devices based on a Port-Target-LUN (PTL) numbering scheme, shown in Figure 2–2. The physical location of a device in its enclosure determines its PTL.

- P—Designates the controller's SCSI device port number (1 through 6).
- T—Designates the target ID number of the device. Valid target ID numbers for a single-controller configuration and dual-redundant controller configuration are 0 3 and 8 15, respectively. (This applies to the BA370 cabinet only.)
- L—Designates the logical unit (LUN) of the device. For disk devices the LUN is always 0.

Figure 2–2: PTL naming convention

The controller can either operate with a BA370 enclosure or with a Model 2200 controller enclosure combined with Model 4214R, Model 4254, Model 4310R, Model 4350R, Model 4314R, or Model 4354R disk enclosures.

The controller operates with BA370 enclosures that are assigned ID numbers 0, 2, and 3. These ID numbers are set through the PVA module. Enclosure ID number 1, which assigns devices to targets 4 through 7, is not supported. Figure 2–3 shows how data is laid out on disks in an extended configuration.

Figure 2–3: How data is laid out on disks in BA370 enclosure configuration

Examples - Model 2200 Storage Maps, PTL Addressing

The Model 2200 controller enclosure can be combined with the following:

- Model 4214R disk enclosure Ultra2 SCSI with 14 drive bays, single-bus I/O module.
- Model 4254 disk enclosure Ultra2 SCSI with 14 drive bays, dual-bus I/O module.

NOTE: The Model 4214R uses the same storage maps as the Model 4314R, and the Model 4254 uses the same storage maps as the Model 4354R disk enclosures.

• **Model 4310R disk enclosure** — Ultra3 SCSI with 10 drive bays, single-bus I/O module. Table 2–1 shows the addresses for each device in a six-shelf, single-bus configuration. A maximum of six Model 4310R disk enclosures can be used with each Model 2200 controller enclosure.

NOTE: The storage map for the Model 4310R reflects the disk enclosure's physical location in the rack. Disk enclosures 6, 5, and 4 are stacked above the controller enclosure, and disk enclosures 1, 2, and 3 are stacked below the controller enclosure.

- **Model 4350R disk enclosure** Ultra3 SCSI with 10 drive bays, single-bus I/O module. Table 2–2 shows the addresses for each device in a three-shelf, single-bus configuration. A maximum of three Model 4350R disk enclosures can be used with each Model 2200 controller enclosure.
- Model 4314R disk enclosure Ultra3 SCSI with 14 drive bays, single-bus I/O module. Table 2–3 shows the addresses for each device in a six-shelf, single-bus configuration. A maximum of six Model 4314R disk enclosures can be used with each Model 2200 controller enclosure.

NOTE: The storage map for the Model 4314R reflects the disk enclosure's physical location in the rack. Disk enclosures 6, 5, and 4 are stacked above the controller enclosure, and disk enclosures 1, 2, and 3 are stacked below the controller enclosure.

• Model 4354R disk enclosure — Ultra3 SCSI with 14 drive bays, dual-bus I/O module. Table 2–4 shows the addresses for each device in a three-shelf, dual-bus configuration. A maximum of three Model 4354R disk enclosures can be used with each Model 2200 controller enclosure.

NOTE: Appendix A contains storageset profiles you can copy and use to create your own system profiles. It also contains an enclosure template you can use to help you keep track of the location of devices and storagesets in your shelves.

	M	odel 43	10R D	isk En	closure	e Shelf	6 (sing	jle-bus)				
Bay	1	2	3	4	5	6	7	8	9	10			
SCSI ID	00	01	02	03	04	05	08	10	11	12			
DISK ID	Disk60000	Disk60100	Disk60200	Disk60300	. Disk60400	Disk60500	Disk60800	Disk61000	Disk61100	Disk61200			
Model 4310R Disk Enclosure Shelf 5 (single-bus)													
Bay	1	2	3	4	5	6	7	8	9	10			
SCSI ID	00	01	02	03	04	05	08	10	11	12			
DISK ID	Disk50000	Disk50100	Disk50200	Disk50300	Disk50400	Disk50500	Disk50800	Disk51000	Disk51100	Disk51200			
	M	odel 43	10R D	isk End	closure	e Shelf	4 (sing	jle-bus)				
Bay	1	2	3	4	5	6	7	8	9	10			
SCSI ID	00	01	02	03	04	05	08	10	11	12			
DISK ID	Disk40000	Disk40100	Disk40200	Disk40300	Disk40400	Disk40500	Disk40800	Disk41000	Disk41100	Disk41200			
	M	odel 43	10R D	isk Ene	closure	Shelf	1 (sing	jle-bus)				
Bay	1	2	3	4	5	6	7	8	9	10			
SCSI ID	00	01	02	03	04	05	08	10	11	12			
DISK ID	0000	0100	0200	0300	0400	0500	0800	1000	1100	1200			

 Table 2–1: PTL addressing, single-bus configuration, six Model 4310R

 enclosures

	Model 4310R Disk Enclosure Shelf 2 (single-bus)												
Bay	1	2	3	4	5	6	7	8	9	10			
SCSI ID	00	01	02	03	04	05	08	10	11	12			
DISK ID	Disk20000	Disk20100	Disk20200	Disk20300	Disk20400	Disk20500	Disk20800	Disk21000	Disk21100	Disk21200			
Bay	1	2	3		5	6	7	8	, α	10			
SCSI ID	00	01	02	03	04	05	08	10	11	12			
DISK ID	Disk30000	Disk30100	Disk30200	Disk30300	Disk30400	Disk30500	Disk30800	Disk31000	Disk31100	Disk31200			

Table 2–2:	PTL addressing,	dual-bus configuration,	three Model 4350R
enclosures	5		

					hooure	onen	. (Sing		,		
		SC	SI Bus	s A		SCSI Bus B					
Bay	1	2	3	4	5	6	7	8	9	10	
SCSI ID	00	01	02	03	04	00	01	02	03	04	
DISK ID	Disk10000	Disk10100	Disk10200	Disk10300	Disk10400	Disk20000	Disk20100	Disk20200	Disk20300	Disk20400	

Model 4350R Disk Enclosure Shelf 1 (single-bus)

Model 4350R Disk Enclosure Shelf 2 (single-bus)

		SC	SI Bus	3 A		SCSI Bus B				
Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	00	01	02	03	04
DISK ID	Disk30000	Disk30100	Disk30200	Disk30300	Disk30400	Disk40000	Disk40100	Disk40200	Disk40300	Disk40400

Model 4350R Disk Enclosure Shelf 3 (single-bus)

		SC	SI Bus	s A		SCSI Bus B				
Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	00	01	02	03	04
DISK ID	Disk50000	Disk50100	Disk50200	Disk50300	Disk50400	Disk60000	Disk60100	Disk60200	Disk60300	Disk60400

	Model 4314R Disk Enclosure Shelf 6 (single-bus)													
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID	Disk60000	Disk60100	Disk60200	Disk60300	Disk60400	Disk60500	Disk60800	Disk60900	Disk61000	Disk61100	Disk61200	Disk61300	Disk61400	Disk61500
			Mode	4314	R Dis	k Enc	losure	e Shel	f 5 (si	ngle-b	ous)			
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID	Disk50000	Disk50100	Disk50200	Disk50300	Disk50400	Disk50500	Disk50800	Disk50900	Disk51000	Disk51100	Disk51200	Disk51300	Disk51400	Disk51500
			Mode	4314	R Dis	k Enc	losure	e Shel	f 4 (si	ngle-k	ous)			
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID	Disk40000	Disk40100	Disk40200	Disk40300	Disk40400	Disk40500	Disk40800	Disk40900	Disk41000	Disk41100	Disk41200	Disk41300	Disk41400	Disk41500
			Mode	4314	R Dis	k Enc	losure	Shel	f 1 (si	ngle-k	ous)	-	-	
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI	00	01	02	03	04	05	08	09	10	11	12	13	14	15
טו														

 Table 2–3: PTL addressing, single-bus configuration, six Model 4314R enclosures

	Model 4314K DISK Enclosure Shelf 2 (single-bus)													
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID	Disk20000	Disk20100	Disk20200	Disk20300	Disk20400	Disk20500	Disk20800	Disk20900	Disk21000	Disk21100	Disk21200	Disk21300	Disk21400	Disk21500
			Mode	4314	R Dis	k Enc	losure	Shel	f 3 (si	ngle-b	ous)			
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID	Disk30000	Disk30100	Disk30200	Disk30300	Disk30400	Disk30500	Disk30800	Disk30900	Disk31000	Disk31100	Disk31200	Disk31300	Disk31400	Disk31500

Table 2–4:	PTL addressing,	dual-bus configuration,	three Model 4354A
enclosures	3.		

Model 4354R Disk Enclosure Shelf	1 (dual-bus)
----------------------------------	--------------

		SCSI Bus A								SC	SI Bu	s B						
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
SCSI ID	00	01	02	03	04	05	08	00	01	02	03	04	05	08				
DISK ID	Disk10000	Disk10100	Disk10200	Disk10300	Disk10400	Disk10500	Disk10800	Disk20000	Disk20100	Disk20200	Disk20300	Disk20400	Disk20500	Disk20800				

Model 4354R Disk Enclosure Shelf 2 (dual-bus)

		SCSI Bus A						SCSI Bus B						
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
DISK ID	Disk30000	Disk30100	Disk30200	Disk30300	Disk30400	Disk30500	Disk30800	Disk40000	Disk40100	Disk40200	Disk40300	Disk40400	Disk40500	Disk40800

Model 4354R Disk Enclosure Shelf 3 (dual-bus)

	SCSI Bus A						SCSI Bus B							
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
DISK ID	Disk50000	Disk50100	Disk50200	Disk50300	Disk50400	Disk50500	Disk50800	Disk60000	Disk60100	Disk60200	Disk60300	Disk60400	Disk60500	Disk60800

Choosing a Container Type

Different applications may have different storage requirements. You probably want to configure more than one kind of container within your subsystem.

In choosing a container, you choose between independent disks (JBODs) or one of several storageset types, as shown in Figure 2–4. The independent disks and the selected storageset may also be partitioned.

The storagesets implement RAID (Redundant Array of Independent Disks) technology. Consequently, they all share one important feature: each storageset, whether it contains two disk drives or ten, looks like one large, virtual disk drive to the host.

Figure 2–4: Storage container types

Table 2–5 compares the different kinds of containers to help you determine which ones satisfy your requirements.

Container	Relative	Request Rate (Read/Write) I/O per	Transfer Rate (Read/Write) MB	
Name	Availability	second	per second	Applications
Independent disk drives (JBOD)	Equal to number of JBOD disk drives	Comparable to single disk drive	Comparable to single disk drive	
Stripeset (RAID 0)	Proportionate to number of disk drives; worse than single disk drive	Excellent if used with large chunk size	Excellent if used with small chunk size	High performance for non-critical data
Mirrorset (RAID1)	Excellent	Good/Fair	Good/Fair	System drives; critical files
RAIDset (RAID 3/5)	Excellent	Excellent/good	Read: excellent (if used with small chunk sizes) Write: good (if used with small chunk sizes)	High request rates, read-intensive, data lookup
Striped Mirrorset (RAID 0+1)	Excellent	Excellent if used with large chunk size	Excellent if used with small chunk size	Any critical response-time application

Table 2–5: Comparison of Container Types

For a comprehensive discussion of RAID, refer to *The RAIDBOOK—A Source Book for Disk Array Technology*.

Creating a Storageset Profile

Creating a profile for your storagesets, partitions, and devices can simplify the configuration process. Filling out a storageset profile helps you choose the storagesets that best suit your needs and to make informed decisions about the switches you can enable for each storageset or storage device that you configure in your subsystem.

For an example of a storageset profile, see Table 2–6. This table contains blank profiles that you can copy and use to record the details for your storagesets. Use the information in this chapter to help you make decisions when creating storageset profiles.

Table 2–6: Example of Storageset Profile

Туре с	of Storages	et:			<u> </u>					
	orset <u>X</u>	_ RAIDset	St	ripeset	Striped	lJ	BOD			
				MI	rrorset					
	Storagese	t Name R1	. Disk Dri	ves D10300	, D20300,	D10400, L	20400			
	Unit Numb	er D101								
	Partition	s:								
Unit #	Unit #	Unit #	Unit #	Unit #	Unit #	Unit #	Unit #			
%	%	%	%	%	%	%	%			
	RAIDset S	witches:								
Recon	struction Po	licy	Reduced N	lembership	Re	placement	Policy			
<u>X</u> Norma	l (default)	<u>_X</u>	_No (default	i)	<u>X</u> Best performance (default)					
Fast			Yes, missing	g:	Bes	t fit				
					Non	ie				
	Mirrorset	Switches	:							
Repla	cement Pol		Copy			Read Sou	rce			
Best pe	enormance (delault)	Inormai (dei	auit)	Lea	st busy (dei	auit)			
Best fit			Fast		Rou	Round robin				
None					Disł	k drive:				
	Initializ	e Switches	5:							
C X Autom	Chunk size atic (default)		Save Con No (default)	figuration	<u>X</u> Des	Metadat stroy (defau	a t)			
64 bloo	cks	<u>X</u>	Yes		Reta	ain				
128 blo	ocks									
256 blo	ocks									
	Unit Swit	ches:								
	Caching		Ac	cess by fol	lowing hos	ts enabled				
Pood coch	ing \	γ A1	1							
		<u>A</u>	<u>_L</u>							
Read-ahea	a caching									
Write-back	caching	<u>X</u>								
Write-throu	igh caching_									
L										

Planning Considerations for Storageset

This section contains the guidelines for choosing the storageset type needed for your subsystem:

- "Stripeset Planning Considerations," page 2–18
- "Mirrorset Planning Considerations," page 2–21
- "RAIDset Planning Considerations," page 2-22
- "Striped Mirrorset Planning Considerations," page 2–24
- "Storageset Expansion Considerations," page 2–26
- "Partition Planning Considerations," page 2–26

Stripeset Planning Considerations

Stripesets (RAID 0) enhance I/O performance by spreading the data across multiple disk drives. Each I/O request is broken into small segments called "chunks." These chunks are then simultaneously "striped" across the disk drives in the storageset, thereby enabling several disk drives to participate in one I/O request.

For example, in a three-member stripeset that contains disk drives Disk 10000, Disk 20000, and Disk 10100, the first chunk of an I/O request is written to Disk 10000, the second to Disk 20000, the third to Disk 10100, the fourth to Disk 10000, until all of the data has been written to the drives (Figure 2–5).

Figure 2–5: 3-member RAID 0 stripeset (example 1)

The relationship between the chunk size and the average request size determines if striping maximizes the request rate or the data-transfer rate. You can set the chunk size or use the default setting (see "Chunk Size," page 2–30, for information about setting the chunk size). Figure 2–6 shows another example of a three-member RAID 0 stripeset.

A major benefit of striping is that it balances the I/O load across all of the disk drives in the storageset. This can increase the subsystem performance by eliminating the hot spots (high localities of reference) that occur when frequently accessed data becomes concentrated on a single disk drive.

Figure 2–6: 3-member RAID 0 stripeset (example 2)

Keep the following points in mind as you plan your stripesets:

- Reporting methods and size limitations prevent certain operating systems from working with large stripesets.
- A storageset should only contain disk drives of the same capacity. The controller limits the effective capacity of each member to the capacity of the smallest member in the storageset (base member size) when the storageset is initialized. Thus, if you combine 9 GB disk drives with 4 GB disk drives in the same storageset, you waste 5 GB of capacity on each 9 GB member.

If you need high performance and high availability, consider using a RAIDset, striped-mirrorset, or a host-based shadow of a stripeset.

• Striping does not protect against data loss. In fact, because the failure of one member is equivalent to the failure of the entire stripeset, the likelihood of losing data is higher for a stripeset than for a single disk drive.

For example, if the mean time between failures (MTBF) for a single disk is l hour, then the MTBF for a stripeset that comprises N such disks is l/N hours. As another example, if the MTBF of a a single disk is 150,000 hours (about 17 years), a stripeset comprising four of these disks would only have an MTBF of slightly more than 4 years.

For this reason, you should avoid using a stripeset to store critical data. Stripesets are more suitable for storing data that can be reproduced easily or whose loss does not prevent the system from supporting its critical mission.

- Evenly distribute the members across the device ports to balance the load and provide multiple paths.
- Stripesets may contain between two and 24 members.
- If you plan to use mirror members to replace failing drives, then create the original stripeset as a stripeset of 1-member mirrorsets.
- Stripesets are well-suited for the following applications:
 - Storing program image libraries or run-time libraries for rapid loading.
 - Storing large tables or other structures of read-only data for rapid application access.
 - Collecting data from external sources at very high data transfer rates.
- Stripesets are not well-suited for the following applications:
 - A storage solution for data that cannot be easily reproduced or for data that must be available for system operation.
 - Applications that make requests for small amounts of sequentially located data.
 - Applications that make synchronous random requests for small amounts of data.

Spread the member drives as evenly as possible across the six I/O device ports.
Mirrorset Planning Considerations

Mirrorsets (RAID 1) use redundancy to ensure availability, as illustrated in Figure 2–7. For each primary disk drive, there is at least one mirror disk drive. Thus, if a primary disk drive fails, its mirror drive immediately provides an exact copy of the data. Figure 2–8 shows a second example of a Mirrorset.

CXO7288A

Figure 2–7: Mirrorsets maintain two copies of the same data

Figure 2–8: Mirrorset example 2

Keep these points in mind when planning mirrorsets

- Data availability with a mirrorset is excellent but comes with a higher cost—you need twice as many disk drives to satisfy a given capacity requirement. If availability is your top priority, consider using dual-redundant controllers and redundant power supplies.
- You can configure up to a maximum of 20 RAID 3/5 mirrorsets per controller or pair of dual-redundant controllers. Each mirrorset may contain up to 6 members. Refer to "Configuration Rules for the Controller" on page 2–3, for detailed information on maximum numbers. 30 RAID 3/5 and RAID 1 mirrorsets are permitted, however, there is limit of no more than 20 RAID 3/5 mirrorsets in such a configuration.
- Both write-back cache modules must be the same size.
- A mirrorset should only contain disk drives of the same capacity.
- Spread mirrorset members across different device ports (drive bays).
- Mirrorsets are well-suited for the following:
 - Any data for which reliability requirements are extremely high
 - Data to which high-performance access is required
 - Applications for which cost is a secondary issue
- Mirrorsets are not well-suited for the following applications:
 - Write-intensive applications (a performance hit of 10 percent will occur)
 - Applications for which cost is a primary issue

RAIDset Planning Considerations

RAIDsets (RAID 3/5) are enhanced stripesets—they use striping to increase I/O performance and distributed-parity data to ensure data availability. Figure 2–9 shows an example of a RAIDset that uses five members.

Figure 2–9: 5-member RAIDset using parity

RAIDsets are similar to stripesets in that the I/O requests are broken into smaller "chunks" and striped across the disk drives. RAIDsets also create chunks of parity data and stripe them across all the members of the RAIDset. Parity data is derived mathematically from the I/O data and enables the controller to reconstruct the I/O data if a single disk drive fails. Thus, it becomes possible to lose a disk drive without losing access to the data it contained. Data could be lost if a second disk drive fails before the controller replaces the first failed disk drive and reconstructs the data.

The relationship between the chunk size and the average request size determines if striping maximizes the request rate or the data-transfer rates. You can set the chunk size or use the default setting. See "Chunk Size," page 2–30, for information about setting the chunk size.

Keep these points in mind when planning RAIDsets

- Reporting methods and size limitations prevent certain operating systems from working with large RAIDsets.
- Both cache modules must be the same size.

- A RAIDset must include at least 3 disk drives, but no more than 14.
- A storageset should only contain disk drives of the same capacity. The controller limits the capacity of each member to the capacity of the smallest member in the storageset. Thus, if you combine 9 GB disk drives with 4 GB disk drives in the same storageset, you waste 5 GB of capacity on each 9 GB member.
- RAIDsets are particularly well-suited for the following:
 - Small to medium I/O requests
 - Applications requiring high availability
 - High read request rates
 - Inquiry-type transaction processing
- RAIDsets are not particularly well-suited for the following:
 - Write-intensive applications
 - Database applications in which fields are continually updated
 - Transaction processing

Striped Mirrorset Planning Considerations

Striped mirrorsets (RAID 0+1) are a configuration of stripesets whose members are also mirrorsets (Figure 2–10). Consequently, this kind of storageset combines the performance of striping with the reliability of mirroring. The result is a storageset with very high I/O performance and high data availability. Figure 2–11 shows a second example of a striped mirrorset using six members.

Figure 2–10: Striped mirrorset (example 1)

The failure of a single disk drive has no effect on the ability of the storageset to deliver data to the host. Under normal circumstances, a single disk drive failure has very little effect on performance. Because striped mirrorsets do not require any more disk drives than mirrorsets, this storageset is an excellent choice for data that warrants mirroring.

Figure 2–11: Striped mirrorset (example 2)

Plan the mirrorset members, and plan the stripeset that will contain them. Review the recommendations in "Planning Considerations for Storageset," page 2–18, and "Mirrorset Planning Considerations," page 2–21.

Storageset Expansion Considerations

Storageset Expansion allows for the joining of two of the same kind of storage containers by concatenating RAIDsets, Stripesets, or individual disks, thereby forming a larger virtual disk which is presented as a single unit. The StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide describes the CLI command: ADD CONCATSETS which is used to perform concatenation.

CAUTION: Use the ADD CONCATSETS command only with host operating systems that support dynamic volume expansion. Use of this command could result in inacessible data, if the operating system cannot handle one of its disks increasing in size.

Partition Planning Considerations

Use partitions to divide a container (storageset or individual disk drive) into smaller pieces, each of which can be presented to the host as its own storage unit. Figure 2–12 shows the conceptual effects of partitioning a single-disk container.

Figure 2–12: One example of a partitioned single-disk unit

You can create up to eight partitions per storageset (disk drive, RAIDset, mirrorset, stripeset, or striped mirrorset). Each partition has its own unit number so that the host can send I/O requests to the partition just as it would to any unpartitioned storageset or device. Partitions are separately addressable storage units; therefore, you can partition a single storageset to service more than one user group or application.

Defining a Partition

Partitions are expressed as a percentage of the storageset or single disk unit that contains them:

- Mirrorsets and single disk units—the controller allocates the largest whole number of blocks that are equal to or less than the percentage you specify.
- RAIDsets and stripesets—the controller allocates the largest whole number of stripes that are less than or equal to the percentage you specify.
 - Stripesets—the stripe size = chunk size × number of members.
 - RAIDsets—the stripe size = chunk size \times (number of members minus 1)

An unpartitioned storage unit has more capacity than a partition that uses the whole unit because each partition requires a small amount of disk space for metadata.

Guidelines for Partitioning Storagesets and Disk Drives

Keep these points in mind when planning partitions for storagesets and disks:

- Each storageset or disk drive may have up to eight partitions.
- In transparent failover mode, all partitions of a particular container must be on the same host port. Partitions cannot be split across host ports.
- In multiple-bus failover mode, all the partitions of a particular container must be on the same controller. Partitions cannot be split across controllers.
- Partitions cannot be combined into storagesets. For example, you cannot divide a disk drive into three partitions, then combine those partitions into a RAIDset.
- Just as with storagesets, you do not have to assign unit numbers to partitions until you are ready to use them.
- The CLONE utility cannot be used with partitioned mirrorsets or partitioned stripesets. (See "Creating Clones for Backup," page 7–2 for details about cloning.)

Changing Characteristics through Switches

CLI command switches allow the user another level of command options. There are three types of switches that modify the storageset and unit characteristics:

- Storageset switches
- Initialization switches
- Unit switches

The following sections describe how to enable/modify switches. They also contain a description of the major CLI command switches.

Enabling Switches

If you use SWCC to configure the device or storageset, you can set switches from SWCC during the configuration process, and SWCC automatically applies them to the storageset or device. See the SWCC online help for information about using SWCC.

If you use CLI commands to configure the storageset or device manually, the configuration procedure found in Chapter 5 of this guide indicates when and how to enable each switch. The StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide contains the details of the CLI commands and their switches.

Changing Switches

You can change the RAIDset, mirrorset, device, and unit switches at any time. You cannot change the initialize switches without destroying data on the storageset or device. These switches are integral to the formatting and can only be changed by re-initializing the storageset.

CAUTION: Initializing a storageset is similar to formatting a disk drive; all data is destroyed during this procedure.

Specifying Storageset and Partition Switches

The characteristics of a particular storageset can be set by specifying switches when the storageset is added to the controllers' configuration. Once a storageset has been added, the switches can be changed by using a SET command. Switches can be set for partitions and the following types of storagesets:

- RAIDset
- Mirrorset

Stripesets have no specific switches associated with their ADD and SET commands.

RAIDset Switches

Use the following types of switches to control how a RAIDset ensures data availability:

- Replacement policy
- Reconstruction policy
- Remove/replace policy

For details on the use of these switches refer to SET RAIDSET and SET RAIDset-name commands in the *StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide.*

Mirrorset Switches

Use the following switches to control how a mirrorset behaves to ensure data availability:

- Replacement policy
- Copy speed
- Read source
- Membership

For details on the use of these switches refer to ADD MIRRORSET and SET *mirrorset-name* commands in the *StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide.*

Partition Switches

The following switches are available when creating a partition:

- Size
- Geometry

For details on the use of these switches refer to CREATE_PARTITION command in the *StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide*.

Specifying Initialization Switches

Initialization switches set characteristics for established storagesets before they are made into units. The following kinds of switches effect the format of a disk drive or storageset:

- Chunk Size (for stripesets and RAIDsets only)
- Save Configuration

- Destroy/Nodestroy
- Geometry

Each of these switches is described in the following sections.

NOTE: After initializing the storageset or disk drive, you cannot change these switches without reinitializing the storageset or disk drive.

