| Render
Outputs

| COMMON OUTPUT OP PARAMETERS

1.1 PARAMETERS

Though each output driver is tailored for a specific renderer, there are common
parameters for each output driver.

RENDER BUTTON

Clicking this button begins the rendering process. Before starting the render, make
certain that the parameters below have been set correctly.

CAMERA (NOT APPLICABLE FOR ALL OUTPUTS)

The pop-up menu associated with this parameter displays a list of available perspec-
tive objects in your scene (created in the Object Editor). Perspective objects are
objects through which you can view and render your scene. Houdini considers lights
and cameras to be perspective objects and allows you to render from their vantage
points.

VISIBLE OBJECTS (NOT APPLICABLE FOR ALL OUTPUTS)

By default, this edit field is set to render all visible geometry objects (denoted by the
* character) in the scene. You can exclude objects from the rendering process by
entering the names of only those objects you want visible in the render in the edit
field. A series of specific objects should be separated by commas, but no spaces.

It is also possible to specify the visible objects using object groups. The group
names are marked by using an at symbol (@) in the pattern. For example:

@group name, arm*

Would make all the objects in the group group_name as well as all objects which
match the pattern arm* visible.

OUTPUT PICTURE

This option is disabled for some render types. You can specify a filename (which
may include regular expressions). Alternately, you can send the output to one of the
devices from the list of presets in the [> popup menu.

\—/—\

117 o Houdini 6.0 Reference | 10 - Outputs

/A Common Output OP Parameters

filename

Specify a filename or device to which the renderer should send the generated image.

If you enter a filename, the generated image will be saved to that file. Use can
expressions in your filename as described in: Expression Language > Expressions
in File Names p. 41.

Tip: Don’t use spaces in filenames. Although both Unix and NT recognise their
usage, a space in a filename will sometimes be interpreted as seperating the two
parts of the filename into two seperate filenames, and cause endless trouble with
getting your paths recognised correctly. Instead of a space, use a dash (-).

mplay window

Sends the output of the render to the mPlay program. These allow you to view a
consequtive sequence of renders, and perform several standard image-viewing
options while the scene renders. See: Please see: COPs > 2D Viewport p. 477 for
complete mPlay info.

Some Shortcuts:

* You can redirect an in-progress mantra render by clicking the part of the image
you want the rendering focused on.

* Click inside the mplay window with M to get a pop-up menu of options, or
type W) to toggle display of the mplay interface.

* Subsequent renders appear in the same mplay window as new frames. Therefore,
it is not necessary to close the mplay window between renders.

sequence of images

You want each frame to be saved in a separate file with a name that includes the
frame number. The built-in variable for the current frame ($F) is very useful.

\$F.pic

The variable $F will be substituted with the current frame number so images will be
saved in the current directory with names like /.pic, 2.pic, 3.pic etc.

\$JOB/Pic/\$F.pic

Images will be saved in a subdirectory of your job. The subdirectory called Pic must
already exist. The image files will have names like /.pic, 2.pic, 3.pic etc. The varia-
ble $JOB can be set by using Houdini’s job command.

\$JOB/Pic/\$CAM/\$F.pic

You many wish to render a sequence from a variety of camera or light positions. To
keep everything understandable you can save each sequence in its own subdirectory.
You can use Houdini’s built-in variable for the name of the current camera (CAM).
Images will be saved as, for example:

/jobs/Example/Pic/caml/1.pic
/jobs/Example/Pic/lightl/2.pic

/\/

718 1] Houdini 6.0 Reference

Common Output OP Parameters J

padded file names

The text string in the edit field (8JOB/$F4.pic) generates file names for your
sequence that have four place-holders. For more on expressions in file names, please
refer to the Expression Language section Expressions in File Names p. 41.

abekas start at 30

The string: (a60:‘8F+29’.yuv) sends your image to the Abekas in YUV format and
saves your animation starting on Abekas frame thirty. You can edit the command
string in the edit field and alter the frame number and file format variables there.

IMAGE FORMAT (NOT APPLICABLE TO ALL OUTPUTS)

Specifies the format for images (Houdini .pic, TIFF, JPEG, Cineon, etc.). Generally,
you will want it to Infer the format from the filename, but you can specify the for-
mat directly by picking one of the available options.

FRAME RANGE

This is the range of frames to render. If this option is turned on, the output driver
will render multiple frames starting and finishing at the frames specified. Specify
the Start, End, and Increment in the parameter below.

start / end / inc(rement)

These three edit fields control, the first frame number in the sequence to be ren-
dered, the final frame number in the sequence, and the frame increment value. The
frame increment can be used to skip frames, or can be a fractional number to render
sub-frames.

squash and stretch an animation

Houdini uses floating point keyframing. Therefore there’s no need to squash or
stretch or use field rendering to cheat in lengthening an animation. Click on the =~
button on Page 3/3 of the Playbar to bring up the Global Animation Parameters and
turn off Integer Frame Values. Then you can enter decimal frames in the Start/End/
Inc field. If you specify a non-integer frame increment, it will give you a stretched
or squashed animation without having to adjust the channel data. For example if you
specify a frame Inc(rement) of 0.8, you’ll get an animation which is 20% longer.

You will want to be careful with the name of the file for the image you’re generat-
ing. If you use the $F variable in the filename, you will probably have one frame
writing over another. In this case it is better to use the $N variable in the filename
which specifies the number of the image being rendered. For a complete discussion
on filenames, see Expression Lang > Filenames When Rendering Fields p. 42.

INITIALIZE SIMULATION SOPS (NOT APPLICABLE FOR ALL OUTPUTS)

The geometry generated by simulation-type SOPs (i.e. the Particle SOP, Spring SOP,
POP sop) is dependent on the geometry from previous frames. For this reason, they
can only be cooked in a forward direction. If the output frame being requested
occurs at a time previous to the SOP’s last cook time, the SOP will not recook. Ena-

/\/

10 - Outputs 1] 719

/A Common Output OP Parameters

bling this button forces all of the simulation SOPs to be reset. They will be recooked
from that SOP’s start time, ensuring an accurate simulation.

