

Serial Attached SCSI Architecture

by Rob Elliott HP Industry Standard Servers Server Storage Advanced Technology elliott@hp.com http://www.hp.com 30 June 2003

- These slides are freely distributed by HP through the SCSI Trade Association (<u>http://www.scsita.org</u>)
- STA members are welcome to borrow any number of the slides (in whole or in part) for other presentations, provided credit is given to the SCSI Trade Association and HP
- This compilation is © 2003 Hewlett-Packard Corporation

SAS clause 4 – Architecture

- Standard layers
- •SAS object model
- Physical links and phys
- Ports
- •SAS devices
- Expander devices
- Domains
- Edge expander device set
- Pathways
- Connections

- SAS address
- Reset sequences
- State machines
- Transmit data path
- Expander device model

SAS standard layering

SATA 1.0a standard layering

• For SATA 1.0a from the private Serial ATA working group

ATA/ATAPI-7 standard layering

- For the public standard ATA/ATAPI-7
- Subject to change by T13 standards committee

SCSI and ATA terminology differences

Common	SCSI	ATA
	SCSI device	<none></none>
HBA	SCSI initiator device	ATA host
Disk drive	SCSI target device	ATA device
	SCSI port	ATA port
	SCSI initiator port	ATA host port
	SCSI target port	ATA device port

Common	SAS
	port
port	phy

SAS object model

- This figure describes classes of objects
- Diamonds mean "contains"
- Arrows mean "subclass of"
- Examples
 - SAS domain contains 1 or more SAS devices
 - SAS device contains one or more SAS ports
 - SAS port contains 1 to 128 phys

Physical links and phys

- A phy contains one transceiver
- A physical link attaches two phys together

Physical link rate

- Each direction runs 1.5 Gbps or 3.0 Gbps (150 MB/sec or 300 MB/sec)
 - Both directions use the same physical link rate
- Dual simplex (full duplex) operation 600 MB/sec total bandwidth
- Example: peak bandwidth needs of an HBA with 8 phys
 - 2400 MB/sec half duplex, 4800 MB/sec full duplex

Ports

- Ports contain phys
- An "expander port" is not a "SAS port"
- Each SAS port has a SAS address
- Ports are abstract
 - A set of phys with matching SAS addresses attached to another set of phys with matching SAS addresses
 - Determined at initialization time

Each horizontal line represents a differential signal pair

SAS devices

- SAS devices contain ports
- An "expander device" is not a "SAS device"
- Each phy in a SAS device has a phy identifier unique within that device

Each horizontal line represents a differential signal pair

- End device is a SAS device that is not an expander device
- Sample end devices
 - HBA 8 phys
 - One SAS address for all 8 phys
 - Potentially all one (very) wide port
 - One SAS address for 4 phys, another SAS address for 4 phys
 - Guarantees at least two ports
 - Good match for 4-wide connectors
 - Eight SAS addresses
 - Disk drive 2 phys
 - Separate SAS address for each phy
 - Guarantees two ports
 - Never a wide port

Expander devices

- Expander device contains expander ports
- May contain SAS devices too (e.g. for enclosure management)
- Each expander device has a SAS address
- Each expander phy has a phy identifier unique within that expander device

Expander device types – edge vs. fanout

- Edge expander device
 - Always part of an "edge expander device set"
 - May perform subtractive routing
- Fanout expander device
 - Never does subtractive routing
 - Usually supports larger tables for table routing
- Topologies described later

Domains

 A simple SAS domain contains SAS devices and expander devices

SAS domain bridged to ATA domains

SAS devices in multiple SAS domains

Edge expander device set

- Set of edge expander devices
- 128 SAS addresses per set
- Typically bounded by a subtractive port (to a fanout expander device, or to another edge expander device set)
- Edge expander devices uses table routing and direct routing "downstream" and subtractive routing "upstream"
- Wide links between expanders are allowed
- No loops

Edge expander device set diagram

- Maximum of one fanout expander device in a SAS domain
- If no fanout expander, maximum of two edge expander device sets (attached via subtractive decode ports)
- End devices may be attached at any level
 - Directly to fanout expander device
 - Any level edge expander device
- Wide links possible between any two devices
- No loops
- No multiple paths

Edge expander device set and fanout expander device

Two edge expander device sets

- Potential pathway = set of physical links between an initiator phy and a target phy
- Pathway = set of physical links used by a connection

Connections

- Connection = temporary association between an initiator phy and a target phy
 - Source phy transmits an OPEN address frame
 - Contains a destination SAS address
 - Expanders route it to a matching destination phy
 - Destination phy replies with an OPEN_ACCEPT primitive
 - Connection is established
 - Both sides exchange CLOSE primitives to close
- Connections are addressed to ports but established phyto-phy
- N-wide ports may establish N connections at a time (to up to N other ports)
- Wide ports may establish multiple connections to other wide ports simultaneously

Connection examples

Notes: The expander device has a unique SAS address. Each SAS initiator port and SAS target port has a unique SAS address. Connections E and F represent a wide SAS initiator port with two simultaneous connections to a wide SAS target port.