Chunk Size

With ACS software, a parameter for chunk size (chunksize=default or n) on some storagesets can be set. However, unit performance may be negatively impacted if a non-default value is selected as the chunksize.

If a non-default chunk size has been calculated, verify that the chunk size value is divisible by 8, with no remainder. If the value is not aligned with this rule, adjust the chunk size value upward until it divisible by 8, with no remainder.

Specify the chunk size of the data to be stored to control the stripesize used in RAIDsets and stripesets:

- *CHUNKSIZE=DEFAULT* lets the controller set the chunk size based on the number of disk drives (d) in a stripeset or RAIDset. If number of drives is less or equal to 9, then chunk size = 256. If the number of drives is greater than 9, then chunk size = 128.
- *CHUNKSIZE=n* lets you specify a chunk size in blocks. The relationship between chunk size and request size determines whether striping increases the request rate or the data-transfer rate.

Increasing the Request Rate

A large chunk size (relative to the average request size) increases the request rate by enabling multiple disk drives to respond to multiple requests. If one disk drive contains all of the data for one request, then the other disk drives in the storageset are available to handle other requests. Thus, separate I/O requests can be handled in parallel, which increases the request rate. This concept is shown in Figure 2–13.

CXO-5135A-MC

Figure 2–13: Large chunk size increases request rate

Large chunk sizes also tend to increase the performance of random reads and writes. StorageWorks recommends that you use a chunk size of 10 to 20 times the average request size, rounded to the closest prime number.

To calculate the chunk size that should be used for your subsystem, you must first analyze the types of requests that are being made to the subsystem:

- Many parallel I/Os that use a small area of disk should use a chunk size of 10 times the average transfer request rate.
- Random I/Os that are scattered over all the areas of the disks should use a chunk size of 20 times the average transfer request rate.
- If you do not know, then you should use a chunk size of 15 times the average transfer request rate.
- If you have mostly sequential reads or writes (like those needed to work with large graphic files), make the chunk size for RAID 0 and RAID 0+1 a small number (for example: 67 sectors). For RAID 5, make the chunk size a relatively large number (for example: 253 sectors).

Transfer Size (KB)	Small Area of I/O Transfers	Unknown	Random Areas of I/O Transfers
2	41	59	79
4	79	113	163
8	157	239	317

Table 2–7 shows a few examples of chunk size selection.

Increasing Sequential Data Transfer Performance

RAID 0 and RAID 0+1 sets intended for high data transfer rates should use a relatively low chunk size (for example: 67 sectors). RAID 5 sets intended for high data rate performance should use a relatively large number (for example: 253 sectors).

Save Configuration

The *SAVE CONFIGURATION* switch is for a **single-controller configuration only**. This switch reserves an area on each of the disks for the container being initialized. The controller can write subsystem configuration data on this area. If the controller is replaced, the new controller can read the subsystem configuration from the reserved areas of disks.

If you specify *SAVE_CONFIGURATION* for a multi-device storageset, such as a stripeset, the complete subsystem configuration is periodically written on each disk in the storageset.

The SHOW DEVICES *FULL* command shows which disks are used to backup configuration information.

IMPORTANT: DO NOT use SAVE_CONFIGURATION in dual redundant controller installations. It is not supported and may result in unexpected controller behavior.

Destroy/Nodestroy

Specify whether to destroy or retain the user data and metadata when a disk is initialized after it has been used in a mirrorset or as a single-disk unit.

NOTE: The *DESTROY* and *NODESTROY* switches are only valid for mirrorsets and striped mirrorsets.

- *DESTROY* (default) overwrites the user data and forced-error metadata when a disk drive is initialized.
- *NODESTROY* preserves the user data and forced-error metadata when a disk drive is initialized. Use *NODESTROY* to create a single-disk unit from any disk drive that has been used as a member of a mirrorset. See the REDUCED command in the StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide for information on removing disk drives from a mirrorset.

NODESTROY is ignored for members of a RAIDset.

Geometry

The geometry parameters of a storageset can be specified. The geometry switches are:

- *CAPACITY*—the number of logical blocks. The range is from 1 to the maximum container size.
- *CYLINDERS*—the number of cylinders used. The range is from 1 to 16777215.
- *HEADS*—the number of disk heads used. The range is from 1 to 255.
- *SECTORS_PER_TRACK*—the number of sectors per track used. The range is from 1 to 255.

Specifying Unit Switches

Several switches control the characteristics of units. The unit switches are described under the SET *unit-number* command in the StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide.

One unit switch, *ENABLE/DISABLE_ACCESS_PATH*, determines which host connections can access the unit, and is part of the larger topic of matching units to specific hosts. This complex topic is covered in the first Chapter under the following heading:

• "Determining Connections," page 1–13

Creating Storage Maps

Configuring a subsystem will be easier if you know how the storagesets, partitions, and JBODs correspond to the disk drives in your subsystem. You can more easily see this relationship by creating a hardcopy representation, also known as a storage map.

To make a storage map, fill out the templates provided in Appendix A as you add storagesets, partitions, and JBOD disks to the configuration and assign them unit numbers. Label each disk drive in the map with the higher levels it is associated with, up to the unit level.

Using LOCATE Command to Find Devices

If you want to complete a storage map at a later time but do not remember where the disk drives and partitions are located, use the CLI command LOCATE. The LOCATE command flashes the (fault) LED on the drives associated with the specific storageset or unit. To turn off the flashing LEDs, enter the CLI command LOCATE CANCEL.

The following procedure is an example of the commands to locate all the disk drives that make up unit D104:

1. Enter the following command:

LOCATE D104

The LEDs on the disk drives that make up unit D104 will flash.

- 2. Note the position of all the drives contained within D104.
- 3. Enter the following command to turn off the flashing LEDs:

LOCATE CANCEL

The following procedure is an example command to locate all the drives that make up RAIDset R1:

1. Enter the following command:

LOCATE R1

- 2. Note the position of all the drives contained within R1.
- 3. Enter the following command to turn off the flashing LEDs:

LOCATE CANCEL

Example Storage Map - Model 4310R Disk Enclosure

Table 2–8 shows an example of four Model 4310R disk enclosures (single-bus I/O).

Model 4310R Disk Enclosure Shelf 4 (single-bus)										
Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
	D100 R1	D101 S1 M2	D103 M4	D105	D107	D108 S3	D1 S4 M6	D2 R3	D3 S5	spare
DISK ID	Disk40000	Disk40100	Disk40200	Disk40300	Disk40400	Disk40500	Disk40800	Disk41000	Disk41100	Disk41200
	Мо	odel 43	10R D	isk End	closure	Shelf	1 (sing	gle-bus)	-
Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
	D100 R1	D101 S1 M1	D102 M3	D104 S2	D106 R2	D108 S3	D1 S4 M5	D2 R3	D3 S5	D4 M7
DISK ID	Disk10000	Disk10100	Disk10200	Disk10300	Disk10400	Disk10500	Disk10800	Disk11000	Disk11100	Disk11200

Table 2–8: Model 4310R disk enclosure, example of storage map

Model 4310R Disk Enclosure Shelf 2 (single-bus)										
Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
	D100 R1	D101 S1 M1	D102 M3	D104 S2	D106 R2	D108 S3	D1 S4 M5	D2 R3	D3 S5	D4 M7
DISK ID	Disk20000	Disk20100	Disk20200	Disk20300	Disk20400	Disk20500	Disk20800	Disk21000	Disk21100	Disk21200
Model 4310R Disk Enclosure Shelf 3 (single-bus)										
	Мо	odel 43	10R D	isk End	closure	Shelf	3 (sing	jle-bus)	
Bay	Мо 1	odel 43 2	3 3	isk End 4	closure 5	Shelf 6	3 (sing 7	jle-bus 8) 9	10
Bay SCSI ID	Ма 1 00	odel 43 2 01	10R D 3 02	sk End 4 03	5 04	Shelf 6 05	3 (sing 7 08	1e-bus 8 10	9 11	10 12
Bay SCSI ID	Mo 00 D100 R1	0del 43 2 01 D101 S1 M2	10R D 3 02 D103 M4	k End 03 D104 S2	5 04 D106 R2	Shelf 05 D108 S3	3 (sing 7 08 D1 S4 M6	B 10 D2 R3	9 11 D3 S5	10 12 spar e

The following explains the table in words:

- Unit D100 is a 4-member RAID 3/5 storageset named R1. R1 consists of Disk10000, Disk20000, Disk30000, and Disk40000.
- Unit D101 is a 2-member striped mirrorset named S1. S1 consists of M1 and M2:
 - M1 is a 2-member mirrorset consisting of Disk10100 and Disk20100.
 - M2 is a 2-member mirrorset consisting of Disk30100 and Disk40100.
- Unit D102 is a 2-member mirrorset named M3. M3 consists of Disk10200 and Disk20200.
- Unit D103 is a 2-member mirrorset named M4. M4 consists of Disk30200 and Disk40200.

- Unit D104 is 3-member stripeset named S2. S2 consists of Disk10300, Disk20300, and Disk30300.
- Unit D105 is a single (JBOD) disk named Disk40300.
- Unit D106 is a 3-member RAID 3/5 storageset named R2. R2 consists of Disk10400, Disk20400, and Disk30400.
- Unit D107 is a single (JBOD) disk named Disk40400.
- Unit D108 is a 4-member stripeset named S3. S3 consists of Disk10500, Disk20500, Disk30500, and Disk40500.
- Unit D1 is a 2-member striped mirrorset named S4. S4 consists of M4 and M5:
 - M5 is a 2-member mirrorset consisting of Disk10800 and Disk20800.
 - M6 is a 2-member mirrorset consisting of Disk30800 and Disk40800.
- Unit D2 is a 4-member RAID 3/5 storageset named R3. R3 consists of Disk11000, Disk21000, Disk31000, and Disk41000.
- Unit D3 is a 4-member stripeset named S5. S5 consists of Disk11100, Disk21100, Disk31100, and Disk41100.
- Unit D4 is a 2-member mirrorset named M7. M7 consists of Disk11200 and Disk21200.
- Disk31200 and Disk41200 are spareset members.

Preparing the Host System

This chapter describes how to prepare your HP-UX host computer to accommodate the HSG80 controller storage subsystem.

The following information is included in this chapter:

- "Installing RAID Array Storage System," page 3–1
- "Making a Physical Connection," page 3–6
- "Configuring HP-UX File System," page 3–10
- "Solution Software Upgrade Procedures," page 3–16

Refer to Chapter 4 for instructions on how to install and configure the HSG Agent. The Agent for HSG is operating system-specific and polls the storage.

Installing RAID Array Storage System

WARNING: A shock hazard exists at the backplane when the controller enclosure bays or cache module bays are empty.

Be sure the enclosures are empty, then mount the enclosures into the rack. DO NOT use the disk enclosure handles to lift the enclosure. The handles cannot support the weight of the enclosure. Only use these handles to position the enclosure in the mounting brackets.

Use two people to lift, align, and install any enclosure into a rack. Failure to use two people might cause personal injury and/or equipment damage.

CAUTION: Controller and disk enclosures have no power switches. Make sure the controller enclosures and disk enclosures are physically configured before turning the PDU on and connecting the power cords. Failure to do so can cause equipment damage.

- 1. Be sure the enclosures are empty before mounting them into the rack. If necessary, remove the following elements from the controller enclosure:
 - Environmental Monitoring Unit (EMU)
 - Power Supplies
 - External Cache Batteries (ECBs)
 - Fans

If necessary, remove the following elements from the disk enclosure:

- Power Supply/Blower Assemblies
- Disk Drives
- Environmental Monitoring Unit (EMU)
- I/O Modules

Refer to the *StorageWorks Model 2100 and 2200 Ultra SCSI Controller Enclosures User Guide* and *StorageWorks Model 4300 Family Ultra3 LVD Disk Enclosures User Guide* the for further information.

- 2. Install brackets onto the controller enclosure and disk enclosures. Using two people, mount the enclosures into the rack. Refer to the mounting kit documentation for further information.
- 3. Install the elements. Install the disk drives. Make sure you install blank panels in any unused bays.

Fibre channel cabling information is shown to illustrate supported configurations. In a dual-bus disk enclosure configuration, disk enclosures 1, 2, and 3 are stacked below the controller enclosure—two SCSI Buses per enclosure (see Figure 3–1). In a single-bus disk enclosure configuration, disk enclosures 6, 5, and 4 are stacked above the controller enclosure and disk enclosures 1, 2, and 3 are stacked below the controller enclosure—one SCSI Bus per enclosure (see Figure 3–2).

- 4. Connect the six VHDCI UltraSCSI bus cables between the controller and disk enclosures as shown in Figure 3–1 for a dual bus system and Figure 3–2 for a single bus system. Note that the supported cable lengths are 1, 2, 3, 5, and 10 meters.
- 5. Connect the AC power cords from the appropriate rack AC outlets to the controller and disk enclosures.

Figure 3–1: Dual-Bus Enterprise Storage RAID Array Storage System

0 3	SCSI Bus 1 Cable	2	SCSI Bus 2 Cable
6 5	SCSI Bus 3 Cable	4	SCSI Bus 4 Cable
6 5	SCSI Bus 5 Cable	6	SCSI Bus 6 Cable
7 A	AC Power Inputs	8	Fibre Channel Ports

Figure 3–2: Single-Bus Enterprise Storage RAID Array Storage System

Making a Physical Connection

Your new storage system components must be initially configured using a serial cable connection to the HSG80 array controllers. You can change the following settings: SCSI-2 or SCSI-3 mode, CCL enabled or disabled, and Transparent or Multibus Failover mode. The controllers are preset to SCSI-2 mode, CCL enabled, and Transparent Failover mode. For HP-UX, SCSI-2 and SCSI-3 modes are supported with the ACS 8.7 (SCSI-3 mode is supported only with Multiple-Bus, which, in turn, requires Secure Path).

To attach a host computer to the storage subsystem, install one or more host bus adapters into the computer. A Fibre Channel (FC) cable goes from the host bus adapter to an FC switch.

Preparing to Install Host Bus Adapter

Fibre Channel (FC) mass storage host bus adapters (HBAs) manufactured by HP/QLogic can be used with the storage subsystem and your HP platform.

The supported HP HBAs are:

- A5158A, 64-bit, 1 Gbps FC PCI;
- A6685A, 64-bit, 1 Gbps FC HSC; and,
- A6795A, 64-bit, 2 Gbps FC PCI.

All three HP HBAs require HP-UX operating system 11.0 or 11i (11.11), a multiple-bus configuration and Secure Path.

Install the HBA in your HP system using the instructions provided in the HBA documentation before preparing the system to interface with the subsystem.

NOTE: Hewlett-Packard hosts function as private hosts when attached to a fabric. Therefore, the Fibre Channel Switch QuickLoop feature must be enabled. This allows private hosts on fabric attached loops to access private devices on different fabric attached loops.

Before installing the host bus adapter, perform the following steps:

- 1. Perform a complete backup of the entire system.
- 2. Shut down the computer system or perform a hot addition of the adapter based upon directions for that server.

Note the following limitations regarding HBA usage:

• Fibre Channel Switch (FC-SW) connectivity is supported with HP A5158A, HP A6685A, and HP A6795A FC Adapters configured with HSG80 controllers, but only in multiple-bus failover mode. In order to have multiple-bus failover work properly, Secure Path software is required.

Host Bus Adapter and Driver

Ensure that you have the required FC HBA and drivers available to your system by issuing the following command, based on HBA type:

For HP FC HBAs:

#ioscan -fn |grep fc

For HP FC HBAs, the output from the HP-based command will be similar to:

Class	I	H/W Path	Driver	S/W State	*H/W Type	Desc.
fc	0	10/8	fcT1	CLAIM ED	INTERF ACE	HP FC Mass Storage Adapter
lan	1	10/8.6	fcT1_cnt	CLAIM ED	INTERF ACE	HP FC Mass Storage Cntl
fcp	0	10/8.8	fcp	CLAIM ED	INTERF ACE	FCP Protocol Adapter

Installing Host Bus Adapter

To make a physical connection, first install a host bus adapter.

CAUTION: Protect the host bus adapter board from electrostatic discharge by wearing an ESD wrist strap. DO NOT remove the board from the antistatic cover until you are ready to install it.

You need the following items to begin:

- Host bus adapter board
- The computer hardware manual
- Appropriate tools to service your computer

The host bus adapter board plugs into a standard PCI slot in the host computer. Refer to the system manual for instructions on installing PCI devices.

NOTE: Take note of the worldwide name (WWN) of each adapter. Do not power on anything yet. For the FC switches to autoconfigure, power on equipment in the sequence described below. Also, the controllers in the subsystem are not yet configured for compatibility with HP-UX.

For native HP HBAs, follow the instructions that came with your adapter.

Connecting to Your Host System

To connect to your host system, perform the following steps:

- 1. Shut down the HP System. Ensure that all power switches on the array controller and the host computer system are in the **OFF** position.
- 2. Connect an FC cable between the FC adapter connector on the back of the HP system and a port on the StorageWorks FC switch.
- 3. Connect FC cables from each array controller to the StorageWorks FC switch.
- 4. Turn on the power to the system and perform the following steps:
 - a. Configure the system for loop hard by accessing the Command Line Interpreter (CLI).
 - b. At the CLI prompt, enter the following command:

HSG80>set this_controller port_1_topology = loop hard

c. At the CLI prompt, enter the following command:

HSG80>set this_controller port_2_topology = loop hard

- d. At the CLI prompt, verify the changes by entering the following command: HSG80>show this_controller full
- 5. Turn on the power to the FC switch and perform the following steps:
 - a. Login to the switch. For more information, refer to the QuickLoop Management Guide that was shipped with your switch.

b. At the switchx:admin> prompt, enter the following command:

switch*x*:admin>qlEnable

NOTE: Switch prompts for admin accounts will vary depending on the name of the switch being accessed. For example, with a switch named switch1, switch1:admin> will be shown as the admin prompt.

c. At the switchx:admin> prompt, verify that all ports are online by entering the following command:

switch*x*:admin>qlShow

- 6. Turn on the power to the HP system, but do not boot the system.
- 7. Use the CLI to configure your array controller if it is not yet configured.
- 8. Boot the system. During the boot process, device special files are created for each logical unit configured on the array controller, and a Logical Unit Number (LUN) is assigned to each storageset configured on the array controller.

If you need to reconfigure the controller at a later time, device special files can be created without Reboot, either manually or automatically, by using the insf -e command:

After rebooting the new kernel, use ioscan -f to verify that drivers are installed, HBA status is OK and all target LUNs are identified.

Configuring a High Availability Cluster Using MC/ServiceGuard

With MC/ServiceGuard version 11.xx on HP-UX version 11.xx, a multihost configuration is supported on HP systems. The *StorageWorks* Command Console (SWCC) Agent and installation scripts allow agent failover.

To configure the system for use with HP-UX MC/ServiceGuard:

- 1. On each host, connect the FC adapter to the switch.
- 2. Connect each port of the array controller to the switch.
- 3. Ensure that the controller is in transparent failover dual-redundant mode.

Figure 3–3: Single switch HP MC/ServiceGuard cluster, high availability configuration

Configuring HP-UX File System

The HP-UX Operating System has now been modified to communicate with the RAID Array Controller.

Enable Volume Set Addressing for HP Host Mode

HP systems require volume set addressing in order to present more than eight LUNs to the host. The new host port mode is HP_VSA.

In order to use the RAID Array from the HP system, perform the following steps:

1. Create new virtual disks on your RAID Array and assign LUN IDs to each virtual disk created.

NOTE: If not yet created, you can use the Client (refer to the *Compaq StorageWorks Command Console Version 2.5, User Guide*). LUNs created on the Array must be assigned consecutively starting with LUN 0. Currently there is an HP-UX limit of eight LUNs per TARGET, so plan accordingly. A new host operating mode (HP_VSA_ is now available which permits the assignment of 128 LUNs per HBA/Array.

Refer to the *HP System Administration Tasks Manual* for instructions on the following tasks:

— Adding the RAID storageset to a volume group.

NOTE: Do not use the System Administration Manager (SAM) to Create/Extend Volume Groups. Creating/Extending Volume Groups must be done using HP-UX commands. When SAM scans for hardware, any HSG80 controller LUNs created after the first LUN are not parsed correctly by SAM and consequently, cannot be selected to create a volume group. The solution around this problem is to use HP-UX commands to create/extend the volume groups and then use SAM to create and manage logical volumes.

- Determining the mount point directory on your system.
- Using the mount command to mount the device on your system.
- Editing the *etc/fstab* file if you want this device mounted each time you boot the system.
- 2. Create a directory for the volume group. This is located in the */dev* directory. Enter the following command to verify which volume groups exist.
 - # Is /dev

You see a directory similar to the one shown below.

From the above list, the only volume group that exists is vg00. For the purpose of this example, vg01 has been created.

3. Enter the following command to make the directory vg01:

mkdir /dev/vg01

NOTE: The standard HP-UX kernel supports vg00 to vg09. Creation of volume groups greater than vg09 requires kernel tuning. Refer to the appropriate HP-UX documentation for this information.

4. Create a control file named **group** in the /dev/vg0*n* directory created in step 2. This is done with the mknod command:

mknod /dev/vg0n/group c 64 minor_number

The *minor_number* for the group file is hexadecimal. This *minor_number* always ends in '0000' and is in the form 0x0n0000, where again *n* is the identity of the volume group being created.

ioscan -fnCdisk

Class		H/W Path	Drive r	S/W State	H/W Type	Description
disk	3 6	8/12.8.0.255.4 .0.0	sdisk	CLAIM ED	DEVICE	DEC HSG80
		/dev/dsk	c/c5t0d0	/dev/rdsk	/c5t0d0	
disk	3 7	8/12.8.0.255.4 .0.1	sdisk	CLAIM ED	DEVICE	DEC HSG80
		/dev/dsk	c5t0d1	/dev/rdsk	/c5t0d1	
disk	3 8	8/12.8.0.255.4 .0.2	sdisk	CLAIM ED	DEVICE	DEC HSG80
		/dev/dsk	c/c5t0d2	/dev/rdsk	/c5t0d2	
disk	2 8	8/12.8.0.255.4 .1.0	sdisk	CLAIM ED	DEVICE	DEC HSGCCL
		/dev/dsk	c/c5t1d0	/dev/rdsk	/c5t1d0	
disk	2 9	8/12.8.0.255.4 .1.1	sdisk	CLAIM ED	DEVICE	DEC HSG80
		/dev/dsk	c/c5t1d1	/dev/rdsk	/c5t1d1	
disk	3 0	8/12.8.0.255.4 .1.2	sdisk	CLAIM ED	DEVICE	DEC HSG80
		/dev/dsk	c/c5t1d2	/dev/rdsk	/c5t1d2	
disk	2	8/16/5.2.0	sdisk	CLAIM ED	DEVICE	TOSHIBA CD-ROM XM-401TA
		/dev/dsk	c/c1t2d0	/dev/rdsk	/c1t2d0	
disk	3	8/16/5.5.0	sdisk	CLAIM ED	DEVICE	DEC RZ28M (C) DEC

			Drive	S/W	H/W	
Class	I	H/W Path	r	State	Туре	Description
		/dev/dsk/c1t5d0		/dev/rdsk/	c1t5d0	

pvcreate /dev/rdsk/c5t0d1

Physical volume "/dev/rdsk/c50d1" has been successfully created.

5. Create the volume group. This is done with the *vgcreate* command similar to the following:

vgcreate /dev/vg0n /dev/dsk/cntndn

6. If necessary, extend the volume group:

vgextend /dev/vg0n /dev/dsk/cntndn

7. The volume group may be displayed after creation with the *vgdisplay* command:

vgdisplay -v /dev/vg0n

8. Display the volume group

vgdisplay -v /dev/vg01

--- Volume groups ---

VG Name	/dev/vg01
VG Write	read/write
Access	
VG Status	available
Max LV	255
Cur LV	0
Open LV	0
Max PV	16
Cur PV	1
Act PV	1
Max PE per	8678
PV	
VGDA	2
PE Size	4
(Mbytes)	

--- Volume groups ---

Total PE	8677
Alloc PE	0
Free PE	8677
Total PVG	0
Physical volu	umes
PV Name	/dev/dsk/c5t0 d1
PV Status	available
Total PE	8677
Free PE	7677
PV Name	/dev/dsk/c5t0 d0
PV Status	available
Total PE	8677
Free PE	8677

9. Creation and Management of the Logical Volumes may now be accomplished via the HP-UX commands.

An example of doing this is:

lvcreate /dev/vg01

Logical volume "/dev/vg01/lvol1" has been successfully created with character device "/dev/vg01/lvol1"

Volume Group configuration for /dev/vg01 haws been saved in /etc/lvmconf/vg01.conf

```
# lvextend -L 100 /dev/vg01/lvol1
```

Logical volume "/dev/vg01/lvol1" has been successfully extended.

Volume Group configuration for /dev/vg01 has been saved in /etc/1vmconf/vg01.conf

```
# lvdisplay /dev/vg01/lvol1
```

--- Logical volumes ---

LV Name	/dev/vg01/lvo l1
VG Name	/dev/vg01
LV Permission	read/write
LV Status	available/syn cd
Mirror copies	0
Consistency Recovery	MWC
Schedule	parallel
LV Size (Mbytes)	100
Current LE	25
Allocated PE	25
Stripes	0
Stripe Size (Kbytes)	0
Bad block	on
Allocation	strict

Solution Software Upgrade Procedures

Use the following procedures for upgrades to your Solution Software. It is considered best practice to follow this order of procedures:

- 1. Perform backups of data prior to upgrade;
- 2. Verify operating system versions, upgrade operating systems to supported versions and patch levels;
- 3. Quiesce all I/O and unmount all file systems before proceeding;
- 4. Upgrade switch firmware;
- 5. Upgrade Solution Software
- 6. If installing an operating system that uses Secure Path (AIX, HP-UX, Netware, Sun or Windows), upgrade Secure Path to the latest version at this time;
- 7. Upgrade ACS software.