GENERATE SCRIPT FILE (NOT APPLICABLE FOR ALL OUTPUTS)

Many renderers read their input from a script file. For example, RenderMan reads
.rib files and mantra reads .ifd files. This option allows you to generate such a script
file instead of calling a command directly to render. Some output drivers support
binary scripts, while other renderers do not.

In the case of General Object Renderers, some renderers generate geometry instead
of images (Inventor for example). These renderers will generate the geometry in the
script file specified. It is possible to output both binary or ASCII Inventor files.

binary script

Checking the Binary Script File option specifies that the script file created by the
render will be a binary one. That is, the information is represented in a tightly-coded
short-hand rather than as ASCII characters you could read as text. This means the file
contains the same information as a script file, but is more compact.

SCRIPT FILE (NOT APPLICABLE FOR ALL OUTPUTS)

This field takes the data generated during the render and creates a script file instead
of producing a rendered image.

If the Output OP is a mantra driver, it generates an IFD (instantaneous frame
description); if it is a RenderMan driver, it generates a RIB file.

RENDER IN BACKGROUND (NOT APPLICABLE FOR ALL OUTPUTS)

Selecting this option causes the rendering process to occur in the background,
allowing you to continue working in Houdini while the render progresses. See also
the rps command in: Scripting section > rps p. 116.

B Note: This option is only valid for rendering single frames.

OVERRIDE DEFUALT RES / RESOLUTION

This parameter allows you to override the default resolution by specifying the Reso-
lution manually. The default resolution may be determined in different ways inter-
nally. For example, a COP output operator will use the natural image resolution of
the COP which it’s rendering, while RenderMan would use the resolution specified
in the camera object from which it is rendering.

PIXEL ASPECT

The pixel aspect ratio is the ratio of horizontal to vertical pixel size of the rendered
image. The default value of 1 gives square pixels — suitable for viewing on your
screen. The aspect ratio for an NTSC Abekas with 720 x 486 resolution and a 4 x 3
screen aspect ratio is:

4 486
3 X770 = 09

/\/

720 1] Houdini 6.0 Reference

Common Output OP Parameters J

PRE & POST FRAME RENDER SCRIPTS

Many output OPs have a pre-render, pre-frame, post-frame and post-render script
available, they function as follows:

* The pre-render script is run one time before any rendering starts.

* The pre-frame script is run before each frame is rendered.

* The post-frame script is run after each frame is rendered.

* The post-render script is run one time after the entire render is completed.

When generating RIB, the post-include file for objects occurs inside the transform
block if there is motion blur. This allows for correct motion blurring of ReadArchive
data. You can get the behaviour of previous versions of Houdini (4.1 and prior) by
setting the environment variable:

RMAN_INCLUDE_FIX

which causes the post-include to be included after the transform block.

/—\/

[0 - Outputs o 121

/A 3D Texture Generator Output OP

2 3D TEXTURE GENERATOR OUTPUT OP

2.1 DESCRIPTION

2.2 PARAMETERS

This Output OP is used to drive the image3d program which generates 3D texture
maps. The operator sets up all necessary options and then invokes the program.

RENDER

Begins the render.

FRAME RANGE

Allows you to specify a range of frames for rendering.

START/END/INC

Specifies the first & last frames and the increment. Note that when rendering a
sequence of images with a fraction Inc, $N is the number of the frame rendered, $F
is the nearest integer frame number, $FF is the floating point frame number

OUTPUT IMAGE

Name of the 3D texture to generate (typically, with the extension: i3d).

RESOLUTION

Resolution (in X, Y and Z) of the 3D texture

SHOP

The SHOP which controls the parameters for the texture generation.

VERBOSE

Generation statistics will be printed out

RENDER AS

Some SHOPs require particle or metaball geometry to run properly:

No geometry No geometry is sent to i3dgen
Meta/Particle Send particles/metaballs
Raw Point Interpret points as particles

/\/

m

o Houdini 6.0 Reference

3D Texture Generator Output OP J

The clipped options allow you to override the bounding box of the geometry with
your own.

INITIALIZE SIM

Dynamic simulations will be initialized

object/sop
Choose the object/SOP to specify the geometry

particle scale

An additional multiplier to particle scale.
This is primarily useful when sending down raw points.

DISPLACE BOUND

Enlarge the bounding box by this amount

MIN/MAX BOUNDS

The bounding box of the 3D texture

OVERSAMPLING

Anti-aliasing controls in texture generation.

VARIANCE

Threshold for anti-aliasing levels.

2.3 LOCAL VARIABLES

$N The current frame of the range specified. This always
starts at 1.
$NRENDER Total number of frames being rendered.

/—\/

10 - Outputs (1) 3

Alfred Output OP

3 ALFRED OUTPUT OP

3.1 INTRODUCTION

The Alfred output OP uses Pixar’s program “Alfred” to handle render task manage-
ment. The output driver can be used with mantra, RenderMan and other render out-
puts.

Alfred is shipped with Pixar’s distrubution of RenderMan. It manages render tasks
on a single machine or across a network. This output OP will generate an Alfred
script and start Alfred with it. Alfred must be correctly configured.

When rendering using RenderMan, by default, netrman is used, so the local host
must be running the nrmserver software.

When rendering using mantra, Alfred must be configured to know about mantra.
Please see the readme file in: $HH/scripts/alfred/ .

3.2 PARAMETERS

RENDER

Start an Alfred render task.

FRAME RANGE

Frame range to render.

OUTPUT DRIVER

The output driver which generates scripts for the Renderer. Typically this is a Ren-
derMan or mantra output driver.

REMOTE SHELL

The shell to run on a remote machine. This is only important when using netmantra.

REMOTE HFS

Where the remote machine can find $HFS. It requires this knowledge to find the
rscript application (in $HFS/bin). This is only used when running netmantra.