Connection rules

- Connections are addressed to SAS ports but are established from phy to phy
- Wide ports may establish multiple connections at a time (to up to one per phy) to different destinations
- Wide ports may establish multiple connections to other wide ports simultaneously (wide initiator port to wide target port)
 - SAS disk drives will offer two narrow ports
 - Only HBAs and RAID controllers will offer wide ports

Connection rate

- Connection runs at 1.5 Gbps or 3.0 Gbps
- Connection rate <= physical link rate
- If the connection rate is slower than the physical link rate, rate matching is used
 - e.g. 1.5 Gbps connection rate over a 3.0 Gbps physical link
 - Inserts ALIGN primitive every other dword to slow down the effective throughput
 - Lets 3.0 Gbps initiators talk to 1.5 Gbps targets through expanders

- Each SAS port and expander device has a worldwide unique 64bit SAS address
- Same namespace as the Fibre Channel Port_Name

Reset sequences

State machines

- SAS uses state machines for detailed definition of rules
- Intended to reduce interoperability issues from reading vague text descriptions (e.g. that haunted parallel SCSI)
- SAS device state machines differ from expander device state machines
- SAS state machines do not provide:
 - Detailed integration of SATA state machines into SAS
 - Detailed implementation of expander functionality
 - Hardware-implementable descriptions (zero-time states, "state machines" with only one state, state transitions passing arguments, and other atrocities)

State machines for SAS devices

- SAS device object contains application layer state machines (and SAS port objects)
- SAS port object contains transport layer and port layer state machines (and SAS phy objects)
- SAS phy object contains link layer and phy layer state machines

State machines for expander devices

- Expander phy object contains link layer and phy layer state machines
- Expander port object contains expander physical
- Expander function is architecturally at a lower level than the link layer

Transmit data path in SAS phy

- SP transmits dwords during phy reset sequence
- SL_IR transmits dwords after phy reset sequence
- SL transmits dwords after identification sequence, outside connections
- SSP, STP, or SMP link layer transmits dwords during connections

Transmit data path in expander phy

- SP transmits dwords during phy reset sequence
- SL_IR transmits dwords after phy reset sequence
- XL transmits dwords after identification sequence

Expander device model

- Expander function divided into 3 blocks
 - Expander connection router (ECR)
 - Expander connection manager (ECM)
 - Broadcast primitive processor (BPP)

Expander device interface details

- XL state machine in each expander phy interfaces to the expander function
- Requests forwarded to peer phys as indications
- Responses forwarded to peer phys as confirmations
- ECR just forwards; ECM and BPP generate own replies

Expander routing attributes and methods

- Each expander phy has an expander routing attribute
- The attribute determines the routing methods the ECM uses with each phy

Routing attribute	When attached to	Routing method used
Direct	End device	Direct
Table	Expander device	Table + Direct
	End device	Direct
Subtractive	Expander device	Subtractive (+ Direct)
	End device	Direct

- Direct = route requests to the attached SAS port through this phy
- Table = route requests that match in routing table through this phy
- Subtractive = route unresolved requests through this phy

Expander route table contents

Probe the SAS

domain one level at a time

Discover process

 When expander devices with configurable routing tables are found, fill in the tables

SAS architecture

right, and the remaining phys are numbered counter-clockwise

Expander route table example

 No matter which initiator fills in the table for a phy, it ends up with the same entries in the same locations

Wrap up

Additional tutorials

- General overview
- More detailed 7-part tutorial:
 - #1: General introduction and architectural overview
 - #2: Physical and phy layers
 - #3: Link layer
 - Part 1) Primitives, address frames, connections
 - Part 2) Arbitration fairness, deadlocks and livelocks, rate matching, SSP, STP, and SMP frame transmission
 - #4: Upper layers
 - Part 1) SCSI application and transport layers
 - Part 2) ATA application and transport layers
 - Part 3) Management application and transport layers, plus port layer

Key SCSI standards

- Working drafts of SCSI standards are available on <u>http://www.t10.org</u>
- Published through <u>http://www.incits.org</u>
 - Serial Attached SCSI
 - SCSI Architecture Model 3
 - SCSI Primary Commands 3
 - SCSI Block Commands 2
 - SCSI Stream Commands 2
 - SCSI Enclosure Services 2
- SAS connector specifications are available on <u>http://www.sffcommittee.org</u>
 - SFF 8482 (internal)
 - SFF 8470 (external)
 - SFF 8223, 8224, 8225 (form factors)

Key ATA standards

 Working drafts of ATA standards are available on http://www.t13.org

- Serial ATA 1.0a (private WG specification)
- ATA/ATAPI-7 Volume 1 (architecture and commands)
- ATA/ATAPI-7 Volume 3 (Serial ATA standard)
- Serial ATA II specifications are available on http://www.t10.org and http://www.serialata.org
 - Serial ATA II: Extensions to Serial ATA 1.0
 - Serial ATA II: Port Multiplier
 - Serial ATA II: Port Selector
 - Serial ATA II: Cables and Connectors Volume 1

For more information

- International Committee for Information Technology Standards
 - http://www.incits.org
- T10 (SCSI standards)
 - http://www.t10.org
 - Latest SAS working draft
 - T10 reflector for developers
- T13 (ATA standards)
 - http://www.t13.org
 - T13 reflector for developers
- T11 (Fibre Channel standards)
 - http://www.t11.org
- SFF (connectors)
 - http://www.sffcommittee.org

- SCSI Trade Association
 - http://www.scsita.org
 - Serial ATA Working Group
 - http://www.serialata.org
 - SNIA (Storage Networking Industry Association)
 - http://www.snia.org
 - Industry news
 - http://www.infostor.com
 - http://www.byteandswitch.com
 - http://www.wwpi.com
 - http://searchstorage.com
 - Training
 - http://www.knowledgetek.com