NOTE: Solely for the purpose of performing upgrades to the ACS firmware, this Solution Software Kit supports previous ACS Version 8.6. It is not recommended mixing ACS versions in the same SAN.

NOTE: For upgrades in a SAN that includes HSG80 array controllers and Enterprise Virtual 2.0 Arrays controllers, the following are required:

- ACS 8.7 and VCS 2.0 require Solution Software 8.7 (SWCC 2.5) Retrieve Solution Software drivers from EVA kit, retrieve SWCC drivers from ACS 8.7 kit
- ACS 8.6 and VCS 2.0 require Solution Software 8.6 (SWCC 2.4)
- ACS 8.7 and ACS 8.6 require Solution Software 8.7 (SWCC 2.5)

Refer to the *StorageWorks HSG60/HSG80 Array Controller ACS Version 8.7 Maintenance and Service Guide* and the *Solution Software Release Notes* for the latest information on upgrades.

NOTE: Rolling upgrades are not supported on HP-UX when configured with Secure Path.

Preparing Storage RAID Array

Prepare the Enterprise/Modular Storage RAID Array by following these recommended steps:

- 1. Verify the storage system is operating properly.
 - a. Check that the date and time are set properly by typing:

HSG80> show this

b. Check that no units are in a failed state by typing:

HSG80> show storage

c. Verify the cache battery is fully charged by typing:

HSG80> show this

2. Check the disks and disable writeback cache on all unit by typing the following commands. Make a note of all units changed.

HSG80> show d1 HSG80> set d1 nowriteback_cache

3. Disable mirrored cache by typing:

HSG80> set this nomirrored_cache

Preparing HP-UX System

Recommendations for preparing the HP-UX system prior to upgrading your ACS firmware are:

- 1. Build and verify a full backup of your HP-UX system as close as possible to the time you intend to upgrade your ACS firmware.
- 2. Make a backup copy of your HP-UX kernel for safety recovery.
- 3. Build a mapping of your volume groups. Export them into map files.
- 4. Save a listing of all mounted file systems.
- 5. Shut-down all SWCC Agents. For MC/ServiceGuard clusters this must be done on all nodes.
- 6. Set option **4** on the SWCC Agent menu **auto start at boot options** to the off state. For MC/ServiceGuard clusters, set option 4 to the off state on all nodes.

Rolling Upgrades

Most major problems that occur when performing a rolling upgrade are due to the changes to the array controller NVRAM configuration. Therefore, it is important to follow the rolling upgrade procedure exactly.

For further information, refer to the *StorageWorks HSG60/HSG80 Array Controller* ACS Version 8.7 Maintenance and Service Guide.

An upgrade performed while the subsystem is up and running is known as a "Rolling Upgrade". This type of upgrade does not require a shutdown and restart of the subsystem for the upgrade changes to take effect.

Recommendations for doing a rolling upgrade are:

- Upgrade when disk activity is at a minimum.
- Have at least two good flashcard copies of the ACS Version 8.7 firmware.
- Check the disks and disable writeback cache on all units by typing the following commands. Make a note of all units changed.

HSG80> show d1 HSG80> set d1 nowriteback_cache

- Ensure that mirrored cache is disabled by typing:
- HSG80> set this nomirrored_cache
- Allow two minutes for storage recovery after each controller has been upgraded.
- After upgrading the second controller, a manual restart is required.
- In some cases a vgchange -a y must be invoked to bring the volume group back online. This is due to a path change or time out of the volume group.

NOTE: Rolling upgrades are not supported on HP-UX when configured with Secure Path.

Preparing Storage RAID Array

Prepare the Enterprise/Modular Storage RAID Array by following these recommended steps:

- 1. Verify the storage system is operating properly.
 - a. Check that the date and time are set properly by typing: HSG80> show this
 - b. Check that no units are in a failed state by typing:

HSG80> show storage

c. Verify the cache battery is fully charged by typing:

HSG80> show this
2. Check the disks and disable writeback cache on all unit by typing the following commands. Make a note of all units changed.

HSG80> show d1 HSG80> set d1 nowriteback_cache

Preparing HP-UX System

Recommendations for preparing the HP-UX system prior to upgrading your ACS firmware are:

- 1. Build and verify a full backup of your HP-UX system as close as possible to the time you intend to upgrade your ACS firmware.
- 2. Make a backup copy of your HP-UX kernel for safety recovery.
- 3. Build a mapping of your volume groups. Export them into map files.
- 4. Save a listing of all mounted file systems.
- 5. Shut-down all SWCC Agents. For MC/ServiceGuard clusters this must be done on all nodes.
- 6. Set option **4** on the SWCC Agent menu **auto start at boot options** to the off state. For MC/ServiceGuard clusters, set option 4 to the off state on all nodes.

Rolling Upgrades

Most major problems that occur when performing a rolling upgrade are due to the changes to the array controller NVRAM configuration. Therefore, it is important to follow the rolling upgrade procedure exactly.

For further information, refer to the *StorageWorks HSG60/HSG80 Array Controller* ACS Version 8.7 Maintenance and Service Guide.

An upgrade performed while the subsystem is up and running is known as a "Rolling Upgrade". This type of upgrade does not require a shutdown and restart of the subsystem for the upgrade changes to take effect.

Recommendations for doing a rolling upgrade are:

- Upgrade when disk activity is at a minimum.
- Have at least two good flashcard copies of the ACS Version 8.7 firmware.

• Check the disks and disable writeback cache on all units by typing the following commands. Make a note of all units changed.

HSG80> show d1 HSG80> set d1 nowriteback_cache

- Ensure that mirrored cache is disabled by typing:
- HSG80> set this nomirrored_cache
- Allow two minutes for storage recovery after each controller has been upgraded.
- After upgrading the second controller, a manual restart is required.
- In some cases a vgchange -a y must be invoked to bring the volume group back online. This is due to a path change or time out of the volume group.

Installing and Configuring HSG Agent

StorageWorks Command Console (SWCC) enables real-time configuration of the storage environment and permits the user to monitor and configure the storage connected to the HSG80 controller.

The following information is included in this chapter:

- "Why Use StorageWorks Command Console (SWCC)?," page 4–1
- "Installation and Configuration Overview," page 4–2
- "About the Network Connection for the Agent," page 4–3
- "Before Installing the Agent," page 4–5
- "Installing and Configuring the Agent," page 4–5
- "Running the Agent," page 4–18
- "Configuring the Agent for an Alternate Path," page 4–18
- "Removing the Agent," page 4–19

Refer to Chapter 5 for a description of how to configure a subsystem that uses Fibre Channel fabric topology.

Why Use StorageWorks Command Console (SWCC)?

StorageWorks Command Console (SWCC) enables you to monitor and configure the storage connected to the HSG80 controller. SWCC consists of Client and Agent.

- The client provides pager notification and lets you manage your virtual disks. The client runs on Windows 2000 with Service Pack 2 and 3 and Windows NT 4.0 with Service Pack 6A or above.
- The agent obtains the status of the storage connected to the controller. It also passes the status of the devices connected to the controller to other computers and provides email notification and error logging.

To receive information about the devices connected to your HSG80 controller over a TCP/IP network, you must install the Agent on a computer that is connected to a controller.

The Agent can also be used as a standalone application without Client. In this mode, which is referred to as Agent only, Agent monitors the status of the subsystem and provides local and remote notification in the event of a failure. A subsystem includes the HSG80 controller and its devices. Remote and local notification can be made by email and/or SNMP messages to an SNMP monitoring program.

Table 4–1:	SWCC	Features	and	Components
------------	------	----------	-----	------------

Features	Agent Required?	Client Required?
Creation of RAID sets:	Yes	Yes
■ Striped device group (RAID 0)		
Mirrored device group (RAID 1)		
■ Striped mirrored device group (RAID 0+1)		
 Striped parity device group (RAID 3/5) 		
Individual device (JBOD)		
Monitor multiple subsystems at once	Yes	No
Event logging	Yes	No
Email notification	Yes	No
Pager notification	Yes	Yes

NOTE: For serial and SCSI connections, the Agent is not required for creating virtual disks.

Installation and Configuration Overview

Table 4–2 provides an overview of the installation.

Table 4–2: Installation and Configuration Overview

Step	Procedure
1	Verify that your hardware has been set up correctly. See the previous chapters in this guide.
2	Verify that you have a network connection for the Client and Agent systems. See "About the Network Connection for the Agent" on page 4–3.

Step	Procedure
3	Verify that there is a LUN for communications. This can be either the CCL or a LUN that was created with the CLI. See "What is the Command Console LUN?" on page 1–11 in Chapter 1.
4	Install the Agent (TCP/IP network connections) on a system connected to the HSG80 controller. See Chapter 3 for agent installation.
5	Add the name of the Client system to the Agent's list of Client system entries (TCP/IP network connections). This can be done during installation or when reconfiguring the Agent.
6	Install the Client software on Windows 2000 with Service Pack 2 or 3 or Windows NT 4.0 with Service Pack 6A. See Appendix B.
7	Add the name of the Agent system to the Navigation Tree of each Client system that is on the Agent's list of Client system entries (TCP/IP network connections). See Appendix B.
8	Set up pager notification (TCP/IP network connections). Refer to "Setting Up Pager Notification" in the <i>StorageWorks Command Console</i> <i>Version 2.5, User Guide.</i>

Table 4–2:	Installation and	Configuration	Overview	(Continued)
	instanation and	Conniguration		(Continueu)

About the Network Connection for the Agent

The network connection, shown in Figure 4–1, displays the subsystem connected to a hub or a switch. SWCC can consist of any number of Clients and Agents in a network. However, it is suggested that you install only one Agent on a computer.

By using a network connection, you can configure and monitor the subsystem from anywhere on the LAN. If you have a WAN or a connection to the Internet, monitor the subsystem with TCP/IP.

IMPORTANT: SWCC does not support the dynamic host configuration protocol (DHCP) or the Windows Internet Name Service (WINS).

CXO7240A

Figure 4–1: An example of a network connection

- Agent system (has the Agent software)
- O TCP/IP Network
- Client system (has the Client software)
- Fibre Channel cable

- Hub or switch
- HSG80 controller and its device subsystem
- Servers

Before Installing the Agent

The Agent requires the minimum system requirements, as defined in the release notes for your operating system. The program is designed to operate with the Client version 2.5 on Windows 2000 or Windows NT.

Installing and Configuring the Agent

The SWCC Agent has been designed to run on HP-UX 11.0 and 11.i(11.11) versions in 32- or 64-bit mode operation.

The memory requirements are based on estimations that have been used during the use of the product. You may see an increase or decrease of memory usage based on your configuration.

8 - 16 MB of available physical memory is required for 8 - 700 GB of storage. 32- 64 MB of available physical memory is required for 700 GB- 2 TB of storage.

The SWCC Agent software requires that you install using a super user account such as ROOT or you should at least have SU privileges to install and run the SWCC Agent.

Checking Disk Space

/tmp

The SWCC Agent install uses approximately 60 mb of space in the /tmp area during the install. Once the install completes it is deleted.

/opt/steam (or install dir)

The install dir /opt/steam uses approximately 32 mb of space in the /opt area. This is permanent space that should not grow more than 3 - 5 mb during the life of the product.

/var/adm/syslog

The steamd.log resides in this directory and can grow large depending on the amount of events your storage system has reported. It is recommended that you have at least 250 mb of available space in your /var directory initially to support the SWCC Agent event logging system. You can clean the log by using an editor such as vi or move the log to a backup area and create a new empty file with touch or vi.

Preparing for the Install

1. Start by checking the current operation system by typing;

#uname -a

Check the memory on your machine during a peak time by typing;

#top

2. Check the disk space on your logical volumes to ensure you have the minimum space required to install and run the SWCC Agent. To do this type;

#bdf

Installing the Agent

There are two types of install for the SWCC Agent. A Graphical User Interface (GUI) and the Character Terminal User Interface (CUI) install process. To start the install type the following.

#ioscan -fnuC disk

This is used to discover the device file for the CDROM device.

#mount /dev/dsk/c1t2d0 /cdrom

This mounts the cdrom as a mounted filesystem.

Note that c1t2d0 is an example and should be changed to reflect the address of the CD.

#cd /cdrom

Now start the install script to activate the SWCC Agent install.

```
#./install.sh
```

If the GUI screen is invoked, the main menu in Figure 4–2 will appear. Otherwise, go to "Character-based (CLI) Install Procedure," page 4–10.

The SWCC Agent install now supports a Graphic environment installation. You must have an X-windows environment setup in order to run this type of install.

- 1. To start the SWCC Agent install, click on the Agent button (see Figure 4–3).
- 2. To view the documentation, click on the Documentation button.
- 3. To exit, click on the exit button.

Figure 4–2: GUI Install

Figure 4–3: Agent "Data entry window"

Steps for entering data

- 1. Enter the directory in which you plan on install (/opt/steam is the default.)
- 2. Enter the Agent password (It must be at least 6 characters.)
- 3. Confirm the password.
- 4. Enter the subsystem monitoring interval. (180 is the default.)
- 5. Enter an e-mail address to record error notifications. (Your current account is the default.)
- 6. Enter the port number for the spagent. (4999 is the default.)
- 7. Enter the port number for the spgui. (4998 is the default.)
- 8. Enter the SWCC Client name. (remote_client is the default.)
- 9. Select the Agent notification scheme for the client. (You must select one.)

- No error notification
- Notification via TCP/IP socket
- Notification via SNMP protocol
- Notification via TCP/IP socket SNMP
- 10. Select the error notification level. The user will be notified based on this level. (You must select one.)
 - Fatal errors
 - Warnings and fatal errors
 - Info warnings and fatal errors
- 11. Select the subsystem access that the client will have. (This is used to control the client access into the subsystem. You must select one.)
 - Overall system status
 - Detailed status
 - Configuration status
- 12. Start Install (Click on the Start Install button located in the lower right corner of the screen.)

To Add or change the SWCC Agent configuration. Use the Agent configure script located in the /opt/steam/bin dir called config.sh.

GUI Console Display Install Warning

The GUI install process uses a standard error trapping screen that is displayed when part of the required install information is missing or part of the install has failed. Below is a sample of the default screen.

Figure 4-4: Console Display Install Warning

Character-based (CLI) Install Procedure

Once you have executed the /cdrom/install.sh, you will be prompted with the following questions in order to setup the SWCC Agent.

- Enter the directory in which you plan on install (/opt/steam is the default.)
- Enter the Agent password (It must be at least 6 characters.)
- Confirm the password.
- Enter the subsystem monitoring interval. (180 is the default.)
- Enter an e-mail address to record error notifications. (Your current account is the default.)
- Enter the port number for the spagent. (4999 is the default.)
- Enter the port number for the spgui. (4998 is the default.)

- Enter the SWCC Client name. (remote_client is the default.)
- Select the Agent notification scheme for the client. (You must select one.)
 - No error notification
 - Notification via TCP/IP socket
 - Notification via SNMP protocol
 - Notification via TCP/IP socket SNMP
- Select the error notification level. The user will be notified based on this level. (You must select one.)
 - Fatal errors
 - Warnings and fatal errors
 - Info warnings and fatal errors
- Select the subsystem access that the client will have. (This is used to control the client access into the subsystem. You must select one.)
 - Overall system status
 - Detailed status
 - Configuration status
- Start Install (Click on the Start Install button located in the lower right corner of the screen.)
- To Add or change the SWCC Agent configuration, use the Agent configure script located in the /opt/steam/bin dir called config.sh.

Verify Entries

1. Select option **3** and press Enter.

The computer displays your choices, as shown in the following example:

```
Adding client--
name: <Host name>
access level: 2
error notification: 3
Is this information correct? [Y,n]
```

2. Verify the information, by typing **Y** or **n**, and press **Enter**.

The following is displayed:

Would you like to add another client? [y, N]

Configure CCL

3. Select option **n** and press **Enter**.

The computer scans the I/O bus for Command Console LUNs. The following is an example of the information that may be shown:

_____ Scanning I/O Bus on nodes: hpk400a Processing Host hpk400a HW Path Driver Node Device _____ ----- ----hpk400a 10/8.8.0.255.3.15.0 sdisk HSGCCL hpk400a 10/8.8.0.255.4.1.0 sdisk HSGCCL Found 2 Command Console LUNs on host hpk400a. To remove a CCL enter: "r hardware_path", to add enter "a" Would you like to Add, Remove or Continue? [a,r,C]

4. Select option C and press Enter.

If the software does not detect any Command Console LUNs (CCL), answer "a" and select the hardware path from the list. You should not include the CCLs for the RA3000 because they are not supported by this Agent. Note that the disc3 driver indicates that this CCL is on an HP-PB bus. The SPT driver will be attached to this hardware path and will require this node to be rebooted.

5. If you do not need to add or delete CCLs, select option C and press Enter to continue.

The following is an example of the information that may be displayed:

Completed checking pass thru driver installation and special files. Updating storage.ini files for each host. Creating storage.ini files for each host. HSG80 0 ZG61701016 ZG62001218 V85L c6t2d0 c6t2d0

- 6. Enter a subsystem name.
- 7. Enter the desired monitoring period in seconds:

The following is displayed:

Would you like to enable mail notification? [Y,n]

Configure Email Notification

8. Select option **y** and press **Enter**.

The following is displayed:

Adding a User for Mail Notification Enter the email address of the user or CTRL-C to cancel:

9. Enter the user email address and press Enter.

The following is displayed:

Enter the error notification level for this user. The user will be notified of errors at this level and above. The possible options are: 1 = Fatal Errors 2 = Warning and Fatal Errors 3 = Info, Warning and Fatal Errors Enter Notification Level (1, 2, 3):

10. Select option **3** and press **Enter**.

The screen displays your choices:

```
Adding Notification User--
name: root
Error Notification Level: Info, Warning and Fatal Errors
Is this information correct? [Y,n]
```

11. Select option Y and press Enter.

The following is displayed:

Would you like to add another user? [y,N]

12. Select option N and press Enter.

The screen displays your choices:

Authorized mail notification list Username Notification Level root Info, Warning and Fatal Errors -- Press Enter to continue --The STEAM Agent package has been successfully installed. Would you like to start the Agent now? [Y,n]

Restart the Agent

13. Select option **Y** and press **Enter**. You must have the Agent running for it to monitor your subsystems and provide updates to remote computers.

The computer displays the following:

RAID Array Configuration Menu				
Agent Admin Options	Storage Subsystem			
Options				
1) Change Agent Password	12) View Subsystems			
2) Change SNMP Enterprise Oil 3) Start/Stop the Agent	14) Romovo a			
Subsystem	(4) Helliove a			
4) Toggle Agent Startup on Boot	15) Modify a			
Subsystem				
5) Uninstall Agent				
Agent Notification Options	Client Options			
6) Toggle Error Log Notification	16) View Clients			
7) Toggle Mail Notification	17) Add a Client			
8) View Mail Notification List	18) Remove a Client			
9) Add User to Mail Notification List 19) Modify a Client				
10) Remove User from Mail Noti	Ication List			
<u>Exit</u> :				
Q) Enter Selection:				
Enter Selection.				

14. Select option 12 and press Enter.

The computer displays the entered storage subsystems, as shown by the following:

Storage subsystem List						
hpk400a						
Subsystem	Controller	Firm	- EMU	Acce	ss Mon	itoring
Name Period, secs	Туре		ware	Туре	Device 1	Device 2
HSG.0	HSG	V86F	None	c6t2d0		180
HSG.1	HSG	V86F	None	c5t1d0		180

- 15. Press **Enter** to continue. The RAID array configuration menu, shown in Step 33 above, is displayed.
- 16. To exit, select option **Q** and press Enter.

NOTE: You can change the configuration of the Agent at any time. For more information, see "You can reconfigure previously installed Agents by using the RAID Array Configuration menu. To access the RAID Array Configuration menu program, enter the following command:," page 4–17.

Installing and Configuring the Agent with MC/ServiceGuard

All hosts in the MC/ServiceGuard cluster must be entered into their "/rhosts" file, the "host_name root" of all hosts in the cluster. This action enables access by the root account.

NOTE: All members of the cluster must be remotely accessible before the installation can be successfully completed.

1. If you plan to install the Agent into a MC/ServiceGuard package, selection 2 should be used even if pass-through drivers are not installed.

IMPORTANT: The Client and the Agent must specify the same port numbers for "spgui" and "spagent." It is imperative that the numbers entered here are consistent with all other Client and Agent applications throughout your network enterprise.

- 2. Specify the port number used for the Client to communicate with the Agent. If the default port is already used, select option N to specify a new even-numbered port.
- 3. Specify the port number for the Agent to send notifications to the Client. If the default port is already used, select option **N** and specify a new port (port specified above +1).
- 4. To configure the subsystem using the Storage Window, you need to set a password. The install program does not echo the information that you enter.

NOTE: The Agent can operate with other SNMP applications. For this reason, it needs information about the Agent manufacturer and the Enterprise object identifier for use with its MIB.

- 5. Enter Compaq Computer Corporation as the Agent manufacturer.
- 6. Follow the on-screen prompts to complete installation.
- 7. After rebooting all necessary hosts, login as root and enter the following command:

/installation_directory/steam/bin/config.sh

The RAID Array Configuration menu appears.

8. Select option **13** and press **Enter** to add a subsystem.

Notice SPT is now the driver on the HP-PB bus adapter.

9. Select option **C** to continue.

The computer displays the subsystems connect to your host, as shown in the following example:

Processing Host gemini Node HW Path Driver Device -----gemini 8/0.8.0.255.0.2.0 sdisk HSGCCL gemini 8/4.8.0.255.0.2.0 sdisk HSGCCL gemini 10/4/12.0.0 spt HSZ70CCL gemini 10/4/12.0.0 spt HSZ70CCL Found 4 Command Console LUNs on host aries.

To remove a CCL enter: "r hardware_path", to add enter "a" Would you like to Add, Remove or Continue? [a,r,C]

The SPT driver is now attached to both HP-PB bus adapters.

10. Select option **C** to continue.

The computer updates the storage.ini files for each host.

- 11. Enter a name for your subsystem.
- 12. Enter a desired monitoring period in seconds. The default is 180 seconds.

The following is displayed:

Completed checking pass thru driver installation and special files. Updating storage.ini files for each host.

For each subsystem the computer finds, it will ask you to enter a name for the subsystem and a desired monitoring period.

13. When you are asked to start "Steam_pkg", enter **Y**. "Steam_pkg" is the name of the HS-Series Agent daemon. This daemon must be running for it to monitor your subsystems and for it to provide status updates to your client systems.

The following is displayed:

RAID Array Configuration Menu				
Agent Admin Options	Storage Subsystem			
Options 1) Change Agent Password 2) Change SNMP Enterprise OIE 3) Start/Stop the Agent Subsystem 4) Toggle Agent Startup on Boot Subsystem 5) Uninstall Agent	 12) View Subsystems 13) Add a Subsystem 14) Remove a 15) Modify a 			
Agent Notification Options 6) Toggle Error Log Notification 7) Toggle Mail Notification 8) View Mail Notification List 9) Add User to Mail Notification L 10) Remove User from Mail Notif 11) Modify Mail Notification List	<u>Client Options</u> 16) View Clients 17) Add a Client 18) Remove a Client ist 19) Modify a Client ication List			
Exit: Q) Enter Selection:				

NOTE: You can change the configuration of the Agent at any time. For more information, see "You can reconfigure previously installed Agents by using the RAID Array Configuration menu. To access the RAID Array Configuration menu program, enter the following command:," page 4–17.

You can reconfigure previously installed Agents by using the RAID Array Configuration menu. To access the RAID Array Configuration menu program, enter the following command:

/installation_directory/steam/bin/config.sh

IMPORTANT: When you make a change to the HS-Series Agent configuration, you must stop and restart the HS-Series Agent for your changes to take effect.

Restarting the Agent

When changes are made to the Agent configuration, it must be restarted for changes to take effect.

1. Select Start/Stop the Agent from the Agent Maintenance menu.

2. If the Agent is shown to be running in the RAID Array Configuration menu, select option **y** to stop the Agent. Repeat the menu selection and select option **y** to start the Agent.

Running the Agent

The Agent runs in the background as a daemon. The Agent was started when you installed it. Its default is to restart automatically.

The installation script places two entries in the "*/etc/inittab*" file to implement automatic execution of the Agent. The tag fields in the file are "*stmd*" and "*ntfy*".

IMPORTANT: You can stop and start the Agent by using the RAID Array Configuration menu; however, the Agent must be running in order to monitor subsystems.

Configuring the Agent for an Alternate Path

- 1. Go to the RAID Array Configuration Menu by entering the following command:
 - # /installation_directory/steam/bin/config.sh

NOTE: For HP-UX, only one alternate path is supported in transparent failover mode.

- 2. Select option **15** to modify a subsystem.
- 3. Enter the position number of the subsystem to modify.
- 4. Select option **4**, alternate device.
- 5. Enter whether you want to add or remove a device.
- 6. Enter an alternative access device. The following is an example of the name of the device that you may enter:

```
For SCSI-2: ../dev/rdsk/c9t1d0
For SCSI-3: ../dev/rscsi/c9t1do
```

7. Follow the on-screen prompts.

Removing the Agent

To remove the Agent from the host server:

- 1. Shut down the Agent.
 - a. Invoke the configuration menu by typing:

./opt/steam/bin/config.sh

- b. Select Option **3** Start/Stop the Agent.
- c. Confirm Agent shutdown by pressing Enter.

Remove the steam entries in 2 files.

2. Select Option 14, Remove a subsystem

/etc/inittab					
hsvg::once:/opt/steam/bin/hsg_vgmon >> 2>&1					
stmd::respawn /var/adm/sys1	n:/opt/steam/b log/steamd.log	in/steamd -S > 2>&1	>		
<pre>ntfy::respawn:/opt/steam/bin/notify.exe >> /var/adm/syslog/steamd.log 2>&1</pre>					
/etc/services	5				
spgui	4998/tcp	#StorageWorks	Client		
spagent	4999/tcp	#StorageWorks	Agent		

Remove the steam directory and all its subordinate files.