INIT. COMMANDS

Initialization commands. These are responsible for setting up the environment (only
used when running netmantra).

/\/

124 1] Houdini 6.0 Reference

Alfred Output OP J

ALFRED SCRIPT

When rendering from a driver which isn’t a mantra or RenderMan driver, this script
is called to generate the Alfred task (see $SHH/scripts/alfred).

ALFRED COMMAND

This is the command used to start Alfred. Additional commandline options may be
specified here.

TEMP. DIRECTORY

A location to store temporary files used in rendering.

3.3 CONFIGURING ALFRED FOR USE WITH MANTRA

When using Alfred to drive mantra, you must make some small configuration
changes to the Alfred scripts:

1. Modify the lib/alfred/alfred.ini file to contain the following lines.

set alfLimitLocal (mantra) 1
set alfLimitGlobal(mantra) #licenses

2. Modify the lib/alfred/alfred.shedule file to allow machines to render using the
‘mantra’ token. Files in this directory:

alf_mantra.cmd This script is used when Alfred is rendering using a
Mantra output driver.

alf_rman.cmd Script called to generate an Alfred task when the Alfred
output driver is using a RenderMan output driver.

alf_other.cmd Script called to generate an Alfred task when the Alfred
output driver is using something else.

These commands must generate a valid Alfred task list when called. Typically, they
will simply generate a simple task for a single frame. However, it is possible to
modify these scripts so that they will generate multiple frames with a complicated
task hierarchy. For example, it is possible to generate images from multiple output
drivers which have dependency lists (i.e. render shadows, render reflection maps,
render the final image). There are currently no examples of this.

Note: The Alfred Output OP will set the environment variable SALF_TMP to be a
path to a temporary directory (specified by the output driver).

3.4 HOW ALFRED WORKS

Alfred allows many renders to be processed simultaneously, and can use multiple
CPU hosts over the network to render RenderMan, mantra, or other Rendering jobs.

The following steps are taken when a job is processed by Alfred:

/\/

10 - Outputs 1] 725

Alfred Output OP

* Alfred spools the .hip file to a temporary location.

* Each frame to be rendered calls a script to generate the frame using hscript, and
generates an Alfred task * .

e At the conclusion of the Alfred script, the temporary files are automatically
removed.

* If needed, these scripts can be modified to suit your needs. They are located in:
SHF Shoudini/scripts/alfred/*.cmd . The script is responsible for: i) Generating a
RenderMan .rib or mantra .ifd file; ii) Generating an Alfred task which it does by
means of "echo" statements.

IN DETAIL

When the Alfred output driver tries to render a frame, it first looks for an available
machine. Once a host becomes available, it starts the remote render. It does this by
following these steps:

1. The first thing that is done is that the local host opens a pipe to the remote host
using rsh:
rsh host $COMMAND

The netmantra application allows Houdini to have proper process control over the
network (i.e. to suspend or kill remote processes).

To have proper process control, the netmantra program starts up a process on the
remote machine called rscript. This program must exist in $HFS/bin on the remote
machine (with $HFS specified by the Remote $HFS parameter).

2. The rsh process then starts up the shell specified in the parameters on the remote
machine. Typically, this should be left as /bin/csh -f . However, it is possible to
change the shell if desired.

3. Before the command from the output driver is started, the environment must be
initialized correctly. Since rsh doesn’t export the current environment to remote
machines, the environment has to be initialized for each separate host.

This is done using the Initialization Commands. Typically, it is important to set up
the Houdini environment (if rendering using Mantra), or to set the path and environ-
ment for other commands (i.e. RenderMan).

To see which environment variables are passed through by rsh, try running the com-
mand rsh localhost seteny .

4. When the initialization commands have been executed, the command (as it
appears in the selected output driver) is run on the remote host. The script file
generated by the selected output driver is sent to the command on stdin. All
parameters will have their variables expanded on the local host, unless they are
protected by back-quotes ().

NOTES

* When netmantra sends the IFD over to rscript which pipes it to the render com-
mand. The data in the IFD is passed verbatim to the remote host. This means that
variables tucked in the IFD are expanded on the remote host.

/\/

126 1] Houdini 6.0 Reference

Alfred Output OP J

e The $INIT stuff is basically used to set up any environment you want to have in
your shell on the remote host. For example, on UNIX, you need to set the
SESI_LMHOST variable and your path.

* When setting up for Alfred rendering, you should try to make all paths “network
friendly” so that all referenced files (e.g. texture maps) are visible on the remote
machine. It is also a good idea to have the images generated by the renderer go to a
common NFS directory.

3.5 SAMPLE INITIALIZATION COMMANDS

* Set the display variable for interactive renders:

cd SHFS ; source .useit ;
setenv SESI LMHOST $SESI LMHOST ;
setenv DISPLAY S$HOST:0

* Set the path for RenderMan
setenv PATH "/usr/local/prman/bin:$PATH"’
* To see display which host is currently receiving the render in the console, add this
command somewhere in the initialization command string:
echo $NET HOST
* Echo the rendering host to a log file (this assumes that the $LOG_FILE variable is

defined on the localhost:

cd $SHFS ; source .useit ;
setenv SESI_LMHOST $SESI_ LMHOST ;
echo $NET HOST >> $SLOG FILE

/—\/

10 - Outputs (1) n1

Amazon Output OP

4 AMAZON OUTPUT OP

4.1 DESCRIPTION

4.2 PARAMETERS

Amazon is a 3D paint package created by Interactive Effects. This Output OP will
generate a Tcl script and execute Amazon with the script file. Clicking Execute with
the default parameters launches a new Amazon session. It passes in the geometry
associated with the specified Object/SOP along with all texture maps, and bump
maps that object/SOP references. Geometry sent to Amazon is automatically con-
verted to polygonal data and stored in the Work Directory. Texture maps and bump
maps are referenced directly by Amazon.

Amazon must be installed on your system in order for this driver to show up.

Notte: If your material references a texture map or bump map via a COP, it might not
be exported to Amazon. In this case, load the map as a file instead.