3. Select Option 5, Uninstall agent

cd /opt rm -r /opt/steam

If for some reason any of the files will not delete check the to see if the Agent or Notify is still running.

Login as root. ps -ef |grep steam

If you see either these then your Agent or Notify process may be hung. For example:

```
root 1497 1 0 18:10:13 console 0:26 /opt/steam/bin/steamd -S
root 1498 1 0 18:10:13 console 0:00
/opt/steam/bin/notify.exe
```

At this point the only way to clear this without rebooting is to kill the process and repeat step 3. For example:

kill -9 1498 kill -9 1497 cd /opt rm -r /opt/steam

FC Configuration Procedures

This chapter describes procedures to configure a subsystem that uses Fibre Channel (FC) fabric topology. In fabric topology, the controller connects to its hosts through switches.

The following information is included in this chapter:

- "Establishing a Local Connection," page 5–2
- "Setting Up a Single Controller," page 5–3
- "Setting Up a Controller Pair," page 5–10
- "Configuring Devices," page 5–17
- "Configuring Storage Containers," page 5–17
- "Assigning Unit Numbers and Unit Qualifiers," page 5-23
- "Configuration Options," page 5–24
- "Verifying Storage Configuration from Host," page 5–28

Use the command line interpreter (CLI) or *StorageWorks* Command Console (SWCC) to configure the subsystem. This chapter uses CLI to connect to the controller. To use SWCC for configuration, see the SWCC online help for assistance.

IMPORTANT: These configuration procedures assume that controllers and cache modules are installed in a fully functional and populated enclosure and that the PCMCIA cards are installed.

To install a controller or cache module and the PCMCIA card, see the *StorageWorks HSG60/HSG80 Array Controller ACS Version 8.7 Maintenance and Service Guide*.

Establishing a Local Connection

A local connection is required to configure the controller until a command console LUN (CCL) is established using the CLI. Communication with the controller can be through the CLI or SWCC.

The maintenance port, shown in Figure 5–1, provides a way to connect a maintenance terminal. The maintenance terminal can be an EIA-423 compatible terminal or a computer running a terminal emulator program. The maintenance port accepts a standard RS-232 jack. The maintenance port cable shown in Figure 5–1 has a 9-pin connector molded onto the end for a PC connection. If you need a terminal connection or a 25-pin connection, you can order optional cabling.

Maintenance Port
 Additional Additiona Additional Additiona Additional Additional Additional Additiona

Figure 5–1: Maintenance port connection

CAUTION: The maintenance port generates, uses, and can radiate radio-frequency energy through its cables. This energy may interfere with radio and television reception. Disconnect all maintenance port cables when not communicating with the controller through the local connection.

Setting Up a Single Controller

Power On and Establish Communication

- 1. Connect the computer or terminal to the controller as shown in Figure 5–1. The connection to the computer is through the COM1 or COM2 port.
- 2. Turn on the computer or terminal.
- 3. Apply power to the storage subsystem.
- 4. Verify that the computer or terminal is configured as follows:
 - 9600 baud
 - 8 data bits
 - 1 stop bit
 - no parity
 - no flow control
- 5. Press **Enter**. A copyright notice and the CLI prompt appear, indicating that you established a local connection with the controller.

Cabling a Single Controller

The cabling for a single controller is shown in Figure 5–2.

NOTE: It is a good idea to plug only the controller cables into the switch. The host cables are plugged into the switch as part of the configuration procedure ("Configuring a Single Controller Using CLI," page 5–4).

Host port 2
 FC switch

Figure 5–2: Single controller cabling

Configuring a Single Controller Using CLI

To configure a single controller using CLI involves the following processes:

- Verify the Node ID and Check for Any Previous Connections.
- Configure Controller Settings.
- Restart the Controller.
- Set Time and Verify all Commands.
- Plug in the FC Cable and Verify Connections.
- Repeat Procedure for Each Host Adapter.
- Verify Installation.

Verify the Node ID and Check for Any Previous Connections

1. Enter a SHOW THIS command to verify the node ID:

SHOW THIS

See "Worldwide Names (Node IDs and Port IDs)," page 1–27, for the location of the sticker.

The node ID is located in the third line of the SHOW THIS result:

```
HSG80> SHOW THIS
Controller:
HSG80 ZG80900583 Software V8.7, Hardware E11
NODE_ID = 5000-1FE1-0001-3F00
ALLOCATION_CLASS = 0
```

If the node ID is present, go to step 5. If the node ID is all zeroes, enter node ID and checksum, which are located on a

sticker on the controller enclosure. Use the following syntax to enter the node ID:

```
SET THIS NODE_ID=NNNN-NNNN-NNNN nn
```

Where: NNNN-NNNN-NNNN is the node ID, and nn is the checksum.

2. When using a controller that is not new from the factory, enter the following command to take it out of any failover mode that may have been configured previously:

SET NOFAILOVER

If the controller did have a failover mode previously set, the CLI may report an error. Clear the error with this command:

CLEAR_ERRORS CLI

3. Enter the following command to remove any previously configured connections:

SHOW CONNECTIONS

A list of named connections, if any, is displayed.

4. Delete these connections by entering the following command:

DELETE !NEWCON01

Repeat the Delete command for each of the listed connections. When completed, no connections will be displayed.

Configure Controller Settings

5. Set the SCSI version using the following command syntax:

NOTE: SET THIS SCSI_VERSION=SCSI-2, or If SCSI-2 is selected, you must disable CCL using the command:

SET THIS NOCOMMAND_CONSOLE_LUN

6. Assign an identifier for the communication LUN (also called the command console LUN, or CCL). The CCL must have a unique identifier that is a decimal number in the range 1 to 32767, and which is different from the identifiers of all units. Use the following syntax:

SET THIS IDENTIFIER=N

Identifier must be unique among all the controllers attached to the fabric within the specified allocation class.

7. Set the topology for the controller. If both ports are used, set topology for both ports:

```
SET THIS PORT_1_TOPOLOGY=FABRIC
SET THIS PORT_2_TOPOLOGY=FABRIC
```

If the controller is not factory-new, it may have another topology set, in which case these commands will result in an error message. If this happens, take both ports offline first, then reset the topology:

SET THIS PORT_1_TOPOLOGY=OFFLINE SET THIS PORT_2_TOPOLOGY=OFFLINE SET THIS PORT_1_TOPOLOGY=FABRIC SET THIS PORT_2_TOPOLOGY=FABRIC

8. Set Allocation class to a decimal number between 0 and 999. The number must be unique across the fabric. Set allocation class using the following syntax:

```
SET THIS ALLOCATION_CLASS=N
```

Restart the Controller

9. Restart the controller, using the following command:

RESTART THIS

10. Assign an identifier for the communication LUN (also called the command console LUN, or CCL). The CCL must have a unique identifier that is a decimal number in the range 1 to 32767, and which is different from the identifiers of all units. Use the following syntax:

```
SET THIS IDENTIFIER=N
```

Identifier must be unique among all the controllers attached to the fabric within the specified allocation class.

Set Time and Verify all Commands

1. Set the time on the controller by entering the following syntax:

```
SET THIS TIME=DD-MMM-YYYY:HH:MM:SS
```

2. Use the FRUTIL utility to set up the battery discharge timer. Enter the following command to start FRUTIL:

RUN FRUTIL

When FRUTIL asks if you intend to replace the battery, answer "Y":

Do you intend to replace this controller's cache battery? Y/N [N] ${\bf Y}$

FRUTIL will print out a procedure, but will not give you a prompt. Ignore the procedure and press the **Enter** key.

- 3. Set up any additional optional controller settings, such as changing the CLI prompt. See the SET *THIS CONTROLLER/OTHER CONTROLLER* command in the StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide for the format of optional settings.
- 4. Verify that all commands have taken effect. Use the following command:

SHOW THIS

Verify node ID, allocation class, SCSI version, failover mode, identifier, and port topology.

The following sample is a result of a SHOW THIS command, with the areas of interest in bold.

```
Controller:
   HSG80 ZG94214134 Software V8.7, Hardware 0000
                    = 5000-1FE1-0007-9750
   NODE ID
  ALLOCATION_CLASS = 01
   SCSI_VERSION
                  = SCSI-3
   Configured for dual-redundancy with ZG9421461
   In dual-redundant configuration
Device Port SCSI address 7
   Time: 10-Mar-2002:12:30:34
   Command Console LUN is disabled
   Smart Error Eject Disabled(IDENTIFIER = 88)
Host PORT_1:
   Reported PORT_ID = 5000-1FE1-0007-9751
    PORT_1_TOPOLOGY = FABRIC (fabric up)
                  = 7D4000
   Address
Host PORT_2:
  Reported PORT_ID = 5000-1FE1-0007-9752
    PORT_2_TOPOLOGY = FABRIC (standby)
  Address
                = 210513
NOREMOTE COPY
Cache:
   512 megabyte write cache, version 0022
   Cache is GOOD
   No unflushed data in cache
   CACHE_FLUSH_TIMER = DEFAULT (10 seconds)
Mirrored Cache:
   Not enabled
Battery:
   NOUPS
   FULLY CHARGED
   Expires: 25-JUN-2003
. . . . . . .
```

5. Turn on the switches, if not done previously.

If you want to communicate with the Fibre Channel switches through Telnet, set an IP address for each switch. See the manuals that came with the switches for details.

Plug in the FC Cable and Verify Connections

6. Plug the Fibre Channel cable from the first host bus adapter into the switch. Enter the SHOW CONNECTIONS command to view the connection table:

SHOW CONNECTIONS

7. Rename the connections to something meaningful to the system and easy to remember. For example, to assign the name ANGEL1A1 to connection !NEWCON01, enter:

RENAME !NEWCON01 ANGEL1A1

For a recommended naming convention, see "Naming Connections," page 1–13.

8. Specify the operating system for the connection:

SET ANGEL1A1 OPERATING_SYSTEM=HP

9. Verify the changes:

SHOW CONNECTIONS

Mark or tag all Fibre Channel cables at both ends for ease of maintenance.

Repeat Procedure for Each Host Adapter

- 10. Repeat step 7, 8, and 9 for each of that adapter's host connections, or delete the unused connections from the table.
- 11. For each host adapter, repeat steps 6 through 10.

Verify Installation

To verify installation for your HP-UX host, enter the following command:

SHOW DEVICES

HP-UXrestart your system with the reboot command. After the system is booted, use the ioscan -func disk command to verify that your LUNs are accessible.

Setting Up a Controller Pair

Power Up and Establish Communication

- 1. Connect the computer or terminal to the controller as shown in Figure 5–1. The connection to the computer is through the COM1 or COM2 ports.
- 2. Turn on the computer or terminal.
- 3. Apply power to the storage subsystem.
- 4. Configure the computer or terminal as follows:
 - 9600 baud
 - 8 data bits
 - 1 stop bit
 - no parity
 - no flow control
- 5. Press **Enter**. A copyright notice and the CLI prompt appear, indicating that you established a local connection with the controller.

Cabling a Controller Pair

The cabling for a controller pair is shown in Figure 5-3.

NOTE: It is a good idea to plug only the controller cables into the switch. The host cables are plugged into the switch as part of the configuration procedure ("Configuring a Controller Pair Using CLI," page 5–11).

Figure 5–3 shows a controller pair with failover cabling showing one HBA per server with HSG80 controller in transparent failover mode.

Figure 5–3: Controller pair failover cabling

Configuring a Controller Pair Using CLI

To configure a controller pair using CLI involves the following processes:

- Configure Controller Settings.
- Restart the Controller.
- Set Time and Verify All Commands.
- Plug in the FC Cable and Verify Connections.
- Repeat Procedure for Each Host Adapter.
- Verify Installation.
- 1. Enter a SHOW THIS command to verify the node ID:

SHOW THIS

See "Worldwide Names (Node IDs and Port IDs)," page 1–27, for the location of the sticker.

The node ID is located in the third line of the SHOW THIS result:

```
HSG80> show this
Controller:
HSG80 ZG80900583 Software V8.7, Hardware E11
NODE_ID = 5000-1FE1-0001-3F00
ALLOCATION_CLASS = 0
```

If the node ID is present, go to step 5.

If the node ID is all zeroes, enter the node ID and checksum, which are located on a sticker on the controller enclosure. Use the following syntax to enter the node ID:

```
SET THIS NODE_ID=NNNN-NNNN-NNNN nn
```

Where: NNNN-NNNN-NNNN is the node ID and nn is the checksum.

2. If the controller is not new from the factory, enter the following command to take it out of any failover mode that may have been previously configured:

SET NOFAILOVER

If the controller did have a failover mode previously set, the CLI may report an error. Clear the error with this command:

CLEAR_ERRORS CLI

3. Enter the following command to remove any previously configured connections:

SHOW CONNECTIONS

A list of named connections, if any, is displayed.

4. Delete these connections by entering the following command:

DELETE !NEWCON01

Repeat the Delete command for each of the listed connections. When completed, no connections will be displayed.

Configure Controller Settings

5. Set the SCSI version to SCSI-3 using the following command:

```
SET THIS SCSI_VERSION=SCSI-3
```

NOTE: Setting the SCSI version to SCSI-3 does not make the controller fully compliant with the SCSI-3 standards.

6. Assign an identifier for the communication LUN (also called the command console LUN, or CCL). The CCL must have a unique identifier that is a decimal number in the range 1 to 32767, and which is different from the identifiers of all units. Use the following syntax:

SET THIS IDENTIFIER=N

Identifier must be unique among all the controllers attached to the fabric within the specified allocation class.

7. Set the topology for the controller. If both ports are used, set topology for both ports:

```
SET THIS PORT_1_TOPOLOGY=FABRIC
SET THIS PORT_2_TOPOLOGY=FABRIC
```

If the controller is not factory-new, it may have another topology set, in which case these commands will result in an error message. If this happens, first take both ports offline, then reset the topology:

SET THIS PORT_1_TOPOLOGY=OFFLINE SET THIS PORT_2_TOPOLOGY=OFFLINE SET THIS PORT_1_TOPOLOGY=FABRIC SET THIS PORT_2_TOPOLOGY=FABRIC

8. Set Allocation class to a decimal number between 0 and 999. The number must be unique across the fabric. Set allocation class using the following syntax:

SET THIS ALLOCATION_CLASS=N

Restart the Controller

9. Restart the controller, using the following command:

RESTART THIS

It takes about a minute for the CLI prompt to come back after a RESTART command.

Set Time and Verify All Commands

10. Set the time on the controller by entering the following syntax:

SET THIS TIME=DD-MMM-YYYY:HH:MM:SS

11. Use the FRUTIL utility to set up the battery discharge timer. Enter the following command to start FRUTIL:

RUN FRUTIL

When FRUTIL asks if you intend to replace the battery, answer "Y":

Do you intend to replace this controller's cache battery? Y/N [N] **Y** FRUTIL will print out a procedure, but will not give you a prompt. Ignore the procedure and press **Enter**.

- 12. Set up any additional optional controller settings, such as changing the CLI prompt. See the SET *THIS CONTROLLER/OTHER CONTROLLER* command in the StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide for the format of optional settings. Perform this step on both controllers.
- 13. Verify that all commands have taken effect by entering the following command: SHOW THIS
14. Verify node ID, allocation class, SCSI version, failover mode, identifier, and port topology. The following display is a sample result of a SHOW THIS command, with the areas of interest in bold.

```
Controller:
   HSG80 ZG94214134 Software V8.7, Hardware 0000
                    = 5000-1FE1-0007-9750
   NODE ID
  ALLOCATION_CLASS = 01
   SCSI_VERSION
                    = SCSI-3
   Configured for dual-redundancy with ZG9421461
   In dual-redundant configuration
Device Port SCSI address 7
   Time: 10-Mar-2002:12:30:34
   Command Console LUN is disabled
   Smart Error Eject Disabled (IDENTIFIER = 88)
Host PORT_1:
   Reported PORT_ID = 5000-1FE1-0007-9751
    PORT_1_TOPOLOGY = FABRIC (fabric up)
   Address
                   = 7D4000
Host PORT_2:
   Reported PORT_ID = 5000-1FE1-0007-9752
    PORT_2_TOPOLOGY = FABRIC (standby)
   Address
                   = 210513
NOREMOTE_COPY
Cache:
   512 megabyte write cache, version 0022
   Cache is GOOD
   No unflushed data in cache
   CACHE_FLUSH_TIMER = DEFAULT (10 seconds)
Mirrored Cache:
   Not enabled
Battery:
   NOUPS
   FULLY CHARGED
   Expires: 25-JUN-2003
```

15. Turn on the switches if not done previously.

If you want to communicate with the FC switches through Telnet, set an IP address for each switch. See the manuals that came with the switches for details.

Plug in the FC Cable and Verify Connections

16. Plug the FC cable from the first host adapter into the switch. Enter a SHOW CONNECTIONS command to view the connection table:

SHOW CONNECTIONS

The first connection will have one or more entries in the connection table. Each connection will have a default name of the form !NEWCONxx, where xx is a number representing the order in which the connection was added to the connection table.

For a description of why plugging in one adapter can result in multiple connections, see "Numbers of Connections," page 1–13.

17. Rename the connections to something meaningful to the system and easy to remember. For example, to assign the name ANGEL1A1 to connection !NEWCON01, enter:

RENAME !NEWCON01 ANGEL1A1

StorageWorks recommends using a naming convention, see "Naming Connections," page 1–13.

18. Specify the operating system for the connection:

SET ANGEL1A1 OPERATING_SYSTEM=HPAIX_CAMBEX

19. Verify the changes:

SHOW CONNECTIONS

Mark or tag all Fibre Channel cables at both ends for ease of maintenance.

Repeat Procedure for Each Host Adapter Connection

- 20. Repeat steps 17, 18, and 19 for each of that adapter's host connections or delete the unwanted connections from the table.
- 21. For each host adapter, repeat steps 16 through 20.

Verify Installation

To verify installation for your HP-UX host, enter the following command:

SHOW DEVICES

Configuring Devices

The disks on the device bus of the HSG80 can be configured manually or with the CONFIG utility. The CONFIG utility is easier. Invoke CONFIG with the following command:

RUN CONFIG

WARNING: It is highly recommended to use the CONFIG utility only at reduced I/O loads.

CONFIG takes about two minutes to discover and to map the configuration of a completely populated storage system.

Configuring Storage Containers

For a technology refresher on this subject, refer to "Choosing a Container Type," page 2–14.

In choosing a container, you choose between independent disks (JBODs) or one of several storageset types, as shown in Figure 5–4. The independent disks and the selected storageset may also be partitioned.

The following configurations are detailed in the following section:

- "Configuring a Stripeset" on page 5–18
- "Configuring a Mirrorset" on page 5–19
- "Configuring a RAIDset" on page 5–20
- "Configuring a Striped Mirrorset" on page 5–20
- "Configuring a Single-Disk Unit (JBOD)" on page 5–21
- "Configuring a Partition" on page 5–21

Figure 5–4: Storage container types

Configuring a Stripeset

1. Create the stripeset by adding its name to the controller's list of storagesets and by specifying the disk drives it contains. Use the following syntax:

ADD STRIPESET STRIPESET-NAME DISKNNNN DISKNNNN.....

2. Initialize the stripeset, specifying any desired switches:

INITIALIZE STRIPESET-NAME SWITCHES

See "Specifying Initialization Switches" on page 2–29 for a description of the initialization switches.

3. Verify the stripeset configuration:

SHOW STRIPESET-NAME

4. Assign the stripeset a unit number to make it accessible by the hosts. See "Assigning Unit Numbers and Unit Qualifiers" on page 5–23.

For example:

The commands to create Stripe1, a stripeset consisting of three disks (DISK10000, DISK20000, and DISK10100) and having a chunksize of 128:

ADD STRIPESET STRIPE1 DISK10000 DISK20000 DISK30000 INITIALIZE STRIPE1 CHUNKSIZE=128 SHOW STRIPE1

Configuring a Mirrorset

1. Create the mirrorset by adding its name to the controller's list of storagesets and by specifying the disk drives it contains. Optionally, you can append mirrorset switch values:

ADD MIRRORSET MIRRORSET-NAME DISKNNNNN DISKNNNNN SWITCHES

NOTE: See the ADD MIRRORSET command in the StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide for a description of the mirrorset switches.

2. Initialize the mirrorset, specifying any desired switches:

INITIALIZE MIRRORSET-NAME SWITCHES

See "Specifying Initialization Switches" on page 2–29 for a description of the initialization switches.

3. Verify the mirrorset configuration:

SHOW MIRRORSET-NAME

4. Assign the mirrorset a unit number to make it accessible by the hosts. See "Assigning Unit Numbers and Unit Qualifiers" on page 5–23.

For example:

The commands to create Mirr1, a mirrorset with two members (DISK10000 and DISK20000), and to initialize it using default switch settings:

ADD MIRRORSET MIRR1 DISK10000 DISK20000 INITIALIZE MIRR1 SHOW MIRR1

Configuring a RAIDset

1. Create the RAIDset by adding its name to the controller's list of storagesets and by specifying the disk drives it contains. Optionally, you can specify RAIDset switch values:

ADD RAIDSET RAIDSET-NAME DISKNNNNN DISKNNNNN DISKNNNNN SWITCHES

NOTE: See the ADD RAIDSET command in the StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide for a description of the RAIDset switches.

2. Initialize the RAIDset, specifying any desired switches:

INITIALIZE RAIDSET-NAME SWITCH

NOTE: StorageWorks recommends that you allow initial reconstruct to complete before allowing I/O to the RAIDset. Not doing so may generate forced errors at the host level. To determine whether initial reconstruct has completed, enter SHOW RAIDSET FULL.

See "Specifying Initialization Switches" on page 2–29 for a description of the initialization switches.

3. Verify the RAIDset configuration:

SHOW RAIDSET-NAME

4. Assign the RAIDset a unit number to make it accessible by the hosts. See "Assigning Unit Numbers and Unit Qualifiers" on page 5–23.

For example:

The commands to create RAID1, a RAIDset with three members (DISK10000, DISK20000, and DISK10100) and to initialize it with default values:

```
ADD RAIDSET RAID1 DISK10000 DISK20000 DISK30000
INITIALIZE RAID1
SHOW RAID1
```

Configuring a Striped Mirrorset

1. Create, but do not initialize, at least two mirrorsets.

See "Configuring a Mirrorset" on page 5–19.

2. Create a stripeset and specify the mirrorsets it contains:

ADD STRIPESET STRIPESET-NAME MIRRORSET-1 MIRRORSET-2....MIRRORSET-N

3. Initialize the striped mirrorset, specifying any desired switches:

INITIALIZE STRIPESET-NAME SWITCH

See "Specifying Initialization Switches" on page 2–29 for a description of the initialization switches.

4. Verify the striped mirrorset configuration:

SHOW STRIPESET-NAME

5. Assign the stripeset mirrorset a unit number to make it accessible by the hosts. See "Assigning Unit Numbers and Unit Qualifiers" on page 5–23.

For example:

The commands to create Stripe1, a striped mirrorset that comprises Mirr1, Mirr2, and Mirr3, each of which is a two-member mirrorset:

```
ADD MIRRORSET MIRR1 DISK10000 DISK20000
ADD MIRRORSET MIRR2 DISK20100 DISK10100
ADD MIRRORSET MIRR3 DISK10200 DISK20200
ADD STRIPESET STRIPE1 MIRR1 MIRR2 MIRR3
INITIALIZE STRIPE1
SHOW STRIPE1
```

Configuring a Single-Disk Unit (JBOD)

1. Initialize the disk drive, specifying any desired switches:

```
INITIALIZE DISK-NAME SWITCHES
```

See "Specifying Initialization Switches" on page 2–29 for a description of the initialization switches.

2. Verify the configuration by entering the following command:

SHOW DISK-NAME

3. Assign the disk a unit number to make it accessible by the hosts. See "Assigning Unit Numbers and Unit Qualifiers" on page 5–23.

Configuring a Partition

1. Initialize the storageset or disk drive, specifying any desired switches:

```
INITIALIZE STORAGESET-NAME SWITCHES
or
INITIALIZE DISK-NAME SWITCHES
```

See "Specifying Initialization Switches" on page 2–29 for a description of the initialization switches.

2. Create each partition in the storageset or disk drive by indicating the partition's size. Also specify any desired switch settings:

CREATE_PARTITION STORAGESET-NAME SIZE=N SWITCHES

or

CREATE_PARTITION DISK-NAME SIZE=N SWITCHES

where N is the percentage of the disk drive or storageset that will be assigned to the partition. Enter SIZE=LARGEST, on the last partition only, to let the controller assign the largest free space available to the partition.

NOTE: See the CREATE_PARTITION command in the StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide for a description of the partition switches.

3. Verify the partitions:

```
SHOW STORAGESET-NAME
```

or

```
SHOW DISK-NAME
```

The partition number appears in the first column, followed by the size and starting block of each partition.

4. Assign the partition a unit number to make it accessible by the hosts. See "Assigning Unit Numbers and Unit Qualifiers" on page 5–23.

For example:

The commands to create RAID1, a three-member RAIDset, then partition it into two storage units are shown below.

ADD RAIDSET RAID1 DISK10000 DISK20000 DISK30000 INITIALIZE RAID1 CREATE_PARTITION RAID1 SIZE=25 CREATE_PARTITION RAID1 SIZE=LARGEST SHOW RAID1

Assigning Unit Numbers and Unit Qualifiers

Each storageset, partition, or single (JBOD) disk must be assigned a unit number for the host to access. As the units are added, their properties can be specified through the use of command qualifiers, which are discussed in detail under the ADD UNIT command in the StorageWorks HSG80 Array Controller ACS Version 8.7 CLI Reference Guide.

Because of different SCSI versions, refer to the section "Assigning Unit Numbers Depending on SCSI_VERSION," page 1–19. The choice for SCSI_VERSION effects how certain unit numbers and host connection offsets interact.

Each unit can be reserved for the exclusive use of a host or group of hosts. See "Restricting Host Access in Transparent Failover Mode," page 1–21 and "Restricting Host Access in Multiple-Bus Failover Mode," page 1–24.

Assigning a Unit Number to a Storageset

To assign a unit number to a storageset, use the following syntax:

ADD UNIT UNIT-NUMBER STORAGESET-NAME

```
For example:
```

To assign unit D102 to RAIDset R1, use the following command:

```
ADD UNIT D102 R1
```

Assigning a Unit Number to a Single (JBOD) Disk

To assign a unit number to a single (JBOD) disk, use the following syntax:

ADD UNIT UNIT-NUMBER DISK-NAME

For example:

To assign unit D4 to DISK20300, use the following command:

ADD UNIT D4 DISK20300

Assigning a Unit Number to a Partition

To assign a unit number to a partition, use the following syntax:

ADD UNIT UNIT-NUMBER STORAGESET-NAME PARTITION=PARTITION-NUMBER

For example:

To assign unit D100 to partition 3 of mirrorset mirr1, use the following command:

ADD UNIT D100 MIRR1 PARTITION=3

Preferring Units

In multiple-bus failover mode, individual units can be preferred to a specific controller. For example, to prefer unit D102 to "this controller," use the following command:

SET D102 PREFERRED_PATH=THIS

RESTART commands must be issued to both controllers for this command to take effect:

RESTART OTHER_CONTROLLER RESTART THIS_CONTROLLER

NOTE: The controllers need to restart together for the preferred settings to take effect. The RESTART *this_controller* command must be entered immediately after the RESTART *other_controller* command.

Configuration Options

Changing the CLI Prompt

To change the CLI prompt, enter a 1- to 16- character string as the new prompt, according to the following syntax:

SET THIS_CONTROLLER PROMPT = "NEW PROMPT"

If you are configuring dual-redundant controllers, also change the CLI prompt on the "other controller." Use the following syntax:

SET OTHER_CONTROLLER PROMPT = "NEW PROMPT"

NOTE: It is suggested that the prompt name reflect some information about the controllers. For example, if the subsystem is the third one in a lab, name the top controller prompt, LAB3A and the bottom controller, LAB3B.

Mirroring cache

To specify mirrored cache, use the following syntax:

```
SET THIS MIRRORED_CACHE
```

Adding Disk Drives

If you add new disk drives to the subsystem, the disk drives must be added to the controllers' list of known devices:

• To add one new disk drive to the list of known devices, use the following syntax: ADD DISK DISKNNNN P T L

ADD DISK *DISKNNNNN P T L*

• To add several new disk drives to the list of known devices, enter the following command:

RUN CONFIG

Adding a Disk Drive to the Spareset

The spareset is a collection of spare disk drives that are available to the controller should it need to replace a failed member of a RAIDset or mirrorset.

NOTE: This procedure assumes that the disks that you are adding to the spareset have already been added to the controller's list of known devices.

To add the disk drive to the controller's spareset list, use the following syntax:

ADD SPARESET DISKNNNNN

Repeat this step for each disk drive you want to add to the spareset:

For example:

The following example shows the syntax for adding DISK11300 and DISK21300 to the spareset.

ADD SPARESET DISK11300 ADD SPARESET DISK21300

Removing a Disk Drive from the Spareset

You can delete disks in the spareset if you need to use them elsewhere in your subsystem.

1. Show the contents of the spareset entering the following command:

SHOW SPARESET

2. Delete the desired disk drive entering the following command:

DELETE SPARESET DISKNNNNN

The RUN CONFIG command does not delete disks from the controllers' device table if a disk has been physically removed or replaced. In this case, you must use the command: DELETE *DISKNNNN*.

3. Verify the contents of the spareset by entering the following command:

SHOW SPARESET

Enabling Autospare

With AUTOSPARE enabled on the failedset, any new disk drive that is inserted into the PTL location of a failed disk drive is automatically initialized and placed into the spareset. If initialization fails, the disk drive remains in the failedset until you manually delete it from the failedset.

To enable autospare, use the following command:

SET FAILEDSET AUTOSPARE

To disable autospare, use the following command:

SET FAILEDSET NOAUTOSPARE

During initialization, AUTOSPARE checks to see if the new disk drive contains metadata. Metadata is information the controller writes on the disk drive when the disk drive is configured into a storageset. Therefore, the presence of metadata indicates that the disk drive belongs to, or has been used by, a storageset. If the disk drive contains metadata, initialization stops. (A new disk drive will not contain metadata but a repaired or reused disk drive might. To erase metadata from a disk drive, add it to the controller's list of devices, then set it to be nontransportable and initialize it.)

Deleting a Storageset

NOTE: If the storageset you are deleting is partitioned, you must delete each partitioned unit before you can delete the storageset.

1. Show the storageset's configuration:

SHOW STORAGESET-NAME

2. Delete the unit number that uses the storageset. Use the following command:

DELETE UNIT-NUMBER

3. Delete the storageset. Use the following command:

DELETE STORAGESET-NAME

4. Verify the configuration:

SHOW STORAGESET-NAME

Changing Switches for a Storageset or Device

You can optimize a storageset or device at any time by changing the switches that are associated with it. Remember to update the storageset profile when changing its switches.

Displaying the Current Switches

To display the current switches for a storageset or single-disk unit, enter a SHOW command, specifying the FULL switch:

SHOW STORAGESET-NAME

or

SHOW DEVICE-NAME

NOTE: FULL is not required when showing a particular device. It is used when showing all devices, for example, SHOW DEVICES FULL.

Changing RAIDset and Mirrorset Switches

Use the SET *storageset-name* command to change the RAIDset and Mirrorset switches associated with an existing storageset.

For example, the following command changes the replacement policy for RAIDset RAID1 to BEST_FIT:

SET RAID1 POLICY=BEST_FIT

Changing Device Switches

Use the SET device-name command to change the device switches.

For example, to request a data transfer rate of 20 MHz for DISK10000:

SET DISK10000 TRANSFER_RATE_REQUESTED=20MHZ

Changing Initialize Switches

The initialization switches cannot be changed without destroying the data on the storageset or device. These switches are integral to the formatting and can only be changed by reinitializing the storageset. Initializing a storageset is similar to formatting a disk drive; all data is destroyed during this procedure.

Changing Unit Switches

Use the SET unit-name command to change the characteristics of a unit.

For example, the following command enables write protection for unit D100:

SET D100 WRITE_PROTECT

Verifying Storage Configuration from Host

This section describes how to verify that LUNs (virtual disk units) are being correctly presented to HP-UX.

After configuring units (virtual disks) through either the CLI or SWCC restart the host. If you are adding units dynamically, then use ioscan and insf -e commands to verify that the device special files and logical unit numbers are created and correctly assigned to each storageset.

Verify that the units are correctly presented to the host by entering the following command:

ioscan -fnCdisk

Class	I H/W Path	Driver S/W State	H/W Type	Descriptio	on	
disk	0 0/0/1/0.1.0	sdisk CLAIMED	DEVICE	HP D	OVD-ROM 6x/32x	
	/dev/	dsk/c0t1d0 /dev/rd	sk/c0t1d0			
disk	1 0/0/2/0.6.0	sdisk CLAIMED	DEVICE	SEAGA	TE ST39102LC	
	/dev/	dsk/c1t6d0 /dev/rd	sk/c1t6d0			
disk	8 0/0/2/1.6.0	sdisk CLAIMED	DEVICE	SEAGA	TE ST39204LC	
	/dev/	dsk/c2t6d0 /dev/rd	sk/c2t6d0			
disk	12 0/10/0/0.8.	0 sdisk CLAIME	D DEVICE	DEC	HSG80	
	/dev/	dsk/c6t8d0 /dev/rd	sk/c6t8d0			
disk	13 0/10/0/0.8.	1 sdisk CLAIME	D DEVICE	DEC	HSG80	
	/dev/	dsk/c6t8d1 /dev/rd	sk/c6t8d1			
disk	14 0/10/0/0.12	2.0 sdisk CLAIME	ED DEVICE	E DEC	HSG80	
	/dev/	dsk/c6t12d0 /dev/r	dsk/c6t12d0			

For more details on using the CLI, refer to the *StorageWorks HSG80 Array Controller* ACS Version 8.7 CLI Reference Guide.

For more details on using SWCC, see the *Compaq StorageWorks Command Console Version 2.4, User Guide.*

6

Using CLI for Configuration

This chapter presents an example of how to configure a storage subsystem using the Command Line Interpreter (CLI). The CLI configuration example shown assumes:

- A normal, new controller pair, which includes:
 - NODE ID set
 - No previous failover mode
 - No previous topology set
- Full array with no expansion cabinet
- PCMCIA cards installed in both controllers

A storage subsystem example is shown in Figure 6–1. The example system contains three non-clustered HP hosts, as shown in Figure 6–2. From the hosts' point of view, each host will have four paths to its own virtual disks. The resulting virtual system, from the host's point of view, is shown in Figure 6–3.

Figure 6–1 shows an example storage system map for the BA370 enclosure. Details on building your own map are described in Chapter 2. Templates to help you build your storage map are supplied in Appendix A.

			Port						
	1	2	3	4	5	6			
Power Supply							Power Supply		
	D2 S2 DISK103 00	D2 S2 DISK203 00	D2 S2 DISK303 00	D2 S2 DISK403 00	D2 D101 DISK503 00	spareset member DISK603 00		ω	
Power Supply	D0 S1 MI DISK102 00	D0 S1 M1 DISK202 00	D0 S1 M2 DISK302 00	D0 S1 M2 DISK402 00	D1 M3 DISK502 00	D1 M3 DISK602 00	Power Supply	2	Tar
Power Supply	D120 R2 DISK101 00	D120 R2 DISK201 00	D120 R2 DISK301 00	D120 R2 DISK401 00	D120 R2 DISK501 00	D120 R2 DISK601 00	Power Supply	4	gets
Power Supply	D102 R1 DISK100 00	D102 R1 DISK200 00	D102 R1 DISK300 00	D102 R1 DISK400 00	D102 R1 DISK500 00	D102 R1 DISK600 00	Power Supply	0	

Figure 6–1: Example storage map for the BA370 Enclosure

Figure 6–2 shows a representative multiple-bus failover configuration. Restricting the access of unit D101 to host BLUE can be done by enabling only the connections to host BLUE. At least two connections must be enabled for multiple-bus failover to work. For most operating systems, it is desirable to have all connections to the host enabled. The example system, shown in Figure 6–2, contains three non-clustered HP

hosts. Port 1 link is separate from port 2 link (that is, ports 1 of both controllers are on one loop or fabric, and port 2 of both controllers are on another) therefore, each adapter has two connections.

CXO7547A

Figure 6-2: Example, three non-clustered host systems

Figure 6–3 represents units that are logical or virtual disks comprised of storagesets configured from physical disks.

Figure 6–3: Example, logical or virtual disks comprised of storagesets

CLI Configuration Example

Text conventions used in this example are listed below:

- Text in *italics* indicates an action you take.
- Text in THIS FORMAT, indicates a command you type. Be certain to press **Enter** after each command.
- Text enclosed within a box, indicates information that is displayed by the CLI interpreter.

NOTE: "This" controller is top controller (A).

Plug serial cable from maintenance terminal into top controller.

CLEAR CLI SET MULTIBUS COPY=THIS CLEAR CLI

```
SET THIS SCSI_VERSION=SCSI-3
SET THIS PORT_1_TOPOLOGY=FABRIC
SET THIS PORT_2_TOPOLOGY=FABRIC
SET OTHER PORT_1_TOPOLOGY=FABRIC
SET OTHER PORT_2_TOPOLOGY=FABRIC
SET THIS ALLOCATION_CLASS=1
RESTART OTHER
RESTART THIS
SET THIS TIME=10-Mar-2001:12:30:34
RUN FRUTIL
```

Do you intend to replace this controller's cache battery? Y/N [Y]

Y

Plug serial cable from maintenance terminal into bottom controller.

NOTE: Bottom controller (B) becomes "this" controller.

RUN FRUTIL

```
Do you intend to replace this controller's cache battery? Y/N [Y]
```

Y

```
SET THIS MIRRORED_CACHE
```

NOTE: This command causes the controllers to restart.

```
SET THIS PROMPT="BTVS BOTTOM"
SET OTHER PROMPT="BTVS TOP"
SHOW THIS
SHOW OTHER
```

Plug in the Fibre Channel cable from thefirst adapter in host "RED."

SHOW CONNECTIONS

RENAME !NEWCON00 RED1B1 SET RED1B1 OPERATING_SYSTEM=HP RENAME !NEWCON01 RED1A1 SET RED1A1 OPERATING_SYSTEM=HP SHOW CONNECTIONS

Connection Name	Operating System	Controll	Port	Address	Status	Unit Offset
	• • • • • • • • • • • • • • • • • • • •	er			Clarac	0
RED1A1	HP	OTHER	1	XXXXX X	OL other	0
HOST_ID=XX	(XX-XXXX-XX)	X-XXXX	ADAPTE	ER_ID=XXX X	XX-XXXX-X X	XXX-XX
RED1B1	HP	THIS	1	XXXXX X	OL this	0
HOST_ID=XX	(XX-XXXX-XX)	X-XXXX	ADAPTE	ER_ID=XXX X	XX-XXXX-X X	xxx-xx

NOTE:	Connection	table sorts	alphabetically.
-------	------------	-------------	-----------------

Mark or tag both ends of Fibre Channel cables.

Plug in the Fibre Channel cable from the second adapter in host "RED."

SHOW CONNECTIONS

Connection Name	Operating System	Controlle r	Port	Address	Status	Unit Offset
INEWCON0 2	HP	THIS	2	XXXXXX	OL this	0
HOST_ID=X>	XX-XXXX-X XX	XXXX-XX	ADAPTE	R_ID=XXXX X	x-XXXX-XX (xxx-xxx
NEWCON0 3	HP	OTHER	2	XXXXXX	OL other	0
HOST_ID=X>	XX-XXXX-X XX	XXXX-XX	ADAPTE	R_ID=XXXX X	X-XXXX-XX (xxx-xxx
RED1A1	HP	OTHER	1	XXXXXX	OL other	0

RENAME !NEWCON02 RED2B2 SET RED2B2 OPERATING_SYSTEM=HP RENAME !NEWCON02 RED2A2 SET RED2A2 OPERATING_SYSTEM=HP SHOW CONNECTIONS

Connection	Operating					Unit
Name	System	Controll er	Port	Address	Status	Offset
RED1A1	HP	OTHER	1	XXXXX X	OL other	0
HOST_ID=XX	<xx-xxxx-> XX</xx-xxxx->	XXXX-XX	ADAPTE	R_ID=XXX X	XX-XXXX-X	XXX-XX
RED1B1	HP	THIS	1	XXXXX X	OL this	0
HOST_ID=XX	<xx-xxxx-> XX</xx-xxxx->	XXX-XX	ADAPTE	R_ID=XXX X	XX-XXXX-X	XXX-XX
RED2A2	HP	OTHER	2	XXXXX X	OL other	0
HOST_ID=XX	XX-XXXX-> XX	XXX-XX	ADAPTE	R_ID=XXX X	XX-XXXX-X	XXX-XX
RED2B2	HP	THIS	2	XXXXX X	OL this	0
HOST_ID=XX	XX-XXXX-> XX	XXX-XX	ADAPTE	R_ID=XXX X	XX-XXXX-X	XXX-XX

Mark or tag both ends of Fibre Channel cables

Repeat this process to add connections from the other two hosts. The resulting connection table should appear similar to the following:

Connection	Operating					Unit
Name	System	Controll er	Port	Address	Status	Offset
GREY1A1	HP	OTHER	1	XXXXX X	OL other	0
HOST_ID=X>	XX-XXXX-X XX	XXXX-XX	ADAPTE	ER_ID=XXX X	XX-XXXX-X X	XXX-XX
GREY1B1	HP	THIS	1	XXXXX X	OL this	0
HOST_ID=X>	XX-XXXX-X XX	XXXX-XX	ADAPTE	ER_ID=XXX X	XX-XXXX-X	XXX-XX
GREY2A2	HP	OTHER	2	XXXXX X	OL other	0
HOST_ID=X>	XX-XXXX-X XX	XXXX-XX	ADAPTE	ER_ID=XXX X	XX-XXXX-X X	XXX-XX
GREY2B2	HP	THIS	2	XXXXX X	OL this	0
HOST_ID=XX	XX-XXXX-X XX	XXXX-XX	ADAPTE	ER_ID=XXX X	XX-XXXX-X X	XXX-XX
BLUE1A1	HP	OTHER	1	XXXXX X	OL other	0
HOST_ID=X>	XX-XXXX-X XX	XXXX-XX	ADAPTE	ER_ID=XXX X	XX-XXXX-X X	XXX-XX
BLUE1B1	HP	THIS	1	XXXXX X	OL this	0
HOST_ID=X>	XX-XXXX-X XX	XXXX-XX	ADAPTE	ER_ID=XXX X	X-XXXX-X X	XXXX-XX
BLUE2A2	HP	OTHER	2	XXXXX X	OL other	0
HOST_ID=X>	XX-XXXX-X XX	XXXX-XX	ADAPTE	ER_ID=XXX X	XX-XXXX-X X	XXX-XX
BLUE2B2	HP	THIS	2	XXXXX X	OL this	0

HOST_ID=XXX	ADAPTER_ID=XXXX-XXXX-XXXX-XXX XX					
RED1A1	HP	OTHER	1	XXXXX X	OL other	0
HOST_ID=XX	XX-XXXX XX	-XXXX-XX	ADAPT	ER_ID=XXX X	XX-XXXX-XX XX	XXX-XX
RED1B1	HP	THIS	1	XXXXX X	OL this	0
HOST_ID=XX	XX-XXXX XX	-XXXX-XX	ADAPT	ER_ID=XXX X	XX-XXXX-XX XX	XXX-XX
RED2A2	HP	OTHER	2	XXXXX X	OL other	0
HOST_ID=XX	XX-XXXX XX	-XXXX-XX	ADAPT	ER_ID=XXX X	XX-XXXX-XX XX	XXX-XX
RED2B2	HP	THIS	2	XXXXX X	OL this	0
HOST_ID=XX	XX-XXXX XX	-XXXX-XX	ADAPT	ER_ID=XXX X	XX-XXXX-XX XX	XXX-XX

```
SET CONNECTION BLUE1A1 UNIT_OFFSET=100
SET CONNECTION BLUE1B1 UNIT_OFFSET=100
SET CONNECTION BLUE2A2 UNIT_OFFSET=100
SET CONNECTION BLUE2B2 UNIT_OFFSET=100
RUN CONFIG
ADD RAIDSET R1 DISK10000 DISK20000 DISK30000 DISK40000 DISK50000
DISK60000
INITIALIZE R1
ADD UNIT D102 R1 DISABLE_ACCESS_PATH=ALL
SET D102 ENABLE_ACCESS_PATH=(RED1A1, RED1B1, RED2A2, RED2B2)
ADD RAIDSET R2 DISK10100 DISK20100 DISK30100 DISK40100 DISK50100
DISK60100
INITIALIZE R2
ADD UNIT D120 R2 DISABLE_ACCESS_PATH=ALL
SET D120 ENABLE_ACCESS_PATH=(BLUE1A1, BLUE1B1, BLUE2A2, BLUE2B2)
ADD MIRRORSET MI DISK10200 DISK20200
ADD MIRRORSET M2 DISK30200 DISK40200
ADD STRIPESET S1 M1 M2
INTTIALTZE S1
ADD UNIT DO S1 DISABLE_ACCESS_PATH=ALL
SET D0 ENABLE_ACCESS_PATH=(GREY1A1, GREY1B1, GREY2A2, GREY2B2)
ADD MIRRORSET M3 DISK50200 DISK60200
INITIALIZE M3
ADD UNIT D1 M3 DISABLE_ACCESS_PATH=ALL
SET D1 ENABLE_ACCESS_PATH=(BLUE1A1, BLUE1B1, BLUE2A2, BLUE2B2)
ADD STRIPESET S2 DISK10300 DISK20300 DISK30300 DISK40300
INITIALIZE S2
ADD UNIT D2 S2 DISABLE_ACCESS_PATH=ALL
SET D2 ENABLE_ACCESS_PATH=(GREY1A1, GREY1B1, GREY2A2, GREY2B2)
INITIALIZE DISK50300
ADD UNIT D101 DISK50300 DISABLE_ACCESS_PATH=ALL
SET D101 ENABLE_ACCESS_PATH=(BLUE1A1, BLUE1B1, BLUE2A2, BLUE2B2)
ADD SPARESET DISK60300
SHOW UNITS FULL
```

7

Backing Up, Cloning, and Moving Data

This chapter includes the following topics:

- "Backing Up Subsystem Configurations," page 7–1
- "Creating Clones for Backup," page 7–2
- "Moving Storagesets," page 7–5

Backing Up Subsystem Configurations

The controller stores information about the subsystem configuration in its nonvolatile memory. This information could be lost if the controller fails or when you replace a module in the subsystem.

Use the following command to produce a display that shows if the save configuration feature is active and which devices are being used to store the configuration.

SHOW THIS_CONTROLLER FULL

The resulting display includes a line that indicates status and how many devices have copies of the configuration. The last line shows on how many devices the configuration is backed up.

IMPORTANT: DO NOT use SAVE_CONFIGURATION in dual redundant controller installations. It is not supported and may result in unexpected controller behavior.

The SHOW *DEVICES* FULL command shows which disk drives are set up to back up the configuration. The syntax for this command is shown below:

SHOW DEVICES FULL

Creating Clones for Backup

Use the CLONE utility to duplicate the data on any unpartitioned single-disk unit, stripeset, mirrorset, or striped mirrorset in preparation for backup. When the cloning operation is complete, you can back up the clones rather than the storageset or single-disk unit, which can continue to service its I/O load. When you are cloning a mirrorset, CLONE does not need to create a temporary mirrorset. Instead, it adds a temporary member to the mirrorset and copies the data onto this new member.

The CLONE utility creates a temporary, two-member mirrorset for each member in a single-disk unit or stripeset. Each temporary mirrorset contains one disk drive from the unit you are cloning and one disk drive onto which CLONE copies the data. During the copy operation, the unit remains online and active so that the clones contain the most up-to-date data.

After the CLONE utility copies the data from the members to the clones, it restores the unit to its original configuration and creates a clone unit you can back up. The CLONE utility uses steps shown in Figure 7–1 to duplicate each member of a unit.

Figure 7–1: CLONE utility steps for duplicating unit members

Use the following steps to clone a single-disk unit, stripeset, or mirrorset:

- 1. Establish a connection to the controller that accesses the unit you want to clone.
- 2. Start CLONE using the following command: RUN CLONE
- 3. When prompted, enter the unit number of the unit you want to clone.
- 4. When prompted, enter a unit number for the clone unit that CLONE will create.
- 5. When prompted, indicate how you would like the clone unit to be brought online: either automatically or only after your approval.
- 6. When prompted, enter the disk drives you want to use for the clone units.
- 7. Back up the clone unit.

The following example shows the commands you would use to clone storage unit D6. The clone command terminates after it creates storage unit D33, a clone or copy of D6.

RUN CLONE CLONE LOCAL PROGRAM INVOKED UNITS AVAILABLE FOR CLONING: 98 ENTER UNIT TO CLONE? 98 CLONE WILL CREATE A NEW UNIT WHICH IS A COPY OF UNIT 98. ENTER THE UNIT NUMBER WHICH YOU WANT ASSIGNED TO THE NEW UNIT? 99 THE NEW UNIT MAY BE ADDED USING ONE OF THE FOLLOWING METHODS: 1. CLONE WILL PAUSE AFTER ALL MEMBERS HAVE BEEN COPIED. THE USER MUST THEN PRESS RETURN TO CAUSE THE NEW UNIT TO BE ADDED. 2. AFTER ALL MEMBERS HAVE BEEN COPIED, THE UNIT WILL BE ADDED AUTOMATICALLY. UNDER WHICH ABOVE METHOD SHOULD THE NEW UNIT BE ADDED[]?1 DEVICES AVAILABLE FOR CLONE TARGETS: DISK20200 (SIZE=832317) DISK20300 (SIZE=832317) USE AVAILABLE DEVICE DISK20200(SIZE=832317) FOR MEMBER DISK10300(SIZE=832317) (Y,N) [Y]? Y MIRROR DISK10300 C_MA SET C_MA NOPOLICY SET C_MA MEMBERS=2 SET C_MA REPLACE=DISK20200 DEVICES AVAILABLE FOR CLONE TARGETS: DISK20300 (SIZE=832317)

```
USE AVAILABLE DEVICE DISK20300(SIZE=832317) FOR MEMBER
DISK10000(SIZE=832317) (Y,N) [Y]? Y
MIRROR DISK10000 C MB
SET C MB NOPOLICY
SET C_MB MEMBERS=2
SET C_MB REPLACE=DISK20300
COPY IN PROGRESS FOR EACH NEW MEMBER. PLEASE BE PATIENT...
COPY FROM DISK10300 TO DISK20200 IS 100% COMPLETE
COPY FROM DISK10000 TO DISK20300 IS 100% COMPLETE
PRESS RETURN WHEN YOU WANT THE NEW UNIT TO BE CREATED
REDUCE DISK20200 DISK20300
UNMIRROR DISK10300
UNMIRROR DISK10000
ADD MIRRORSET C_MA
                         DISK20200
ADD MIRRORSET C_MB
                         DISK20300
ADD STRIPESET C_ST1 C_MA C_MB
INIT C_ST1
               NODESTROY
ADD UNIT D99 C_ST1
D99 HAS BEEN CREATED. IT IS A CLONE OF D98.
CLONE - NORMAL TERMINATION
```

Moving Storagesets

You can move a storageset from one subsystem to another without destroying its data. You also can follow the steps in this section to move a storageset to a new location within the same subsystem.