EXECUTE

Generates the Amazon Tcl script and sends the script to Amazon.

FRAME

The frame to generate the script for. $F is the default.

OBJECT

The name of the object you wish to send to Amazon.

SoP

The name of the sop you wish to send to Amazon.

USE MULTIPLE RESOLUTIONS

Will use the resolution of bump maps and texture maps as they are.

NEW RESOLUTION

Resolution to scale the textures and bump maps when brought into Amazon if Use
Multiple Resolutions is off.

/\/

128

o Houdini 6.0 Reference

Amazon Output OP J

WORK DIRECTORY

Location to store geometry and Tcl files created by the Amazon output OP.

TCL SCRIPT

This is the name of the Tcl script that is generated by Houdini and is sent to Ama-
zon.

CONNECT TO EXISTING AMAZON

Attempts to connect to an existing executable on the host with the specified port
number.

AMAZON COMMAND

The command used to start Amazon. Additional command line options can be spec-
ified here.

PORT

The port number to connect to.

HOST

The name of the host on which to run Amazon.

UPDATE HOUDINI

After the layers are saved from Amazon, this will update the textures and bump
maps in Houdini.

/—\/

[0 - Outputs o 179

Channel Output OP

5 CHANNEL OUTPUT OP

5.1 DESCRIPTION

Generates clip files for batch saving of channels from a CHOP.

5.2 PARAMETERS

Only parameters unique to this OP are discussed.
For the rest, see Common Output OP Parameters p. 717.

CHOP NETWORK / NAME

Specify the CHOP containing the channels you want to output here.

/—\/

730 (|] Houdini 6.0 Reference

Composite Output OP J

6 COMPOSITE OUTPUT OP

6.1 DESCRIPTION
The Composite Output OP renders the image(s) produced in the Composite Editor
and outputs them to the specified location.

Note: If you need to use old-style COPs (from Houdini 4), then please use Compos-
ite Output OP (OLD) p. 734. However — old COPs should be avoided if possible.

6.2 PARAMETERS

COP NETWORK / NAME

Select the COP you wish to render from by selecting from the pop-up menus. They
display a list of the available networks of Composite Networks and COPs available
in Composite Editor.

OVERRIDE DEFAULT RES / RESOLUTION

Allows you to override the default resolution by specifying the resolution manually.
See Override Defualt Res / Resolution p. 720.

OUTPUT PICTURE
Specify a filename or device to which the renderer should send the generated image.

If you enter a filename, the generated image will be saved to that file. Use can
expressions in your filename as described in: Expression Language > Expressions
in File Names p. 41.

The pop-up menu to the right of the edit field displays a list of available destinations
for the data created by the render. You can choose to send the rendered image(s) to a
sequence of images, view the image on screen in an mplay window, or send the data
to an Abekas.

COLOR / ALPHA PLANE

You can specify which image and alpha channel to use from the pop-up menu.

PLANE SCOPE

You can use regular expression to specify which channels to include in the output.

LUT FILE

For Cineon Output, you can specify a LUT file. See: Interface > Cineon Page p.
107.

/\/

10 - Outputs 1] 73l

Composite Output OP

OUTPUT GAMMA

Gamma alters a pixel’s intensity in order to compensate for the unique colour char-
acteristics of a given medium. With a Gamma of 1.0 mantra thinks a pixel with 50%
coverage should be shaded with a 50% intensity. However, many recording devices
do not respond to colour in a linear manner, so this is generally not the case in actual
practice. How much a device diverges from this linear value is measured by a
“gamma curve”. The Gamma for video is 2.2, which differs from that of film (1.0).
See Gamma p. 757 for a full description.

6.3 LOCAL VARIABLES

$N The frame being rendered
$NRENDER The total number of frames being rendered.
EXAMPLES

These are different than $F, and SNFRAMES. They are useful when the frame
increment is not equal to 1. For example, if the frame increment is 0.5, using $F in
the output filename will cause every other frame to be overwritten. By using $N,
every filename will be unique. For example, consider the following Output Drivers:

frame range: | to 5 by 2

FileName $N.pic $F.pic $FF.pic
First Render | oi | i | oi
(frame 1) .pic .pic .pic
Second Render . . .
(frame 3) 2.pic 3.pic 3.pic
Third Render . . .
(frame 5) 3.pic 5.pic 5.pic

/\/

732 1] Houdini 6.0 Reference

Composite Output OP J

frame range: | to 3 by 0.5

FileName $N.pic $F.pic $FF.pic
First Render 1 ic oo .
(frame 1) ‘P P P
Second Render .] '
(frame 1.5) 2.pic 2.pic 1.5.pic
Third Render .] ‘
(frame 2) 3.pic 2.pic 2.pic
Fourth Render)] .
(frame 2.5) 4.pic 2.pic 2.5.pic
Fifth Render i .)
(frame 3) 5.pic 3.pic 3.pic

/—\/

[0 - Qutputs o m

/A Composite Output OP (OLD)

7 COMPOSITE OUTPUT OP (OLD)

7.1 DESCRIPTION

7.2 PARAMETERS

The Composite Output OP renders the image(s) produced in the old Composite Edi-
tor and outputs them to the specified location. In general, you should not use the old
COPs any longer — use COPs2 instead.

Note for Veterans: In Houdini 5.5, the old COPs, TOPs and Materials are super-
seded by SHOPs, VOPs and COP2. If you want the secret to backward compatibility
features, try setting the environment variable: HOUDINI_COPTOPMAT

This will be altogether eliminated in version 6 — you have been warned.

COP NETWORK

The pop-up menu displays the networks of Composite Operations available in
Houdini’s Composite Editor.

COP NAME

This menu displays the individual COPs associated with the network you selected
above.

OUTPUT PICTURE
Specify a filename or device to which the renderer should send the generated image.

If you enter a filename, the generated image will be saved to that file. Use can
expressions in your filename as described in: Expression Language > Expressions
in File Names p. 41.

The pop-up menu to the right of the edit field displays a list of available destinations
for the data created by the render. You can choose to send the rendered image(s) to a
sequence of images, view the image on screen in an mplay window, or send the data
to an Abekas.

OVERRIDE DEFAULT RES / RESOLUTION

Allows you to override the default resolution by specifying the resolution manually.
See Override Defualt Res / Resolution p. 720.

IMAGE FRACTION

This option lets you render your image at a fractional resolution relative to the reso-
lution of the original image.

/\/

134

o Houdini 6.0 Reference

Composite Output OP (OLD) J

CINEON LUT FILE

For Cineon Output, you can specify a LUT file. See: Interface > Cineon Page p.
107.

cineon white point / film gamma

If you don’t specify a LUT file, you can manually specify the White Point and
Gamma here.

PRE-RENDER / FRAME SCRIPT

The Pre-Render / Frame script is included in the render before the actual code of the
render or frame. You can use this to customise or modify rendering attributes.

Also see: Pre & Post Frame Render Scripts p. 721.

POST-RENDER / FRAME SCRIPT

Same as the Pre-Render / Frame Script, except it is appeneded to the render / frame.

/—\/

10 - Outputs (1) 735

Geometry Output OP

8 GEOMETRY OUTPUT OP

8.1 DESCRIPTION

8.2 PARAMETERS

The Geometry Output operator outputs a sequence of geometry files (.geo or .bgeo)
to disk. It takes an object and a SOP as well as an output field where you may specify
a pattern. For example:

$F4.bgeo, $F.obj, SF4.dxf, etc.

If you want to output the scene in other geometry formats, use the Object Scene
Output OP p. 774.

OUTPUT FILE

Enter a filename in this edit field to which you want to save the geometry of the
specified frame-range. Using $F in the filename will output a different file for each
frame. The $HIP uses the current project filename with a .geo/.bgeo extension. You
can enter in a filename manually, or select from the menu. For example:

Entering this: Expands to:

myFile$F.geo myFilel.geo, myFile2.geo, myFile3.geo, ...
From the menu, you can select from the following short-cuts for filenames:

Menu Entry Short-cut Entered

Binary Geometry Files ~ $HIP/$F.bgeo
Padded Binary Geo. Files $HIP/$F4.bgeo
Geometry Files $HIP/$F.geo
Padded Geometry Files $HIP/$F4.geo

OBJECT / SOP NAME

Specify the object and SOP from which to output geometry from.

INITIALIZE SIMULATION SOPS

Forces all simulation SOPs to be reset before performing the render.

PRE-RENDER SCRIPT

Execute this script before any rendering.

PRE-FRAME SCRIPT

Execute this script before each frame.

/\/

136

o Houdini 6.0 Reference

Geometry Output OP y/

POST-FRAME SCRIPT

Execute this script after each frame.

POST-RENDER SCRIPT

Execute this script after all rendering.

8.3 LOCAL VARIABLES

N Frame being rendered

NRENDER Total number of frames being rendered.

/\/

10 - Outputs (1) 731

/A

Houdini Movie (HMV) Output OP

9 HOUDINI MOVIE (HMV) OUTPUT OP

9.1 DESCRIPTION

9.2 PARAMETERS

The Houdini Movie Output OP creates a Houdini Movie Format (.hmv) file.
Alternately, the output can be saved to disk as a script file to be rendered later.

Each HMV file typically contains many frames; this is in contrast to other Houdini
image formats (such as .jpg) which contain only one image per file. The HMV file
format has been designed to hold many thousands of full resolution images in a sin-
gle file and for providing realtime playback when using disk-arrays such as the Cip-
rico.

HMV PLAYBACK SPEEDS

This depends on what you will be viewing the file on. You need the same byte order
as the display. An O2 to its screen is RGB or RGBA. If it’s going to be played or
recorded out its video out port with himvrecord, then the internal format within the
.hmvis YUV

You speed depends on:

Use of XFS file system (yes is good).

e Through-put: IRIX (faster) vs NT boxen.

* Multi-disk drives and striping disks (two striped 10,000 RPM disks give realtime).
* Don't use .jpeg — hmv is for uncompressed movies.

e The above-noted internal formats.

COP NETWORK / COP NAME

Specify the COP Network and COP Name here from which to generate images.

OUTPUT PICTURE

The Output Picture parameter is the name of the HMV file to be created or updated.
If the file is already in existence then the Update Image File button will be enabled.
If this button is enabled, then the resolution, frame range and image format will be
forced to be the same as that found within the file.

OVERRIDE DEFAULT RES / RESOLUTION

Allows you to override the default resolution by specifying the resolution manually.
See Override Defualt Res / Resolution p. 720.

/\/

138

o Houdini 6.0 Reference

9.3 SEE ALSO

Houdini Movie (HMV) Output OP

UPDATE IMAGE FILE

This is only enabled if the file already exists. It causes the movie file to over-write
and update the existing movie file.

IMAGE FORMAT

This menu selects the format of how raster images are stored within an HMYV file.
The chosen format will affect the overall file size as well as the potential realtime

playback speed.

RGBA

RGB

BGR

Yov

Stores each pixel as a 32 bit RGBA pixel. The ordering
of the bytes is natural to the display byte ordering on
MIPS style (i.e. SGI) workstations. For playback, these
rasters can be displayed without image or byte order
conversions. However, since each pixel contains an
alpha (matte) channel, there is a certain amount of I/O
that will be wasted during the playback process and
therefore is not an optimal format for playback-only
uses of HMV files. (Optimal for: Indy, O2, and Octane)

Stores each pixel as a 24 bit RGB pixel. The ordering
of the bytes is not natural to the display byte ordering
on MIPS workstations. For playback, these rasters
require additional CPU processing to convert the byte
ordering for MIPS workstations and therefore a slower
playback speed will result.