CAUTION: Move only normal storagesets. Do not move storagesets that are reconstructing or reduced, or data corruption will result.

See the release notes for the version of your controller software for information on which drives can be supported.

CAUTION: Never initialize any container or this procedure will not protect data in the storageset.

Use the following procedure to move a storageset, while maintaining the data the storageset contains:

1. Show the details for the storageset you want to move. Use the following command:

SHOW STORAGESET-NAME

2. Label each member with its name and PTL location.

If you do not have a storageset map for your subsystem, you can enter the LOCATE command for each member to find its PTL location. Use the following command:

LOCATE DISK-NAME

To cancel the locate command, enter the following:

LOCATE CANCEL

3. Delete the unit number shown in the "Used by" column of the SHOW *storageset-name* command. Use the following syntax:

DELETE UNIT-NUMBER

4. Delete the storageset shown in the "Name" column of the SHOW *storageset-name* command. Use the following syntax:

DELETE STORAGESET-NAME

5. Delete each disk drive, one at a time, that the storageset contained. Use the following syntax:

DELETE *DISK-NAM*E DELETE *DISK-NAM*E

- 6. Remove the disk drives and move them to their new PTL locations.
- 7. Again add each disk drive to the controller's list of valid devices. Use the following syntax:

ADD DISK DISK-NAME PTL-LOCATION ADD DISK DISK-NAME PTL-LOCATION ADD DISK DISK-NAME PTL-LOCATION 8. Recreate the storageset by adding its name to the controller's list of valid storagesets and by specifying the disk drives it contains. (Although you have to recreate the storageset from its original disks, you do not have to add the storagesets in their original order.) Use the following syntax to recreate the storageset:

ADD STORAGESET-NAME DISK-NAME DISK-NAME

9. Represent the storageset to the host by giving it a unit number the host can recognize. You can use the original unit number or create a new one. Use the following syntax:

ADD UNIT UNIT-NUMBER STORAGESET-NAME

The following example moves unit D100 to another cabinet. D100 is the RAIDset RAID99 that consists of members DISK10000, DISK20000, and DISK10100.

Old cabinet

DELETE D100 DELETE RAID99 DELETE DISK10000 DELETE DISK20000 DELETE DISK20100

New cabinet

ADD DISK DISK10000 ADD DISK DISK10100 ADD DISK DISK20000 ADD DISK DISK20100 ADD RAIDSET RAID99 DISK10000 DISK10100 DISK20000 DISK20100 ADD UNIT D100 RAID99

A

Subsystem Profile Templates

This appendix contains storageset profiles to copy and use to create your profiles. It also contains an enclosure template to use to help keep track of the location of devices and storagesets in your shelves. Four (4) templates will be needed for the subsystem.

NOTE: The storage map templates for the Model 4310R and Model 4214R or 4314R reflect the physical location of the disk enclosures in the rack. Disk enclosures 6, 5, and 4 are stacked above the controller enclosure and disk enclosures 1, 2, and 3 are stacked below the controller enclosure.

- "Storageset Profile," page A–2
- "Storage Map Template 1 for the BA370 Enclosure," page A-4
- "Storage Map Template 2 for the second BA370 Enclosure," page A-5
- "Storage Map Template 3 for the third BA370 Enclosure," page A-6
- "Storage Map Template 4 for the Model 4214R Disk Enclosure," page A-7
- "Storage Map Template 5 for the Model 4254 Disk Enclosure," page A-9
- "Storage Map Template 6 for the Model 4310R Disk Enclosure," page A-11
- "Storage Map Template 7 for the Model 4350R Disk Enclosure," page A-14
- "Storage Map Template 8 for the Model 4314R Disk Enclosure," page A–16
- "Storage Map Template 9 for the Model 4354R Disk Enclosure," page A–19

Storageset Profile

Type of Storageset:										
MirrorsetX_ RAIDse			Stripeset		Striped	lJ	BOD			
				М	irrorset					
	Storagese	et Name								
	Disk Drives									
	Unit Number									
	Partitions:									
Unit #	Unit #	Unit #	Unit #	Unit #	Unit #	Unit #	Unit #			
	RAIDset S	Switches:								
Recons	struction P	olicy	Reduced M	lembership	Re	placement	Policy			
Norma	l (default)	-	_No (default)	Best performance (default)					
Fast			Yes, missing	g:	Best fit					
					Non	е				
<u>-</u>	Mirrorset	Switches:								
Repla	cement Po	licy	Сору	Policy		Read Sou	rce			
Best pe	erformance (default)	Normal (de	fault)	Lea	st busy (def	ault)			
Best fit			Fast		Rou	nd robin				
None				Disk drive:						
	Initializ	e Switches	:							
C	hunk size		Save Con	figuration		Metadat	a			
Autom	atic (default))	No (default)	-	Des	troy (default	.)			
64 blocks			Yes		Reta	ain				
128 blo	ocks									
256 blo	ocks									
Other:										
Unit Switches:

Caching	Access by following hosts enabled	
Read caching		
Read-ahead caching		
Write-back caching		
Write-through caching		

Storage Map Template 1 for the BA370 Enclosure

Use this template for:

- BA370 single-enclosure subsystems ٠
- first enclosure of multiple BA370 enclosure subsystems ٠

	1	2	3	4	5	6			
Power							Power		
Supply							Supply		
								ω	
	D10300	D20300	D30300	D40300	D50300	D60300			
Power							Power		
Supply							Supply	2	
								10	
	D10200	D20200	D30200	D40200	D50200	D60200			a
Power							Power		Jei
Supply							Supply		0.
								-	
	D10100	D20100	D30100	D40100	D50100	D60100			
Power							Power		
Supply							Supply		
	D10000	D20000	D30000	D40000	D50000	D60000			

Н

Storage Map Template 2 for the second BA370 Enclosure

Use this template for the second enclosure of multiple BA370 enclosure subsystems.

			Port						
	1	2	3	4	5	6			
Power							Power]	
Supply							Supply		
								Ξ	
	D11100	D21100	D31100	D41100	D51100	D61100			
Power							Power	1	
Supply							Supply	<u> </u>	
								0	
	D11000	D21000	D31000	D41000	D51000	D61000			Tar
Power							Power		gets
Supply							Supply		0,
								9	
	D10900	D20900	D30900	D40900	D50900	D60900			
Power							Power]	
Supply							Supply	~	
								8	
	D10800	D20800	D30800	D40800	D50800	D60800			

Storage Map Template 3 for the third BA370 Enclosure

				Port						
		1	2	3	4	5	6			
I	Power Supply							Power Supply	1:	
	_	D11500	D21500	D31500	D41500	D51500	D61500		01	
	Power Supply							Power Supply	<u>+</u>	
		D11400	D21400	D31400	D41400	D51400	D61400		4	Tarç
	Power Supply							Power Supply	_	jets
		D11300	D21300	D31300	D41300	D51300	D61300		ω	
	Power Supply							Power Supply		
		D11200	D21200	D31200	D41200	D51200	D61200		N	

Use this template for the third enclosure of multiple BA370 enclosure subsystems.

Storage Map Template 4 for the Model 4214R Disk Enclosure

Use this template for a subsystem with a three-shelf Model 4214R disk enclosure (single-bus). You can have up to six Model 4214R disk enclosures per controller shelf.

	Model 4214R Disk Enclosure Shelf 1 (single-bus)														
Вау	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	
SCSI ID	0 0	0 1	0 2	0 3	0 4	0 5	0 8	0 9	1 0	1 1	1 2	1 3	1 4	1 5	
DISK	Disk10000	Disk10100	Disk10200	Disk10300	Disk10400	Disk10500	Disk10800	Disk10900	Disk11000	Disk11100	Disk11200	Disk11300	Disk11400	Disk11500	

		Mod	el 42 ⁻	14R [Disk	Enclo	osure	She	lf 2 (s	single	e-bus	;)		
Bay	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4
SCSI ID	0 0	0 1	0 2	0 3	0 4	0 5	0 8	0 9	1 0	1 1	1 2	1 3	1 4	1 5
DISK ID	Disk20000	Disk20100	Disk20200	Disk20300	Disk20400	Disk20500	Disk20800	Disk20900	Disk21000	Disk21100	Disk21200	Disk21300	Disk21400	Disk21500

		Mod	el 42 ⁻	14R [Disk I	Enclo	osure	She	lf 3 (s	single	e-bus	;)		
Bay	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4
SCSI ID	0 0	0 1	0 2	0 3	0 4	0 5	0 8	0 9	1 0	1 1	1 2	1 3	1 4	1 5
DISK ID	Disk30000	Disk30100	Disk30200	Disk30300	Disk30400	Disk30500	Disk30800	Disk30900	Disk31000	Disk31100	Disk31200	Disk31300	Disk31400	Disk31500

Storage Map Template 5 for the Model 4254 Disk Enclosure

Use this template for a subsystem with a three-shelf Model 4254 disk enclosure (dual-bus). You can have up to three Model 4254 disk enclosures per controller shelf.

		Мс	del 4	254	Disk	Enclo	osure	She	lf 1 (dual-	bus)			
			Bus	Α						I	Bus E	3		
Bay	1	2	3	4	5	6	7	8	a	1	1	1	1 3	1 4
Day		~	0	- -	5	0	'	0	3	0	•	-	0	-
SCSI	0	0	0	0	0	0	0	0	0	0	0	0	0	0
טו	0	1	2	3	4	5	8	0	I	2	3	4	5	8
DISK ID	Disk10000	Disk10100	Disk10200	Disk10300	Disk10400	Disk10500	Disk10800	Disk20000	Disk20100	Disk20200	Disk20300	Disk20400	Disk20500	Disk20800

		Мс	del 4	254	Disk	Enclo	osure	e She	lf 2 (dual-	bus)			
			Bus	Α						I	Bus E	3		
Bav	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4
SCSI ID	0	- 0 1	0 2	0 3	0 4	0 5	0 8	0 0	0 1	0 2	0 3	0 4	0 5	0 8
DISK ID	Disk30000	Disk30100	Disk30200	Disk30300	Disk30400	Disk30500	Disk30800	Disk40000	Disk40100	Disk40200	Disk40300	Disk40400	Disk40500	Disk40800

continued on the following page

		Мс	del 4	254	Disk	Enclo	osure	e She	lf 3 (dual-	bus)			
			Bus	Α						I	Bus E	3		
Bay	1	2	3	4	5	7	8	9	1 0	1 1	1 2	1 3	1 4	
SCSI ID	0 0	0 1	0 2	0 3	0 4	0 5	0 8	0 0	0 1	0 2	0 3	0 4	0 5	0 8
DISK ID	Disk50000	Disk50100	Disk50200	Disk50300	Disk50400	Disk50500	Disk50800	Disk60000	Disk60100	Disk60200	Disk60300	Disk60400	Disk60500	Disk60800

continued from previous page

Storage Map Template 6 for the Model 4310R Disk Enclosure

Use this template for a subsystem with a six-shelf Model 4310R disk enclosure (single-bus). You can have up to six Model 4310R disk enclosures per controller shelf.

Вау	1	2	3	4	5	6	7	8	9	10		
SCSI ID	00	01	02	03	04	05	08	10	11	12		
DISK ID	Disk60000	Disk60100	Disk60200	Disk60300	Disk60400	Disk60500	Disk60800	Disk61000	Disk61100	Disk61200		

Model 4310R Disk Enclosure Shelf 6 (single-bus)

Model 4310R Disk Enclosure Shelf 5 (single-bus)

Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
DISK ID	Disk50000	Disk50100	Disk50200	Disk50300	Disk50400	Disk50500	Disk50800	Disk51000	Disk51100	Disk51200

	N	lodel 4	310R D	isk En	closure	e Shelf	4 (sing	le-bus)		
Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
DISK ID	Disk40000	Disk40100	Disk40200	Disk40300	Disk40400	Disk40500	Disk40800	Disk41000	Disk41100	Disk41200

Model 4310R Disk Enclosure Shelf 1 (single-bus)

Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
DISK ID	Disk10000	Disk10100	Disk10200	Disk10300	Disk10400	Disk10500	Disk10800	Disk11000	Disk11100	Disk11200
	Μ	odel 43	310R D	isk End	closure	Shelf	2 (sing	le-bus)		
Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
		0	0	0	0	0	0	0	0	0

HSG80 ACS Solution Software Version 8.7 for HP-UX Installation and Configuration Guide

	N	lodel 4	310R D	isk End	closure	Shelf	3 (sing	le-bus)		
Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
DISK ID	Disk30000	Disk30100	Disk30200	Disk30300	Disk30400	Disk30500	Disk30800	Disk31000	Disk31100	Disk31200

Storage Map Template 7 for the Model 4350R Disk Enclosure

Use this template for a subsystem with a three-shelf Model 4350R disk enclosure (single-bus). You can have up to three Model 4350R disk enclosures per controller shelf.

Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
DISK ID	Disk60000	Disk60100	Disk60200	Disk60300	Disk60400	Disk60500	Disk60800	Disk61000	Disk61100	Disk61200
	Μ	odel 4	350R D	isk End	closure	Shelf	5 (sing	le-bus)	_	_
Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
DISK ID	Disk50000	Disk50100	Disk50200	Disk50300	Disk50400	Disk50500	Disk50800	Disk51000	Disk51100	Disk51200

Model 4350R Disk Enclosure Shelf 6 (single-bus)

	Ν	lodel 4	350R D	isk End	closure	Shelf	4 (sing	le-bus)		
Bay	1	2	3	4	5	6	7	8	9	10
SCSI ID	00	01	02	03	04	05	08	10	11	12
DISK ID	Disk40000	Disk40100	Disk40200	Disk40300	Disk40400	Disk40500	Disk40800	Disk41000	Disk41100	Disk41200

Storage Map Template 8 for the Model 4314R Disk Enclosure

Use this template for a subsystem with a six-shelf Model 4314R disk enclosure. You can have a maximum of six Model 4314R disk enclosures with each Model 2200 controller enclosure.

Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID	Disk60000	Disk60100	Disk60200	Disk60300	Disk60400	Disk60500	Disk60800	Disk60900	Disk61000	Disk61100	Disk61200	Disk61300	Disk61400	Disk61500
			Mode	I 4314	R Dis	k Enc	losure	e Shel	f 5 (si	ngle-b	ous)			
Вау	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID	Disk50000	Disk50100	Disk50200	Disk50300	Disk50400	Disk50500	Disk50800	Disk50900	Disk51000	Disk51100	Disk51200	Disk51300	Disk51500	Disk51500

Model 4314R Disk Enclosure Shelf 6 (single-bus)

			Mode	I 4314	R Dis	k Enc	losure	e Shel	f 4 (si	ngle-b	ous)			
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID	Disk40000	Disk40100	Disk40200	Disk40300	Disk40400	Disk40500	Disk40800	Disk40900	Disk41000	Disk41100	Disk41200	Disk41300	Disk41400	Disk41500

continued from previous page

Model 4314R Disk Enclosure Shelf 1 (single-bus)

Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID	Disk10000	Disk10100	Disk10200	Disk10300	Disk10400	Disk10500	Disk10800	Disk10900	Disk11000	Disk11100	Disk11200	Disk11300	Disk11400	Disk11500

Model 4314R Disk Enclosure Shelf 2 (single-bus)

Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID	Disk20000	Disk20100	Disk20200	Disk20300	Disk20400	Disk20500	Disk20800	Disk20900	Disk21000	Disk21100	Disk21200	Disk21300	Disk21400	Disk21500

			Mode	I 4314	R Dis	k Enc	losure	e Shel	f 3 (si	ngle-k	ous)			
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	09	10	11	12	13	14	15
DISK ID	Disk30000	Disk30100	Disk30200	Disk30300	Disk30400	Disk30500	Disk30800	Disk30900	Disk31000	Disk31100	Disk31200	Disk31300	Disk31400	Disk31500

Storage Map Template 9 for the Model 4354R Disk Enclosure

Use this template for a subsystem with a three-shelf Model 4354R disk enclosure (dual-bus). You can have up to three Model 4354R disk enclosures per controller shelf.

		2 3 4 5 6 0 01 02 03 04 05								SC	SI Bu	s B		
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
DISK ID	Disk10000	Disk10100	Disk10200	Disk10300	Disk10400	Disk10500	Disk10800	Disk20000	Disk20100	Disk20200	Disk20300	Disk20400	Disk20500	Disk20800

Model 4354R Disk Enclosure Shelf 1 (dual-bus)

Model 4354R Disk Enclosure Shelf 2 (dual-bus)

		SCSI Bus A 1 2 3 4 5 6 00 01 02 03 04 05 0 00 01 02 03 04 05 0 00 01 02 03 04 05 0 00 01 02 03 04 05 0 00 01 02 03 04 05 0 00 01 02 03 04 05 0 00 01 02 03 04 05 0 01 02 03 04 05 0 02 03 04 05 0 0 03 04 05 0 0 0 0								SC	SI Bu	s B		
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
DISK ID	Disk30000	Disk30100	Disk30200	Disk30300	Disk30400	Disk30500	Disk30800	Disk40000	Disk40100	Disk40200	Disk40300	Disk40400	Disk40500	Disk40800

Model 4354R Disk Enclosure Shelf 3 (dual-bus)														
		SCSI Bus A					SCSI Bus B							
Bay	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SCSI ID	00	01	02	03	04	05	08	00	01	02	03	04	05	08
DISK ID	Disk50000	Disk50100	Disk50200	Disk50300	Disk50400	Disk50500	Disk50800	Disk60000	Disk60100	Disk60200	Disk60300	Disk60400	Disk60500	Disk60800

Installing, Configuring, and Removing the Client

The following information is included in this appendix:

- "Why Install the Client?," page B-2
- "Before You Install the Client," page B–2
- "Installing the Client," page B-4
- "Installing the Integration Patch," page B–5
- "Troubleshooting Client Installation," page B-8
- "Adding Storage Subsystem and its Host to Navigation Tree," page B-10
- "Removing Command Console Client," page B–12
- "Where to Find Additional Information," page B-13

Why Install the Client?

The Client monitors and manages a storage subsystem by performing the following tasks:

- Create mirrored device group (RAID 1)
- Create striped device group (RAID 0)
- Create striped mirrored device group (RAID 0+1)
- Create striped parity device group (3/5)
- Create an individual device (JBOD)
- Monitor many subsystems at once
- Set up pager notification

Before You Install the Client

- 1. Verify you are logged into an account that is a member of the administrator group.
- 2. Check the software product description that came with the software for a list of supported hardware.
- 3. Verify that you have the SNMP service installed on the computer. SNMP must be installed on the computer for this software to work properly. The Client software uses SNMP to receive traps from the Agent. The SNMP service is available on the Windows NT or Windows 2000 installation CD-ROM. To verify that you have the SNMP service:
 - For Windows NT, double-click Services in *Start > Settings > Control Panel*. The entry for SNMP is shown in this window. If you install the SNMP service and you already have Windows NT Service Pack 6A on the computer, reinstall the service pack after installing the SNMP service.
 - For Windows 2000, click Start > Settings > Control Panel > Administrative Tools > Component Services. The entry for SNMP is shown in the Component Services window.
- 4. Read the release notes.
- 5. Read "Installing the Integration Patch," page B–5 in this appendix.
- 6. If you have the Command Console Client open, exit the Command Console Client.

- 7. If you have Command Console Client version 1.1b or earlier, remove the program with the Windows Add/Remove Programs utility.
- 8. If you have a previous version of Command Console, you can save the Navigation Tree configuration by copying the *SWCC2.MDB* file to another directory. After you have installed the product, move *SWCC2.MDB* to the directory to which you installed SWCC.
- 9. Install the HS-Series Agent. For more information, see Chapter 4.

Installing the Client

The following restriction should be observed when installing SWCC on Windows NT 4.0 Workstations.

If you select all of the applets during installation, the installation will fail on the HSG60 applet and again on one of the HSG80 applets. The workaround is to install all of the applets you want except for the HSG60 applet and the HSG80 ACS 8.5 applet. You can then return to the setup program and install the one that you need.

- 1. In a SAN environment where you would need both HSG60 and HSG80 subsystems, StorageWorks recommends you install both, but one at a time. This problem is not seen under Windows NT 4.0 Server.
- 2. Insert the CD-ROM into a computer running Windows 2000 with Service Pack 2 or Windows NT 4.0 (Intel) with Service Pack 6.0A.
- 3. A dialog box should automatically appear.
- 4. One of the items in the dialog box should say "SWCC Client Software" and has a button that says "INSTALL" next to it. Click on the button to start the SWCC client installation procedure.
- 5. Select "HSG80 Controller for ACS87 or newer" menu option to properly install SWCC client, and click **Next**.

If this method does not work, go to the \windows directory on the CD-ROM and run the *setup.exe* program.

NOTE: If the computer does not find a previous installation, it will install the SWCC Navigation Window and the CLI Window.

6. Follow the instructions on the screen. After you install the software, the Asynchronous Event Service (AES) starts. AES is a service that runs in the background. It collects and passes traps from the subsystems to the Navigation Tree and to individual pagers (for example, to show that a disk has failed). AES needs to be running for the client system to receive updates.

NOTE: For more information on AES, see *StorageWorks Command Console Version 2.5, User Guide.*

Installing the Integration Patch

The integration patch determines which version of firmware the controller is using and launches the appropriate StorageWorks Command Console (SWCC) Storage Window within Insight Manager (CIM) version 4.23.

Should I Install the Integration Patch?

Install this patch if your HSG80 controller uses ACS 8.6 or later. This patch enables you to use the controller's SWCC Storage Window within CIM to monitor and manage the controller.

How to Install the Integration Patch

Perform the following steps to install the integration patch.

- 1. Verify that you have installed the HSG80 Storage Window for ACS 8.6 or later in the Add/Remove Programs in the Windows Control Panel. The HSG80 Storage Window for ACS 8.6 or later is needed to display the correct Storage Window for your version of the firmware.
- Verify that you have installed HSG80 Storage Window version 2.1 in the Add/Remove Programs (StorageWorks HSG80 V2.1) in the Windows Control Panel. The HSG80 Storage Window version 2.1 is required to run the integration patch.
- 3. Verify that you have installed CIM version 4.23.
- 4. Install the integration patch from the Solution Software CD-ROM by double-clicking on setup.exe in the following directory:

\SWCC\Client\HSG80shim

The patch is installed in the same location as the original SWCC installation.

IMPORTANT: IMPORTANT: Do not remove the HSG80 Client from your computer. If you remove the HSG80 Client, you will no longer be able to access its Storage Window.

Integrating Controller's SWCC Storage Window with CIM

You can open the controller's Storage Window from within the Windows-based CIM version 4.23 by doing the following:

- 1. Verify that you have installed the following by looking in Add/Remove Programs in Control Panel:
 - The HSG80 Storage Window for ACS 8.6 or later (Required to open the correct Storage Window for your firmware).
 - The HSG80 Storage Window version 2.1 (StorageWorks HSG80 V2.1) The CIM integration patch uses files in this program.
 - CIM version 4.23.
 - CIM integration patch (HSG80 Insight Manager Shim).
- 2. Verify that you have installed the CIM Agent and the StorageWorks Command Console HS-Series Agent on the same computer.
- 3. Add the name of the client system that has CIM to the Agent's list of client system entries and choose SNMP as a notification scheme.
- 4. Open Insight Manager.
- 5. To open the Server window, click on the device you want to observe in the CIM Navigation window.
- 6. Click on the Mass Storage button in the Server window. The CIM Navigation Tree is displayed.
- 7. Click on the + symbol next to RAID Storage System. The Navigation Tree expands to display a listing called Storage System Information.
- 8. Double-click Storage System Information. You are given the status of the system.
- 9. Click Launch. The controller's Storage Window is displayed.

Insight Manager Unable to Find Controller's Storage Window

If you installed Insight Manager before SWCC, Insight Manager will be unable to find the controller's Storage Window. To find the controller's Storage Window, perform the following procedure:

- Double-click the Insight Agents icon (Start > Settings > Control Panel). A window appears showing you the active and inactive Agents under the Services tab.
- 2. Highlight the entry for Fibre Array Information and click Add. The Fibre Array Information entry is moved from Inactive Agents to Active Agents.

Removing the Integration Patch Will Corrupt Storage Window

If you remove the integration patch, HSG80 Storage Windows version 2.1 will no longer work and you will need to reinstall HSG80 Storage Windows version 2.1. The integration patch uses some of the same files as the HSG80 Storage Window version 2.1.

Troubleshooting Client Installation

This section provides information on how to resolve some of the problems that may appear when installing the Client software:

- Invalid Network Port Assignments During Installation
- "There is no disk in the drive" Message

Invalid Network Port Assignments During Installation

SWCC Clients and Agents communicate by using sockets. The SWCC installation attempts to add entries into each system list of services (services file or for UCX, the local services database). If the SWCC installation finds an entry in the local services file with the same name as the one it wants to add, it assumes the one in the file is correct.

The SWCC installation may display a message, stating that it cannot upgrade the services file. This happens if it finds an entry in the local services file with the same number as the one it wants to add, but with a different name. In that case, appropriate port numbers must be obtained for the network and added manually to the services file.

There are two default port numbers, one for Command Console (4998) and the other for the device-specific Agent and Client software, such as the Fibre Channel Interconnect Client and Agent (4989). There are two exceptions. The following software has two default port numbers:

- The KZPCC Agent and Client, (4991 and 4985)
- The RA200 Agent and Client, (4997 and 4995)

If the Network Information Services (NIS) are being used to provide named port lookup services, contact the network administrator to add the correct ports.

spgui	4998/tcp	#Command Console
ccdevmgt	4993/tcp	#Device Management Client and Agent
kzpccconnectport	4991/tcp	#KZPCC Client and Agent
kzpccdiscoveryport	4985/tcp	#KZPCC Client and Agent
ccfabric	4989/tcp	#Fibre Channel Interconnect Agent
spagent	4999/tcp	#HS-Series Client and Agent
spagent3	4994/tcp	#HSZ22 Client and Agent
ccagent	4997/tcp	#RA200 Client and Agent
spagent2	4995/tcp	#RA200 Client and Agent

The following shows how the network port assignments appear in the services file:

"There is no disk in the drive" Message

When you install the Command Console Client, the software checks the shortcuts on the desktop and in the Start menu. The installation will check the shortcuts of all users for that computer, even if they are not currently logged on. You may receive an error message if any of these shortcuts point to empty floppy drives, empty CD-ROM drives, or missing removable disks. Do one of the following:

- Ignore the error message by clicking **Ignore**.
- Replace the removable disks, and place a disk in the floppy drive and a CD-ROM in the CD-ROM drive. Then, click **Retry**.