Stores each pixel as a 24 bit BGR pixel. The ordering
of bytes is natural to the display byte ordering on MIPS
workstations. For playback, these rasters can be dis-
played without image or byte conversions. In addition,
since there is no alpha (matte) channel, there is a
reduced amount of I/O compared to the RGBA format.
This is the fastest format. (Optimal for Indigo)

Stores the raster image in a YUV format. This is more
space-economical than either the RGB or BGR for-
mats. Currently, YUV requires additional processing
(YUV to RGB) when displaying and this creates a
slowdown in the playback speed. (Video layoff; best
format to use with hmvrecord)

* Compositing > Houdini Movie (HMV) Output OP p. 738
e Formats > Format of Houdini Movie (.hmv) Files p. 279
* Stand Alone > iplay - View Images p. 382

 Stand Alone > minfo — Display Movie Info p. 411

/\/

[0 - Qutputs

1] 739

Mantra Output OP

10 MANTRA OUTPUT OP

10.1 DESCRIPTION

This output driver is used to generate scripts or render using Mantra. mantra reads a
series of commands from standard input and creates a rendering from them. These
commands describe a scene containing objects and light sources. mantra will render
the scene specified and output an image. This Output OP is a front-end interface for
setting up a rendering that uses mantra.

Note: The old version mantra3 used TOPs and materials.
The regular version of mantra uses SHOPs. To create your own VEX-based materials
(i.e. SHOPs) you should see the SHOPs section of the manual.

10.2 PARAMETERS — STANDARD PAGE

For parameters not listed here, see Common Output OP Parameters p. 717.

RENDER COMMAND

When not generating a script file, Houdini runs an external program (i.e. mantra) to
actually render the image. The text entered here is the command line that is sent to
drive this external program.

For details on the Render command options, refer to Mantra Render Command Dia-
log p. 748, which is invoked by clicking on the =» button beside the edit field.

remote rendering

When using mantra, the -H (Remote Hosts) option may be used to specify a list of
hosts to render the image on. For example, the command line:

mantra -H hostl,hostl,host2,host3,host4

The above command will start two render processes on hostl, and one render proc-
ess on each of host2, host3 and host4. Each of these render processes will contribute
to rendering the single image.

SUPER SAMPLE

This parameter affects the quality of the anti-aliasing during the rendering process.
Enter values here for the number of samples (rays sent per pixel) per pixel. The sam-
pling is the product of the value in X times the value in Y. The default is 4 x 4, yield-
ing 16 samples per pixel.

DECOUPLE RAY SAMPLE

Allows you to specify the Ray Sampling rate independently from the Sampling Rate
for ray tracing.

/\/

740 1] Houdini 6.0 Reference

Mantra Output OP J

FIELDS

A frame of NTSC or PAL consists of two interlaced fields. One field contains the odd
scanlines of the frame and the other field contains the even scanlines and therefore
they are termed the odd and even fields. NTSC displays at the rate of 30 frames per
second which is 60 fields per second. PAL displays at the rate of 25 frames per sec-
ond or 50 fields per second.

When rendering fields, Houdini will automatically render the two fields and com-
bine them into a single image. Each field will be rendered at one half the frame
increment specified in the frame range.

The ability to render and record fields is very important as it can greatly smooth the
motion by doubling the apparent frame rate. The actual computation required to cre-
ate one second of animation on fields is not much more than frames, because only
half as many scanlines are needed for each render.

When rendering an image, there are some things which take the same amount of
time whether your rendering fields or frames:

* Cooking of SOPs and geometry to be sent down to the renderer;
* Loading of the geometry by the renderer;

When rendering NURBS and certain other primitives, there’s also a common over-
head that the renderer encounters. As a result, the time it takes to render some
scenes’ fields may not always double as expected.

It is very important to know whether your record and playback device is “odd” or
“even” dominant. That is, whether the odd scanlines are displayed before the even
or vice versa. Most devices display the odd scanlines of a frame first, so that will be
the correct setting for most devices, however, a small test can save a lot of grief.

If you select the wrong dominance for your device, the final result will look jittery
unless you play it backwards. This is so because the motion within each frame will
go from the dominant field to the non-dominant field. Choosing the wrong domi-
nance will cause the motion to play backwards for the two fields within each frame
yielding jittery-looking motion.

full frame

This is the default setting. Many devices only record frames, or it may be more effi-
cient to record frames. Full Frame renders all scan lines for every Houdini frame.
You can also generate a separate picture for each field. This is useful if the device to
which you are recording will record fields. To record fields instead of frames, select
one of the following instead.

even field dominance

Render even fields for Houdini’s odd frame numbers and render odd fields for
Houdini’s even frame numbers.

odd field dominance

Render odd fields for Houdini’s odd frame numbers and render even fields for
Houdini’s even frame numbers.

/\/

10 - Outputs 1] 741

Mantra Output OP

MOTION BLUR

This parameter allows you to specify the “default” behaviour for motion blur when
rendering. If an object is set to “inherit” motion blur, it will be set to whatever the
output driver says (i.e. the object will inherit the behaviour from the output driver).
See Ref > Objects > Geometry Object > Render page > Motion Blur for details.

Production Tip: Leave most objects as “inherit behaviour”, then specify the motion
blur type in the Output driver. This way you can have one render which does motion
blur, and another that doesn’t.

DEPTH OF FIELD

Objects can be rendered in focus over a limited range of distances. Objects outside
of the limited range of a finite-sized aperture are out of focus. This property is called
depth of field. Computer images are generally in perfectly uniform focus; however,
by specifying lens parameters in mantra, depth of field can be simulated. The focus
and f-stop channels of the camera object are used to determine the depth of field.

Depth-of-field is not supported from orthographic cameras.
Depth-of-field cannot have scan line optimization.

JITTER

The Jitter parameter controls the amount of Jitter. Jitter parameter is used by mantra
as part of its anti-aliasing algorithm. Jitter improves the anti-aliasing quality when
things are moving (especially when rendering to video fields). However, for static
elements, it is better to turn Jitter off; otherwise you may notice some noise around
the edges (especially with type).

A pixel which is to be super-sampled is divided into sub-pixels. The number of sub-
pixels is controlled by the /samplex and /sampley channels. A single ray is then sent
through each sub-pixel within the pixel. When Jitter is 1.0 (the default) the ray can
pierce any point within the sub-pixel. This provides good anti-aliasing for moving
objects. However, since jitter is random (there is no frame to frame consistency) the
edges of static objects may appear to sparkle. You can solve this problem by setting
Jitter Scale to O so that the ray will always pass through the center of the sub-pixel.

Jittering of ray directions in mantra depends on:

a) Number of Samples = 4 x 4 so the highest number of distinct values
you would expect to see is 16.

b) How Near to horizontal/vertical is the Edge you are looking at?

/\/

742 1] Houdini 6.0 Reference

Mantra Output OP J

pixel subdivision with jitter

A pixel is subdivided as follows:

— Jitter no Jitter
< (Jitter >0) (Jitter = 0)

sub-divided pixel valid rays through a sub-pixel

In the case of Jitter Sample, the ray could go through any of the X positions. With
Jitter = 0 (off), the ray will always go through X.

If you picture a diagonal line through the pixels, what you’ll probably find is that
when you move from one pixel to the next, you won’t add a single sub-pixel to the
pixel total.

Try drawing a line on graph paper and seeing how many sub-pixels are added across
pixels. This usually results in fewer than 16 levels on a single edge. By increasing
the Sampling, you get more samples per pixel, and thus more different levels. Man-
tra will allow up to 8 x 8 super-sampling which gives 64 levels per edge.

DITHER

Dither determines the noise added to an image prior to creating the final output pix-
els. Dithering is the addition of low-level noise to colors before they are converted
from high-precision floating point numbers into 8 bit (0-255) integers. You can
avoid Mach Banding in an image containing slight luminance changes by adding
approximately 0.004 (1/255) noise to them.

Normally, dithering is done in HSV (hue, saturation, value) color space in order to
provide better dithering for highly saturated objects.

GAMMA

Gamma alters a pixel’s intensity in order to compensate for the unique colour char-
acteristics of a given medium. With a Gamma of 1.0 mantra3 thinks a pixel with
50% coverage should be shaded with a 50% intensity. However, many recording
devices do not respond to colour in a linear manner, so this is generally not the case
in actual practice. How much a device diverges from this linear value is measured
by a “gamma curve”. The Gamma for video is 2.2, which differs from that of film
(1.0).

In mantra3, after a pixel is rendered, its floating point color value is modified by the
Gamma value prior to creating the final output 8-bit RGB channels (3x8=24 bits) in
the output image.

/\/

10 - Outputs 1] 743

Mantra Output OP

The default Gamma is 1.0. Larger values brighten the image (especially within dark
regions) and values between 0 and 1 darken the image. In all cases full black
remains full black and full white remains full white.

typical gamma settings

Film 1.0
SGI Standard Gamma 1.7
Video 2.2

10.3 PARAMETERS - SPECIFIC PAGE

WHITE POINT

An overall scale applied to colour after filtering

FILTER

Pixel filtering controls. You can select from the presets in the > menu.

SHADOW MAPS

Controls which lights will auto-generate Z-depth maps.

REFLECT MAPS

Controls which objects will generate Reflection maps.

INLINE CONVERTED MATERIALS

When converting materials to VEX, include the VEX code in the IFD.

OPACITY LIMIT

Beyond this threshold, transparent objects will be considered to be opaque. This
speeds up rendering of scenes containing items of minimal transparency.

Setting the Opacity Limit to something smaller than 1 can improve rendering per-
formance for scenes with a lot of transparency (not refraction). When shading trans-
parent surfaces, if the combined opacity exceedes the specified limit, no further
shading will be done.

POLY OPTIMIZE

Allows you to set Faster or Higher quality polygon rendering. You can trade off ren-
dering quality of polygons vs. speed of rendering. This only affects polygons which
are ‘large’ in screen space.

/\/

744 1] Houdini 6.0 Reference

Mantra Output OP J

NULL SURFACE

Optimizes shadow map generation with null shaders.

TRANSFORMS

Combined transforms give better precision, but in some cases, it's useful to separate
the camera transforms.

VEX PROFILING

Generates statistics on shading computations, so you can track down and optimize
your VEX rendering processes.

There are options to profile VEX code in both Houdini and Mantra. In Houdini, the
"vexprofile" command can be used to turn profiling of VEX on or off. There’s an
option in the output driver in mantra to turn VEX profiling on or off.

meanings of vex profile code

Profiling of VEX code will show statistics on the execution of VEX.
Profiling generates reports which look something like:

Function Excl. Incl. Calls Instructions Instr.
Local Secs Secs Per Call Storage -----

plastic 0.72 0.81 388,527 5,827,905 15.00 9,256
asad_light 0.07 0.07 388,527 3,496,743 9.00 3,096
ambient 0.01 0.01 388,527 777,054 2.00 16

The meanings of the headings are:

Excl. Secs The number of seconds spent executing that particular
VEX function.
Incl. Secs The total time spent executing the VEX function,

including all other VEX functions called from within
the function. For example, in the table above, the "plas-
tic" shader has an Exclusive time of 0.72 seconds, but
an inclusive time of 0.81 seconds. This is because the
shader calls the light shaders. The inclusive time
includes the time spent in the light shaders.

Calls This is the number of times the VEX function was eval-
uated

Instructions This is the number of instructions executed by the VEX
function

Instr. Per Call This is the average number of instructions per evalua-
tion of the VEX function

Local Storage This is the amount of RAM required to store local vari-
ables.

/\/

10 - Outputs 1] 745

Mantra Output OP

RecurseLevel The maximum levels of recursion for the VEX code
(only possible in mantra)

The profiler is also able to check for bad results of operations. These bad results
often cause white pixels in mantra or geometry to fly off to infinity in SOPs.

Because extra work is done to profile VEX code performance is adversly affected.