Adding Storage Subsystem and its Host to Navigation Tree

The Navigation Tree enables you to manage storage over the network by using the Storage Window. If you plan to use pager notification, you must add the storage subsystem to the Navigation Tree.

- 1. Verify that you have properly installed and configured the HS-Series Agent on the storage subsystem host.
- 2. Click *Start* > *Programs* > *Command Console* > *StorageWorks Command Console*. Client displays the Navigation Window. The Navigation Window lets you monitor and manage many storage subsystems over the network.

Figure B-1: Navigation Window

- 3. Click *File > Add System*. The Add System window appears.
- 4. Type the host name or its TCP/IP address and click *Apply*.
- 5. Click Close.

Figure B-2: Navigation window showing storage host system "Atlanta"

6. Click the plus sign to expand the host icon. When expanded, the Navigation Window displays an icon for the storage subsystem. To access the Storage Window for the subsystem, double-click the Storage Window icon.

Figure B-3: Navigation window showing expanded "Atlanta" host icon

NOTE: You can create virtual disks by using the Storage Window. For more information on the Storage Window, refer to StorageWorks Command Console Version 2.5, User Guide.

Removing Command Console Client

Before you remove the Command Console Client (CCL) from the computer, remove AES. This will prevent the system from reporting that a service failed to start every time the system is restarted. Steps 2 through 5 describe how to remove the CCL.

NOTE: When you remove the CCL, the *SWCC2.MDB* file is deleted. This file contains the Navigation Tree configuration. If you want to save this information, move the file to another directory.

- 1. Click *Start > Programs > Command Prompt* and change to the directory to which you installed the CCL.
- 2. Enter the following command:

C:\Program Files\Compaq\SWCC> AsyncEventService -remove

- 3. Do one of the following:
 - On Windows NT 4.0, click *Start > Settings > Control Panel*, and double-click the Add/Remove Programs icon in the Control Panel. The Add/Remove Program Properties window appears.
 - On Windows 2000, click *Start > Settings > Control Panel > Add/Remove Programs*. The Add/Remove Program window appears.
- 4. Select Command Console in the window.
- 5. Do one of the following:
 - On Windows NT 4.0, click Add/Remove.
 - On Windows 2000, click *Change/Remove*.
- 6. Follow the instructions on the screen.

NOTE: This procedure removes only the Command Console Client (SWCC Navigation Window). You can remove the HSG80 Client by using the Add/Remove program.

Where to Find Additional Information

You can find additional information about SWCC by referring to the online Help and to StorageWorks Command Console Version 2.5, User Guide.

About the User Guide

StorageWorks Command Console Version 2.5, User Guide contains additional information on how to use SWCC. Some of the topics in the user guide are the following:

- About AES
- Adding Devices
- Adding Virtual Disks
- Setting Up Pager Notification
- How to Integrate SWCC with Insight Manager
- Troubleshooting Information

About the Online Help

Most of the information about the Client is provided in the online Help. Online Help is provided in two places:

- Navigation Window Online Help provides information on pager notification and a tour of the Command Console Client, in addition to information on how to add a system to the Navigation Tree.
- Storage Window Online Help provides detailed information about the Storage Window, such as how to create virtual disks.

Glossary

This glossary defines terms pertaining to the ACS solution software. It is not a comprehensive glossary of computer terms.

8B/10B	A type of byte definition encoding and decoding to reduce errors in data transmission patented by the IBM Corporation. This process of encoding and decoding data for transmission has been adopted by ANSI.
adapter	A device that converts the protocol and hardware interface of one bus type into another without changing the function of the bus.
ACS	See array controller software.
AL_PA	See arbitrated loop physical address.
alias address	An AL_PA value recognized by an arbitrated loop port in addition to the assigned AL_PA.
ANSI	Pronounced "ann-see." Acronym for the American National Standards Institute. An organization who develops standards used voluntarily by many manufacturers within the USA. ANSI is not a government agency.
arbitrate	A process of selecting one L_Port from a collection of several ports that request use of the arbitrated loop concurrently.
arbitrated loop	A loop type of topology where two or more ports can be interconnected, but only two ports at a time can communicate.
arbitrated loop physical address	Abbreviated AL_PA. A one-byte value used to identify a port in an Arbitrated Loop topology.

array controller	See controller.
array controller software	Abbreviated ACS. Software contained on a removable ROM program card that provides the operating system for the array controller.
association set	A group of remote copy sets that share selectable attributes for logging and failover. Members of an association set transition to the same state simultaneously. For example, if one association set member assumes the failsafe locked condition, then other members of the association set also assume the failsafe locked condition.
	An association set can also be used to share a log between a group of remote copy set members that require efficient use of the log space.
asynchronous	Pertaining to events that are scheduled as the result of a signal asking for the event; pertaining to that which is without any specified time relation. <i>See also</i> synchronous.
autospare	A controller feature that automatically replaces a failed disk drive. To aid the controller in automatically replacing failed disk drives, you can enable the AUTOSPARE switch for the failedset causing physically replaced disk drives to be automatically placed into the spareset. Also called "AUTONEWSPARE."
bad block	A data block that contains a physical defect.
bad block replacement	Abbreviated BBR. A replacement routine that substitutes defect-free disk blocks for those found to have defects. This process takes place in the controller, transparent to the host.
backplane	The electronic printed circuit board into which you plug subsystem devices—for example, the SBB or power supply.
battery hysteresis	The ability of the software to allow write-block caching during the time a battery is charging, but only when a previous down time has not drained more than 50 percent of rated battery capacity.
BBR	See bad block replacement.
BIST	See built-in self-test.
bit	A single binary digit having a value of either 0 or 1. A bit is the smallest unit of data a computer can process.

block	Also called a sector. The smallest collection of consecutive bytes addressable on a disk drive. In integrated storage elements, a block contains 512 bytes of data, error codes, flags, and the block address header.
bootstrapping	A method used to bring a system or device into a defined state by means of its own action. For example, a machine routine whose first few instructions are enough to bring the rest of the routine into the computer from an input device.
built-in self-test	A diagnostic test performed by the array controller software on the controller policy processor.
byte	A binary character string made up of 8 bits operated on as a unit.
cache memory	A portion of memory used to accelerate read and write operations.
cache module	A fast storage buffer
CCL	CCL-Command Console LUN, a "SCSI Logical Unit Number" virtual-device used for communicating with Command Console Graphical User Interface (GUI) software.
channel	An interface that allows high speed transfer of large amounts of data. Another term for a SCSI bus. <i>See also</i> SCSI.
chunk	A block of data written by the host.
chunk size	The number of data blocks, assigned by a system administrator, written to the primary RAIDset or stripeset member before the remaining data blocks are written to the next RAIDset or stripeset member.
CLCP	An abbreviation for code-load code-patch utility. This utility is used to upgrade the controller and EMU software. It can also be used to patch the controller software.
CLI	See Command Line Interface.
соах	A two-conductor wire in which one conductor completely wraps the other with the two separated by insulation.
cold swap	A method of device replacement that requires the entire subsystem to be turned off before the device can be replaced. <i>See also</i> hot swap and warm swap.

command line interface	CLI. A command line entry utility used to interface with the HS-series controllers. CLI enables the configuration and monitoring of a storage subsystem through textual commands.
concat commands	Concat commands implement storageset expansion features.
configuration file	A file that contains a representation of a storage subsystem configuration.
container	1) Any entity that is capable of storing data, whether it is a physical device or a group of physical devices. (2) A virtual, internal controller structure representing either a single disk or a group of disk drives linked as a storageset. Stripesets and mirrorsets are examples of storageset containers the controller uses to create units.
controller	A hardware device that, with proprietary software, facilitates communications between a host and one or more devices organized in an array. The HSG80 family controllers are examples of array controllers.
copying	A state in which data to be copied to the mirrorset is inconsistent with other members of the mirrorset. <i>See also</i> normalizing.
copying member	Any member that joins the mirrorset after the mirrorset is created is regarded as a copying member. Once all the data from the normal member (or members) is copied to a normalizing or copying member, the copying member then becomes a normal member. <i>See also</i> normalizing member.
CSR	An acronym for control and status register.
DAEMON	Pronounced "demon." A program usually associated with a UNIX systems that performs a utility (housekeeping or maintenance) function without being requested or even known of by the user. A daemon is a diagnostic and execution monitor.
data center cabinet	A generic reference to large subsystem cabinets, such as the cabinets in which <i>StorageWorks</i> components can be mounted.
data striping	The process of segmenting logically sequential data, such as a single file, so that segments can be written to multiple physical devices (usually disk drives) in a round-robin fashion. This technique is useful if the processor is capable of reading or writing data faster than a single disk can supply or accept the data. While data is being transferred from the first disk, the second disk can locate the next segment.
------------------------------	--
DDL	Dual data link. The ability to operate on the CI bus using both paths simultaneously to the same remote node.
device	See node and peripheral device.
differential I/O module	A 16-bit I/O module with SCSI bus converter circuitry for extending a differential SCSI bus. <i>See also</i> I/O module.
differential SCSI bus	A bus in which a signal level is determined by the potential difference between two wires. A differential bus is more robust and less subject to electrical noise than is a single-ended bus.
DIMM	Dual inline Memory Module.
dirty data	The write-back cached data that has not been written to storage media, even though the host operation processing the data has completed.
DMA	Direct Memory Access.
DOC	DWZZA-On-a-Chip. ASCSI bus extender chip used to connect a SCSI bus in an expansion cabinet to the corresponding SCSI bus in another cabinet (See DWZZA).
driver	A hardware device or a program that controls or regulates another device. For example, a device driver is a driver developed for a specific device that allows a computer to operate with the device, such as a printer or a disk drive.
dual-redundant configuration	A controller configuration consisting of two active controllers operating as a single controller. If one controller fails, the other controller assumes control of the failing controller devices.
dual-simplex	A communications protocol that allows simultaneous transmission in both directions in a link, usually with no flow control.
DUART	Dual universal asynchronous receiver and transmitter. An integrated circuit containing two serial, asynchronous transceiver circuits.

DWZZA	A StorageWorks SCSI bus signal converter used to connect 8-bit single-ended devices to hosts with 16-bit differential SCSI adapters. This converter extends the range of a single-ended SCSI cable to the limit of a differential SCSI cable.
DWZZB	A StorageWorks SCSI bus signal converter used to connect a variety of 16-bit single-ended devices to hosts with 16-bit differential SCSI adapters.
ECB	External cache battery. The unit that supplies backup power to the cache module in the event the primary power source fails or is interrupted.
ECC	Error checking and correction.
EDC	Error detection code.
EIA	The abbreviation for Electronic Industries Association. EIA is a standards organization specializing in the electrical and functional characteristics of interface equipment.
EMU	Environmental monitoring unit. A unit that provides increased protection against catastrophic failures. Some subsystem enclosures include an EMU which works with the controller to detect conditions such as failed power supplies, failed blowers, elevated temperatures, and external air sense faults. The EMU also controls certain cabinet hardware including DOC chips, alarms, and fan speeds.
ESD	Electrostatic discharge. The discharge of potentially harmful static electrical voltage as a result of improper grounding.
extended subsystem	A subsystem in which two cabinets are connected to the primary cabinet.
external cache battery	See ECB.
F_Port	A port in a fabric where an N_Port or NL_Port may attach.
fabric	A group of interconnections between ports that includes a fabric element.
failback	The process of restoring data access to the newly-restored controller in a dual-redundant controller configuration. See also failover.

failedset	A group of failed mirrorset or RAIDset devices automatically created by the controller.
failover	The process that takes place when one controller in a dual-redundant configuration assumes the workload of a failed companion controller. Failover continues until the failed controller is repaired or replaced.
	The ability for HSG80 controllers to transfer control from one controller to another in the event of a controller failure. This ensures uninterrupted operation. Use Transparent Failover mode for single HBA configurations. Use multiple-bus failover mode for Secure Path based configurations.
FCA	Fibre Channel Adapter
FC-AL	The Fibre Channel Arbitrated Loop standard. See Fibre Channel.
FC-ATM	ATM AAL5 over Fibre Channel
FC–FG	Fibre Channel Fabric Generic Requirements
FG–FP	Fibre Channel Framing Protocol (HIPPI on FC)
FC-GS-1	Fibre Channel Generic Services-1
FC–GS-2	Fibre Channel Generic Services-2
FC–IG	Fibre Channel Implementation Guide
FC-LE	Fibre Channel Link Encapsulation (ISO 8802.2)
FC–PH	The Fibre Channel Physical and Signaling standard.
FC–SB	Fibre Channel Single Byte Command Code Set
FC–SW	Fibre Channel Switched Topology and Switch Controls
FCC	Federal Communications Commission. The federal agency responsible for establishing standards and approving electronic devices within the United States.
FCC Class A	This certification label appears on electronic devices that can only be used in a commercial environment within the United States.

FCC Class B	This certification label appears on electronic devices that can be used in either a home or a commercial environment within the United States.
FCP	The mapping of SCSI-3 operations to Fibre Channel.
FDDI	Fiber Distributed Data Interface. An ANSI standard for 100 megabaud transmission over fiber optic cable.
FD SCSI	The fast, narrow, differential SCSI bus with an 8-bit data transfer rate of 10 MB/s. <i>See also</i> FWD SCSI and SCSI.
fiber	A fiber or optical strand. Spelled <i>fibre</i> in Fibre Channel.
fiber optic cable	A transmission medium designed to transmit digital signals in the form of pulses of light. Fiber optic cable is noted for its properties of electrical isolation and resistance to electrostatic contamination.
Fibre Channel	A high speed, high-bandwidth serial protocol for channels and networks that interconnect over twisted pair wires, coaxial cable or fiber optic cable. The Fibre Channel Switched (FC-SW) (fabric) offers up to 16 million ports with cable lengths of up to 10 kilometers. The Fibre Channel Arbitrated Loop (FC-AL) topology offers speeds of up to 100 Mbytes/seconds and up to 127 nodes, all connected in serial. In contrast to SCSI technology, Fibre Channel does not require ID switches or terminators. The FC-AL loop may be connected to a Fibre Channel fabric for connection to other nodes.
fibre channel topology	An interconnection scheme that allows multiple Fibre Channel ports to communicate with each other. For example, point-to-point, Arbitrated Loop, and switched fabric are all Fibre Channel topologies.
FL_Port	A port in a fabric where N_Port or an NL_Port may be connected.
flush	The act of writing dirty data from cache to a storage media.
FMU	Fault management utility.
forced errors	A data bit indicating a corresponding logical data block contains unrecoverable data.
frame	An invisible unit used to transfer information in Fibre Channel.

FRU	Field replaceable unit. A hardware component that can be replaced at the customer location by service personnel or qualified customer service personnel.
FRUTIL	Field Replacement utility.
full duplex (n)	A communications system in which there is a capability for 2-way transmission and acceptance between two sites at the same time.
full duplex (adj)	Pertaining to a communications method in which data can be transmitted and received at the same time.
FWD SCSI	A fast, wide, differential SCSI bus with a maximum 16-bit data transfer rate of 20 MB/s. <i>See also</i> SCSI and FD SCSI.
GBIC	Gigabit Interface Converter. GBICs convert electrical signals to optical signals (and vice-versa.) They are inserted into the ports of the Fibre Channel switch and hold the Fibre Channel cables.
GLM	Gigabit link module
giga	A prefix indicating a billion (10^9) units, as in gigabaud or gigabyte.
gigabaud	An encoded bit transmission rate of one billion (10^9) bits per second.
gigabyte	A value normally associated with a disk drives storage capacity, meaning a billion (10^9) bytes. The decimal value 1024 is usually used for one thousand.
half-duplex (adj)	Pertaining to a communications system in which data can be either transmitted or received but only in one direction at one time.
hard address	The AL_PA which an NL_Port attempts to acquire during loop initialization.
heterogeneous host support	Also called noncooperating host support.
HIPPI-FC	Fibre Channel over HIPPI
host	The primary or controlling computer to which a storage subsystem is attached.

host adapter	A device that connects a host system to a SCSI bus. The host adapter usually performs the lowest layers of the SCSI protocol. This function may be logically and physically integrated into the host system.
НВА	Host bus adapter
host compatibility mode	A setting used by the controller to provide optimal controller performance with specific operating systems. This improves the controller performance and compatibility with the specified operating system.
hot disks	A disk containing multiple hot spots. Hot disks occur when the workload is poorly distributed across storage devices which prevents optimum subsystem performance. <i>See also</i> hot spots.
hot spots	A portion of a disk drive frequently accessed by the host. Because the data being accessed is concentrated in one area, rather than spread across an array of disks providing parallel access, I/O performance is significantly reduced. <i>See als</i> o hot disks.
hot swap or hot-pluggable	A method of device replacement that allows normal I/O activity on a device bus to remain active during device removal and insertion. The device being removed or inserted is the only device that cannot perform operations during this process. <i>See also</i> cold swap and warm swap.
hub	A device (concentrator) which performs some or all of the following functions:
	• Automatic insertion of operational loop devices without disrupting the existing configuration.
	• Automatic removal of failed loop devices without impacting the existing configuration.
	• Provides a centralized (star) wiring configuration and maintenance point.
	Provides central monitoring and management.
IBR	Initial Boot Record.
ILF	Illegal function.
INIT	Initialize input and output.

initiator	A SCSI device that requests an I/O process to be performed by another SCSI device, namely, the SCSI target. The controller is the initiator on the device bus. The host is the initiator on the host bus.
instance code	A four-byte value displayed in most text error messages and issued by the controller when a subsystem error occurs. The instance code indicates when during software processing the error was detected.
interface	A set of protocols used between components, such as cables, connectors, and signal levels.
I/O	Refers to input and output functions.
I/O driver	The set of code in the kernel that handles the physical I/O to a device. This is implemented as a fork process. Same as driver.
I/O interface	See interface.
I/O module	A 16-bit SBB shelf device that integrates the SBB shelf with either an 8-bit single ended, 16-bit single-ended, or 16-bit differential SCSI bus (see SBB).
I/O operation	The process of requesting a transfer of data from a peripheral device to memory (or visa versa), the actual transfer of the data, and the processing and overlaying activity to make both of those happen.
IPI	Intelligent Peripheral Interface. An ANSI standard for controlling peripheral devices by a host computer.
IPI-3 Disk	Intelligent Peripheral Interface Level 3 for Disk
IPI-3 Tape	Intelligent Peripheral Interface Level 3 for Tape
JBOD	Just a bunch of disks. A term used to describe a group of single-device logical units.
kernel	The most privileged processor access mode.
LBN	Logical Block Number.
L_port	A node or fabric port capable of performing arbitrated loop functions and protocols. NL_Ports and FL_Ports are loop-capable ports.
LED	Light Emitting Diode.

link	A connection between two Fibre Channel ports consisting of a transmit fibre and a receive fibre.
local connection	A connection to the subsystem using either its serial maintenance port or the host SCSI bus. A local connection enables you to connect to one subsystem controller within the physical range of the serial or host SCSI cable.
local terminal	A terminal plugged into the EIA-423 maintenance port located on the front bezel of the controller. <i>See also</i> maintenance terminal.
logical bus	A single-ended bus connected to a differential bus by a SCSI bus signal converter.
logical unit	A physical or virtual device addressable through a target ID number. LUNs use their target bus connection to communicate on the SCSI bus.
logical unit number	LUN. A value that identifies a specific logical unit belonging to a SCSI target ID number. A number associated with a physical device unit during a task I/O operations. Each task in the system must establish its own correspondence between logical unit numbers and physical devices.
logon	Also called login. A procedure whereby a participant, either a person or network connection, is identified as being an authorized network participant.
Іоор	See arbitrated loop.
loop_ID	A seven-bit value numbered contiguously from zero to 126-decimal and represent the 127 legal AL_PA values on a loop (not all of the 256 hex values are allowed as AL_PA values per FC-AL.)
loop tenancy	The period of time between the following events: when a port wins loop arbitration and when the port returns to a monitoring state.
L_Port	A node or fabric port capable of performing Arbitrated Loop functions and protocols. NL_Ports and FL_Ports are loop-capable ports.
LUN	See logical unit number.
LRU	Least recently used. A cache term used to describe the block replacement policy for read cache.

Mbps	Approximately one million (10^6) bits per second—that is, megabits per second.
maintenance terminal	An EIA-423-compatible terminal used with the controller. This terminal is used to identify the controller, enable host paths, enter configuration information, and check the controller status. The maintenance terminal is not required for normal operations. <i>See also</i> local terminal.
member	A container that is a storage element in a RAID array.
metadata	The data written to a disk for the purposes of controller administration. Metadata improves error detection and media defect management for the disk drive. It is also used to support storageset configuration and partitioning. Nontransportable disks also contain metadata to indicate they are uniquely configured for <i>StorageWorks</i> environments. Metadata can be thought of as "data about data."
mirroring	The act of creating an exact copy or image of data.
mirrored write-back caching	A method of caching data that maintains two copies of the cached data. The copy is available if either cache module fails.
mirrorset	See RAID level 1.
MIST	Module Integrity Self-Test.
multibus failover	Allows the host to control the failover process by moving the units from one controller to another.
N_port	A port attached to a node for use with point-to-point topology or fabric topology.
NL_port	A port attached to a node for use in all topologies.
network	In data communication, a configuration in which two or more terminals or devices are connected to enable information transfer.
node	In data communications, the point at which one or more functional units connect transmission lines.
Non-L_Port	A Node of Fabric port that is not capable of performing the Arbitrated Loop functions and protocols. N_Ports and F_Ports loop-capable ports.

non- participating mode	A mode within an L_Port that inhibits the port from participating in loop activities. L_Ports in this mode continue to retransmit received transmission words but are not permitted to arbitrate or originate frames. An L_Port in non-participating mode may or may not have an AL_PA. <i>See also</i> participating mode.
nominal membership	The desired number of mirrorset members when the mirrorset is fully populated with active devices. If a member is removed from a mirrorset, the actual number of members may fall below the "nominal" membership.
node	In data communications, the point at which one or more functional units connect transmission lines. In Fibre Channel, a device that has at least one N_Port or NL_Port.
nonredundant controller configuration	(1) A single controller configuration. (2) A controller configuration that does not include a second controller.
normal member	A mirrorset member that, block-for-block, contains the same data as other normal members within the mirrorset. Read requests from the host are always satisfied by normal members.
normalizing	Normalizing is a state in which, block-for-block, data written by the host to a mirrorset member is consistent with the data on other normal and normalizing members. The normalizing state exists only after a mirrorset is initialized. Therefore, no customer data is on the mirrorset.
normalizing member	A mirrorset member whose contents are the same as all other normal and normalizing members for data that has been written since the mirrorset was created or lost cache data was cleared. A normalizing member is created by a normal member when either all of the normal members fail or all of the normal members are removed from the mirrorset. <i>See also</i> copying member.
NVM	Non-Volatile Memory. A type of memory where the contents survive power loss. Also sometimes referred to as NVMEM.
ОСР	Operator control panel. The control or indicator panel associated with a device. The OCP is usually mounted on the device and is accessible to the operator.

offset	A relative address referenced from the base element address. Event Sense Data Response Templates use offsets to identify various information contained within one byte of memory (bits 0 through 7).
other controller	The controller in a dual-redundant pair that is connected to the controller serving the current CLI session. <i>See also</i> this controller.
outbound fiber	One fiber in a link that carries information away from a port.
parallel data transmission	A data communication technique in which more than one code element (for example, bit) of each byte is sent or received simultaneously.
parity	A method of checking if binary numbers or characters are correct by counting the ONE bits. In odd parity, the total number of ONE bits must be odd; in even parity, the total number of ONE bits must be even.
parity bit	A binary digit added to a group of bits that checks to see if errors exist in the transmission.
parity check	A method of detecting errors when data is sent over a communications line. With even parity, the number of ones in a set of binary data should be even. With odd parity, the number of ones should be odd.
parity RAID	See RAIDset.
participating mode	A mode within an L_Port that allows the port to participate in loop activities. A port must have a valid AL_PA to be in participating mode.
partition	A logical division of a container, represented to the host as a logical unit.
PCMCIA	Personal Computer Memory Card Industry Association. An international association formed to promote a common standard for PC card-based peripherals to be plugged into notebook computers. The card commonly known as a PCMCIA card is about the size of a credit card.
PDU	Power distribution unit. The power entry device for <i>StorageWorks</i> cabinets. The CDU provides the connections necessary to distribute power to the cabinet shelves and fans.
peripheral device	Any unit, distinct from the CPU and physical memory, that can provide the system with input or accept any output from it. Terminals, printers, tape drives, and disks are peripheral devices.

pluggable	A replacement method that allows the complete system to remain online during device removal or insertion. The system bus must be halted, or quiesced, for a brief period of time during the replacement procedure. See also hot-pluggable.
point-to-point connection	A network configuration in which a connection is established between two, and only two, terminal installations. The connection may include switching facilities.
port	(1) In general terms, a logical channel in a communications system. (2) The hardware and software used to connect a host controller to a communications bus, such as a SCSI bus or serial bus.
	Regarding the controller, the port is (1) the logical route for data in and out of a controller that can contain one or more channels, all of which contain the same type of data. (2) The hardware and software that connects a controller to a SCSI device.
port_name	A 64-bit unique identifier assigned to each Fibre Channel port. The Port_Name is communicated during the login and port discovery process.
preferred	The AL DA which on NL Dort attempts to acquire first during
address	initialization.
address primary cabinet	The primary cabinet is the subsystem enclosure that contains the controllers, cache modules, external cache batteries, and the PVA module.
address primary cabinet private NL_Port	The primary cabinet is the subsystem enclosure that contains the controllers, cache modules, external cache batteries, and the PVA module. An NL_Port which does not attempt login with the fabric and only communicates with NL_Ports on the same loop.
address primary cabinet private NL_Port program card	 The Primary cabinet is the subsystem enclosure that contains the controllers, cache modules, external cache batteries, and the PVA module. An NL_Port which does not attempt login with the fabric and only communicates with NL_Ports on the same loop. The PCMCIA card containing the controller operating software.
address primary cabinet private NL_Port program card protocol	 The AL_FA which an NL_Fort attempts to acquire first during initialization. The primary cabinet is the subsystem enclosure that contains the controllers, cache modules, external cache batteries, and the PVA module. An NL_Port which does not attempt login with the fabric and only communicates with NL_Ports on the same loop. The PCMCIA card containing the controller operating software. The conventions or rules for the format and timing of messages sent and received.
address primary cabinet private NL_Port program card protocol PTL	 The AL_FA which an NL_Fort attempts to acquire first during initialization. The primary cabinet is the subsystem enclosure that contains the controllers, cache modules, external cache batteries, and the PVA module. An NL_Port which does not attempt login with the fabric and only communicates with NL_Ports on the same loop. The PCMCIA card containing the controller operating software. The conventions or rules for the format and timing of messages sent and received. Port-Target-LUN. The controller method of locating a device on the controller device bus.
address primary cabinet private NL_Port program card protocol PTL PVA module	 The AL_FA which an IAL_Fort attempts to acquire first during initialization. The primary cabinet is the subsystem enclosure that contains the controllers, cache modules, external cache batteries, and the PVA module. An NL_Port which does not attempt login with the fabric and only communicates with NL_Ports on the same loop. The PCMCIA card containing the controller operating software. The conventions or rules for the format and timing of messages sent and received. Port-Target-LUN. The controller method of locating a device on the controller device bus. Power Verification and Addressing module.

RAID	Redundant Array of Independent Disks. Represents multiple levels of storage access developed to improve performance or availability or both.
RAID level 0	A RAID storageset that stripes data across an array of disk drives. A single logical disk spans multiple physical disks, enabling parallel data processing for increased I/O performance. While the performance characteristics of RAID level 0 is excellent, this RAID level is the only one that does not provide redundancy. Raid level 0 storagesets are sometimes referred to as stripesets.
RAID level 0+1	A RAID storageset that stripes data across an array of disks (RAID level 0) and mirrors the striped data (RAID level 1) to provide high I/O performance and high availability. This RAID level is alternatively called a striped mirrorset.
RAID level 1	A RAID storageset of two or more physical disks that maintain a complete and independent copy of the entire virtual disk's data. This type of storageset has the advantage of being highly reliable and extremely tolerant of device failure. Raid level 1 storagesets are sometimes referred to as mirrorsets.
RAID level 3	A RAID storageset that transfers data parallel across the array disk drives a byte at a time, causing individual blocks of data to be spread over several disks serving as one enormous virtual disk. A separate redundant check disk for the entire array stores parity on a dedicated disk drive within the storageset. <i>See also</i> RAID level 5.
RAID level 5	A RAID storageset that, unlike RAID level 3, stores the parity information across all of the disk drives within the storageset. <i>See also</i> RAID level 3.
RAID level 3/5	A RAID storageset that stripes data and parity across three or more members in a disk array. A RAIDset combines the best characteristics of RAID level 3 and RAID level 5. A RAIDset is the best choice for most applications with small to medium I/O requests, unless the application is write intensive. A RAIDset is sometimes called parity RAID.
RAIDset	See RAID level 3/5.
RAM	Random access memory.

read ahead caching	A caching technique for improving performance of synchronous sequential reads by prefetching data from disk.
read caching	A cache management method used to decrease the subsystem response time to a read request by allowing the controller to satisfy the request from the cache memory rather than from the disk drives.
reconstruction	The process of regenerating the contents of a failed member data. The reconstruct process writes the data to a spareset disk and incorporates the spareset disk into the mirrorset, striped mirrorset, or RAIDset from which the failed member came. <i>See also</i> regeneration.
reduced	Indicates that a mirrorset or RAIDset is missing one member because the member has failed or has been physically removed.
redundancy	The provision of multiple interchangeable components to perform a single function in order to cope with failures and errors. A RAIDset is considered to be redundant when user data is recorded directly to one member and all of the other members include associated parity information.
regeneration	(1) The process of calculating missing data from redundant data. (2) The process of recreating a portion of the data from a failing or failed drive using the data and parity information from the other members within the storageset. The regeneration of an entire RAIDset member is called reconstruction. <i>See also</i> reconstruction.
remote copy	A feature intended for disaster tolerance and replication of data from one storage subsystem or physical site to another subsystem or site. Remote copy also provides methods of performing a backup at either the local or remote site. With remote copy, user applications continue to run while data movement goes on in the background. Data warehousing, continuous computing, and enterprise applications all require remote copy capabilities.
remote copy set	A bound set of two units, one located locally and one located remotely, for long-distance mirroring. The units can be a single disk, or a storageset, mirrorset, or RAIDset. A unit on the local controller is designated as the "initiator" and a corresponding unit on the remote controller is designated as the "target".
request rate	The rate at which requests are arriving at a servicing entity.

RFI	Radio frequency interference. The disturbance of a signal by an unwanted radio signal or frequency.
replacement policy	The policy specified by a switch with the SET FAILEDSET command indicating whether a failed disk from a mirrorset or RAIDset is to be automatically replaced with a disk from the spareset. The two switch choices are AUTOSPARE and NOAUTOSPARE.
SBB	<i>StorageWorks</i> building block. (1) A modular carrier plus the interface required to mount the carrier into a standard <i>StorageWorks</i> shelf. (2) any device conforming to shelf mechanical and electrical standards installed in a 3.5-inch or 5.25-inch carrier, whether it is a storage device or power supply.
SCSI	Small computer system interface. (1) An ANSI interface standard defining the physical and electrical parameters of a parallel I/O bus used to connect initiators to devices. (2) a processor-independent standard protocol for system-level interfacing between a computer and intelligent devices including hard drives, floppy disks, CD-ROMs, printers, scanners, and others.
SCSI-A cable	A 50-conductor (25 twisted-pair) cable generally used for single-ended, SCSI-bus connections.
SCSI bus signal converter	Sometimes referred to as an adapter. (1) A device used to interface between the subsystem and a peripheral device unable to be mounted directly into the SBB shelf of the subsystem. (2) a device used to connect a differential SCSI bus to a single-ended SCSI bus. (3) A device used to extend the length of a differential or single-ended SCSI bus. <i>See also</i> DOC (DWZZA-On-a-chip) and I/O module.
SCSI bus signal converter SCSI device	Sometimes referred to as an adapter. (1) A device used to interface between the subsystem and a peripheral device unable to be mounted directly into the SBB shelf of the subsystem. (2) a device used to connect a differential SCSI bus to a single-ended SCSI bus. (3) A device used to extend the length of a differential or single-ended SCSI bus. <i>See also</i> DOC (DWZZA-On-a-chip) and I/O module. (1) A host computer adapter, a peripheral controller, or an intelligent peripheral that can be attached to the SCSI bus. (2) Any physical unit that can communicate on a SCSI bus.
SCSI bus signal converter SCSI device SCSI device ID number	Sometimes referred to as an adapter. (1) A device used to interface between the subsystem and a peripheral device unable to be mounted directly into the SBB shelf of the subsystem. (2) a device used to connect a differential SCSI bus to a single-ended SCSI bus. (3) A device used to extend the length of a differential or single-ended SCSI bus. <i>See also</i> DOC (DWZZA-On-a-chip) and I/O module. (1) A host computer adapter, a peripheral controller, or an intelligent peripheral that can be attached to the SCSI bus. (2) Any physical unit that can communicate on a SCSI bus. A bit-significant representation of the SCSI address referring to one of the signal lines, numbered 0 through 7 for an 8-bit bus, or 0 through 15 for a 16-bit bus. <i>See also</i> target ID number.

SCSI-P cable	A 68-conductor (34 twisted-pair) cable generally used for differential bus connections.
SCSI port	(1) Software: The channel controlling communications to and from a specific SCSI bus in the system. (2) Hardware: The name of the logical socket at the back of the system unit to which a SCSI device is connected.
serial transmission	A method transmission in which each bit of information is sent sequentially on a single channel rather than simultaneously as in parallel transmission.
signal converter	See SCSI bus signal converter.
single ended I/O module	A 16-bit I/O module. See also I/O module.
single-ended SCSI bus	An electrical connection where one wire carries the signal and another wire or shield is connected to electrical ground. Each signal logic level is determined by the voltage of a single wire in relation to ground. This is in contrast to a differential connection where the second wire carries an inverted signal.
spareset	A collection of disk drives made ready by the controller to replace failed members of a storageset.
storage array	An integrated set of storage devices.
storage array subsystem	See storage subsystem.
storageset	(1) A group of devices configured with RAID techniques to operate as a single container. (2) Any collection of containers, such as stripesets, mirrorsets, striped mirrorsets, and RAIDsets.
storageset expansion	The dynamic expansion of the storage capacity (size) of a unit. A storage container is created in the form of a concatenation set which is added to the existing storage set defined as a unit.
storage subsystem	The controllers, storage devices, shelves, cables, and power supplies used to form a mass storage subsystem.

storage unit	The general term that refers to storagesets, single-disk units, and all other storage devices that are installed in your subsystem and accessed by the host. A storage unit can be any entity that is capable of storing data, whether it is a physical device or a group of physical devices.
StorageWorks	A family of modular data storage products that allow customers to design and configure their own storage subsystems. Components include power, packaging, cabling, devices, controllers, and software. Customers can integrate devices and array controllers in <i>StorageWorks</i> enclosures to form storage subsystems.
	<i>StorageWorks</i> systems include integrated SBBs and array controllers to form storage subsystems. System-level enclosures to house the shelves and standard mounting devices for SBBs are also included.
stripe	The data divided into blocks and written across two or more member disks in an array.
striped mirrorset	See RAID level 0+1.
stripeset	See RAID level 0.
stripe size	The stripe capacity as determined by $n-1$ times the chunksize, where n is the number of RAIDset members.
striping	The technique used to divide data into segments, also called chunks. The segments are striped, or distributed, across members of the stripeset. This technique helps to distribute hot spots across the array of physical devices to prevent hot spots and hot disks.
	Each stripeset member receives an equal share of the I/O request load, improving performance.
surviving controller	The controller in a dual-redundant configuration pair that serves its companion devices when the companion controller fails.
switch	A method that controls the flow of functions and operations in software.
synchronous	Pertaining to a method of data transmission which allows each event to operate in relation to a timing signal. <i>See also</i> asynchronous.

tape	A storage device supporting sequential access to variable sized data records.
target	(1) A SCSI device that performs an operation requested by an initiator.(2) Designates the target identification (ID) number of the device.
target ID number	The address a bus initiator uses to connect with a bus target. Each bus target is assigned a unique target address.
this controller	The controller that is serving your current CLI session through a local or remote terminal. <i>See also</i> other controller.
tape inline exerciser	(TILX) The controller diagnostic software to test the data transfer capabilities of tape drives in a way that simulates a high level of user activity.
topology	An interconnection scheme that allows multiple Fibre Channel ports to communicate with each other. For example, point-to-point, Arbitrated Loop, and switched fabric are all Fibre Channel topologies.
transfer data rate	The speed at which data may be exchanged with the central processor, expressed in thousands of bytes per second (kbytes).
transparent failover	Keeps the storage array available to the hosts by allowing the surviving controller of a dual redundant pair to take over total control of the subsystem and is transparent (invisible) to the hosts.
ULP	Upper Layer Protocol.
ULP process	A function executing within a Fibre Channel node which conforms to the Upper Layer Protocol (ULP) requirements when interacting with other ULP processes.
Ultra SCSI	A Fast-20 SCSI bus. See also Wide Ultra SCSI.
unit	A container made accessible to a host. A unit may be created from a single disk drive or tape drive. A unit may also be created from a more complex container such as a RAIDset. The controller supports a maximum of eight units on each target. <i>See also</i> target and target ID number.
unwritten cached data	Sometimes called unflushed data. See dirty data.

UPS	Uninterruptible power supply. A battery-powered power supply guaranteed to provide power to an electrical device in the event of an unexpected interruption to the primary power supply. Uninterruptible power supplies are usually rated by the amount of voltage supplied and the length of time the voltage is supplied.
VHDCI	Very high-density-cable interface. A 68-pin interface. Required for Ultra-SCSI connections.
virtual terminal	A software path from an operator terminal on the host to the controller's CLI interface, sometimes called a host console. The path can be established via the host port on the controller or via the maintenance port through an intermediary host.
VTDPY	An abbreviation for Virtual Terminal Display Utility.
warm swap	A device replacement method that allows the complete system to remain online during device removal or insertion. The system bus may be halted, or quiesced, for a brief period of time during the warm-swap procedure.
Wide Ultra SCSI	Fast/20 on a Wide SCSI bus.
Worldwide name	A unique 64-bit number assigned to a subsystem by the Institute of Electrical and Electronics Engineers (IEEE) and set by manufacturing prior to shipping. This name is referred to as the node ID within the CLI.
write-back caching	A cache management method used to decrease the subsystem response time to write requests by allowing the controller to declare the write operation "complete" as soon as the data reaches its cache memory. The controller performs the slower operation of writing the data to the disk drives at a later time.
write-through caching	Write-through caching always writes directly to disk, ensuring that the application is never tricked into believing that the data is on the disk when it may not be. This results in hightest data integrity, through with slighly reduced performance.

write hole	The period of time in a RAID level 1 or RAID level 5 write operation when an opportunity emerges for undetectable RAIDset data corruption. Write holes occur under conditions such as power outages, where the writing of multiple members can be abruptly interrupted. A battery backed-up cache design eliminates the write hole because data is preserved in cache and unsuccessful write operations can be retried.
write-through cache	A cache management technique for retaining host write requests in read cache. When the host requests a write operation, the controller writes data directly to the storage device. This technique allows the controller to complete some read requests from the cache, greatly improving the response time to retrieve data. The operation is complete only after the data to be written is received by the target storage device.
	This cache management method may update, invalidate, or delete data from the cache memory accordingly, to ensure that the cache contains the most current data.

Index

Α

ADD CONNECTIONS multiple-bus failover 1–19 transparent failover 1–17 ADD UNIT multiple-bus failover 1-19 transparent failover 1–17 adding virtual disks B-13 adding a disk drive to the spareset configuration options 5-25 adding disk drives configuration options 5-24Agent functions 4–1 installing 4-5 array of disk drives 2–15 assigning unit numbers 1-16 assignment unit numbers fabric topology 5-23 unit qualifiers fabric topology 5-23 assignment of unit numbers fabric topology partition 5–23 single disk 5–23 asynchronous event service B-13 autospare enabling

fabric topology 5–26 availability 2–22

В

Back up, Clone, Move Data 7–1 backup cloning data 7–2 subsystem configuration 7–1

С

cabling controller pair 5-11 multiple-bus failover fabric topology configuration 5-10 single controller 5–4 cache modules location 1-2, 1-3read caching 1-10 write-back caching 1-10 write-through caching 1–10 caching techniques mirrored 1-10 read caching 1-10 read-ahead caching 1-10 write-back caching 1-10 write-through caching 1-10 changing switches configuration options 5-27 chunk size choosing for RAIDsets and stripesets 2-30 controlling stripesize 2–30

using to increase request rate 2-30using to increase write performance 2-32CHUNKSIZE 2-30 CLI commands installation verification 5-9, 5-17 CLI configuration example 6-4 CLI configurations 6–1 CLI prompt changing fabric topology 5–24 Client removing B-12 uninstalling B-12 CLONE utility backup 7–2 cloning backup 7-2 command console LUN 1-11 SCSI-2 mode 1–20 SCSI-3 mode 1-20 comparison of container types 2-15configuration backup 7–1 fabric topology devices 5-17 multiple-bus failover cabling 5-10 multiple-bus failover using CLI 6-4 single controller cabling 5-3HP-UX file system 3–10 restoring 2-32 rules 2–3 Configuration Flowchart 1-xvi configuration options fabric topology adding a disk drive to the spareset 5-25adding disk drives 5–24 changing switches device 5-27 displaying the current switches 5-27initialize 5–27

RAIDset and mirrorset 5-27 unit 5-27 changing switches for a storageset or device 5-26 changing the CLI prompt 5-24 deleting a storage set 5-26enabling autospare 5-26removing a disk drive from the spareset 5 - 25configuring pager notification B-13 configuring devices fabric topology 5-17 connecting to host system 3-8connections 1–13 naming 1–13 containers attributes 2-14 comparison 2-15 illustrated 2-14, 5-18 mirrorsets 2-21 planning storage 2–14 stripesets 2–19 controller verification of installation 5-17controller verification installation 5–9, 5–17 controllers cabling 5-4, 5-11 location 1-2, 1-3node IDs 1–27 verification of installation 5-9, 5-17 worldwide names 1-27 creating storageset and device profiles 2–16 Creating Clones for Backup 7-2

D

Destroy/Nodestroy parameters 2–32 device switches changing fabric topology 5–27

devices changing switches fabric topology 5–26 configuration fabric topology 5–17 creating a profile 2–16 disk drives adding fabric topology 5-24 adding to the spareset fabric topology 5–25 array 2-15 corresponding storagesets 2-33 dividing 2-26 removing from the spareset fabric topology 5–25 displaying the current switches fabric topology 5–27 dividing storagesets 2-26

Ε

enabling switches 2–28 erasing metadata 2–33 establishing a local connection 5–2

F

fabric topology configuration single controller cabling 5–3
failover 1–5 multiple-bus 1–7 transparent 1–5
First enclosure of multiple-enclosure subsystem storage map template 1 A–4, A–7, A–9, A–11, A–14, A–16, A–19
functions Agent 4–1

G

geometry initialize switches 2–33 Geometry parameters 2–33

Н

High Availability Cluster configuration using MC/ServiceGuard 3-9 Host access restricting in multiple-bus failover mode disabling access paths 1-24host access restricting by offsets multiple-bus failover 1-26 transparent failover 1-23 restricting in multiple-bust failover mode 1 - 24restricting in transparent failover mode 1-21 disabling access paths 1-23separate links 1–22 host adapter installation 3-7 preparation 3-6 host connections 1-13naming 1–13 Host storage configuration verify 5-28 HP-UX file system configuration 3–10 HSG Agent install and configure 4-1 network connection 4-3 overview 4-2 remove agent 4–19 running agent 4-18

I

initialize switches changing fabric topology 5–27 CHUNKSIZE 2–30 geometry 2–33 NOSAVE_CONFIGURATION 2–32 SAVE_CONFIGURATION 2–32 Insight Manager B–13 Install warnings GUI console display 4–10 installation controller verification 5–9, 5–17 invalid network port assignments B–8 there is no disk in the drive message B–9 installation verification CLI commands 5–9, 5–17 installing Agent 4–5 integrating SWCC B–13 invalid network port assignments B–8

J

JBOD 2-15

L

LOCATE find devices 2–34 location cache module 1–2, 1–3 controller 1–2, 1–3 LUN IDs general description 1–29 LUN presentation 1–18

Μ

maintenance port connection establishing a local connection 5-2illustrated 5-2mapping storagesets 2–33 messages there is no disk in the drive B-9mirrored caching enabling 1-10 illustrated 1–11 mirrorset switches changing fabric topology 5–27 mirrorsets planning considerations 2-21 important points 2-22 switches 2-29 Model 2200 Storage Maps

examples 2-7 moving storagesets 7-5 mulitple-bus failover restricting host access by offsets 1-26 multiple-bus failover 1–7 ADD CONNECTIONS command 1-19 ADD UNIT command 1–19 ADD UNITcommand 1–19 CLI configuration procedure fabric topology 6-4 fabric topology preferring units 5–24 fabric topology configuration cabling 5-10 host connections 1–19 restricting host access 1-24 disabling access paths 1–24 SET CONNECTIONS command 1-19 SET UNITcommand 1–19

Ν

network port assignments B–8 node IDs 1–27 restoring 1–28 NODE_ID worldwide name 1–27 NOSAVE_CONFIGURATION 2–32

0

offset LUN presentation 1–18 restricting host access multiple-bus fafilover 1–26 transparent fafilover 1–23 SCSI version factor 1–18 online help SWCC B–13 options for mirrorsets 2–29 for RAIDsets 2–28 initialize 2–30 other controller 1–3

Ρ

pager notification B-13 configuring B-13 partitions assigning a unit number fabric topology 5–23 defining 2–27 planning considerations 2-26 guidelines 2-27 performance 2-22 Physical connection, making 3–6 planning 2-1 overview 2-16 striped mirrorsets 2–25 stripesets 2–19 Planning a subsystem 1–1 planning configurations where to start 2-2planning considerations 2–22 planning storage containers 2-14 planning storagesets characteristics changing switches 2–28 enabling switches 2–28 initialization switch 2-27 storagest switch 2–27 unit switch 2–27 switches initialization 2-29 storageset 2-28 preferring units multiple-bus failover fabric topology 5-24 profiles creating 2-16 description 2–16 storageset A-1 example A-2 R

RAIDset switches

changing fabric topology 5-27 RAIDsets choosing chunk size 2-30 maximum membership 2-24 planning considerations 2–22 important points 2–23 switches 2-28 read caching enabled for all storage units 1–10 general description 1–10 read requests decreasing the subsystem response time with read caching 1–10 read-ahead caching 1-10 enabled for all disk units 1-10removing Client B-12 request rate 2-30 requirements host adapter installation 3-8restricting host access disabling access paths multiple-bus failover 1–24 transparent failover 1-23 multiple-bus failover 1-24 separate links transparent failover 1–22 transparent failover 1-21

S

SAVE_CONFIGURATION 2–32 saving configuration 2–32 SCSI version offset 1–18 SCSI-2 assigning unit numbers 1–19 command console lun 1–20 SCSI-3 assigning unit numbers 1–19 command console lun 1–20 Second enclosure of multiple-enclosure subsystem storage map template 2 A-5selective storage presentation 1-21SET CONNECTIONS multiple-bus failover 1–19 transparent failover 1–17 SET UNIT multiple-bus failover 1–19 setting controller configuration handling 2–32 single disk (JBOD) assigning a unit number fabric topology 5–23 Single-enclosure subsystem storage map template 1 A-4storage creating map 2–33 profile example A-2 storage configurations 2-1storage map 2–33 Storage map template 1 A-4 first enclosure of multiple-enclosure subsystem A-4 single enclosure subsystem A-4 Storage map template 2 A–5 second enclosure of multiple-enclosure subsystem A-5 Storage map template 3 A–6 third enclosure of multiple-enclosure subsystem A-6 Storage map template 4 first enclosure of multiple-enclosure subsystem A-7 Storage map template 5 first enclosure of multiple-enclosure subsystem A-9 Storage map template 6 first enclosure of multiple-enclosure subsystem A-11

Storage map template 7 first enclosure of multiple-enclosure subsystem A-14 Storage map template 8 first enclosure of multiple-enclosure subsystem A-16 Storage map template 9 first enclosure of multiple-enclosure subsystem A-19 storageset deleting fabric topology 5–26 fabric topology changing switches 5–26 planning considerations 2–18 mirrorsets 2-21 partitions 2-26 RAIDsets 2-22 striped mirrorsets 2-24 stripesets 2-18 profile 2–16 profiles A-1 storageset profile 2–16 storageset switches SET command 2–28 storagesets creating a profile 2–16 moving 7–5 striped mirrorsets planning 2-25 planning considerations 2–24 stripesets distributing members across buses 2-20 planning 2–19 planning considerations 2–18 important points 2-19 subsystem saving configuration 2–32 subsystem configuration backup 7-1 SWCC 4-1 additional information B-13

integrating B-13 online help B-13 switches changing 2-28 changing characteristics 2-27 CHUNKSIZE 2-30 enabling 2-28 mirrorsets 2-29 NOSAVE_CONFIGURATION 2-32 RAIDset 2-28 SAVE_CONFIGURATION 2-32 switches for storagesets overview 2-28

Т

templates subsystem profile A-1 terminology other controller 1-3this controller 1-3Third enclosure of multiple-enclosure subsystem storage map template 3 A-6 this controller 1-3transparent failover 1-5 ADD CONNECTIONS 1–17 ADD UNIT 1–17 matching units to host connections 1-17restricting host access 1–21 disabling access paths 1–23 separate links 1-22 restricting host access by offsets 1–23 SET CONNECTIONS 1–17 troubleshooting invalid network port assignments B-8 there is no disk in the drive message B-9

U

uninstalling Client B–12 unit numbers assigning 1–16 fabric topology 5–23

assigning depending on SCSI version 1-19 assigning in fabric topology partition 5-23 single disk 5–23 unit qualifiers assigning fabric topology 5-23 unit switches changing fabric topology 5-27 units LUN IDs 1-29 Upgrade procedures prepare HP-UX system 3–17, 3–19 preparing storage RAID Array 3-16, 3-18 rolling upgrades 3–17, 3–19 solution software 3-16

V

verification controller installation 5–9, 5–17 verification of installation controller 5–9, 5–17 virtual disks adding B–13

W

where to start 1–1 worldwide names 1–27 NODE_ID 1–27 REPORTED PORT_ID 1–27 restoring 1–28 write performance 2–32 write requests improving the subsystem response time with write-back caching 1–10 placing data with with write-through caching 1–10 write-back caching general description 1–10 write-through caching general description 1–10