10.4 PARAMETERS — DEEP RASTER PAGE

AUXILIARY PROFILES

Controls for rendering deep rasters. If the output image format consists of Houdini
.pic files, each layer of the deep raster will be embedded in a single output image as
specified here.

Note: By default, floating point data is written to the image file. If the output format
does not support floating point images, the -b option should be used.

VEX VARIABLE / AUXILIARY FILE

You can output multiple images simultaneously from mantra/prman. You must spec-
ify a filename, an export Variable and its Type. You must also choose the output data

type.

Tip: Up to 6 auxiliary files to be specified. However, it is possible to add additional
output images using the pre-include/post-include statements for cameras.

AUXILLIARY CHANNEL OUTPUT IN MANTRA

Rendering multiple images simultaneously in mantra is done through the IFD com-
mand:

ray aux [options] filename vex type vex variable

where the options are: -b channel_type (similar to the -b option on the mantra com-
mand line) which will cause the filename to be created and the value of the VEX
variable will be written into the file.

Only variables defined in surface shaders can be output. To be output, the variable
must be declared as an export parameter, or it must be one of the global variables:

P, s, t, dpds, dPdt, N, Ng, Cf, Of, Af, I, Eye

The correct VEX type must also be specified. Valid VEX types are float, vector or
point. There is currently no support for integer, string or matrix types.

/\/

746 1] Houdini 6.0 Reference

Mantra Output OP J

10.5 PARAMETERS — SCRIPTS PAGE

PRE-RENDER SCRIPT

Execute this script before any rendering.

PRE-FRAME SCRIPT

Execute this script before each frame.

POST-FRAME SCRIPT

Execute this script after each frame.

POST-RENDER SCRIPT

Execute this script after all rendering.

10.6 SPECIAL NOTES

CURVE PRIMITIVES

With mantra, any open polygon, Bezier curve or NURBS curve will be rendered as a
curve primitive. There are two special attributes:

width This can be per primitive, point or vertex. It defines the
width of the curves for rendering The width is in Hou-
dini units (not pixels).The default width is 0.1 .

orient A vector attribute (i.e. you can rename “N”) to define
the perpendicular vector to the curve surface. This
allows you to orient the curves however you want. If
this attribute doesn’t exist, the curves will be oriented
so that their normal points roughly in the direction of
the camera.

A good example to look at would be the hair shader.

/—\/

10 - Outputs (1) 741

A Mantra Render Command Dialog

I1 MANTRA RENDER COMMAND DIALOG

Cverride f Presets /

11.1 PARAMETERS — STANDARD PAGE

Mantra uses VEX for all Shading (the options are similar to old Mantra3).

REMOTE HOSTS (-H)

Mantra can also render using remote hosts. Specify a comma separated list of
remote hostnames here (or use the -H option on the commandline). Each remote
host must be running Aserver for this option to work. If multi-processing is speci-
fied, network rendering will be used to start multiple renders on the same host.

TURN OFF MICRO-POLYGON RENDERING (-R)
Disables micro-polygons. See MicroPolygon Rendering p. 784 for details.

/\//

748 0 Houdini 6.0 Reference

Mantra Render Command Dialog

)

BUCKET SIZE (-B)

mantra breaks up the entire image into small tiles and renders each of these tiles
individually. When a small tile size is specified, mantra will use less memory, but
has to do more work. This option can be used to specify the size of a tile. When ren-
dering interactively, mantra will force the bucket size to 16 x 16 pixels. This will
slow down the render, but provide better interactivity. This can be overridden by the
-B command line option. See Bucket Size (-b) p. 761 for more info.

RAY TRACING LEVEL OF DETAIL (-L)

The -L option is a global override for Level of detail. When rendering patch sur-
faces, in some cases, mantra3 will sub-divide the surface based on a relative level of
detail. Surfaces close to the camera will be more finely sub-divided than surfaces
further away. The level of detail is usually specified in the Object Editor (see Level
of Detail p. 288 in the Objects section). To speed up renders, the -L option can be
used with a fractional value. For example -L 0.5 will render at half the level of detail
for all objects in the scene. A level of detail of 0.1 will speed up the rendering con-
siderably.

VARIANCE (-V)

This option (-v option on the command line to mantra) can be used to specify a dif-
ferent anti-aliasing mechanism. Variance Anti-aliasing takes an argument which
specifies the acceptable tolerance in color contrast between pixels. If the tolerance is
not met, anti-aliasing is performed. This will anti-alias areas of the image which
tend to have aliasing (i.e. edges of primitives, texture maps). Increasing the value of
the variance (maximum of 1) results in faster renderings. Decreasing the value (min-
imum of 0) produces higher quality images.

See Variance Anti-Alias (-v) p. 761 for more info.

QUANTIZATION (-B)

Quantization (-b) is when pixel component values are transformed from real (i.e.
floating point in the range of 0-1) values to integer values. Use this menu to specify
if values should be quantized to: 8 bit, 16 bit, Natural bit-depth, or remain as Float-
ing-point channel values. The natural depth is dependent on the target image format.

Z-DEPTH IMAGE (-Z)

The options for this parameter allow you to choose between Closest and Average
depths. mantra defaults to Average, meaning that it uses the average of the distances
of the first two surfaces hit by the ray from the camera. Closest means that the first
surface hit by the ray coming from the camera determines the depth.

For more information, see Z-Depth Image p. 762.

PATCH CRACKS (-C)

Attempts to patch cracks (-c) by stitching adjacent portions together.

/\/

10 - Outputs 1] 749

/A Mantra Render Command Dialog

RENDER QUALITY (-Q)

Determines the quality (-q) of the render. With it, you can set rendering to be: Full
Quality (= 10), disable motion blur (= or less than 8), depth of field (= or less than
7), and ray-tracing (= or less than 4). Each of these increases the speed at the cost of
render quality.

When ray-tracing is turned off, shadow shaders are still run on lights, but if the
shadow shader makes ray-tracing calls (i.e. fastshadow()), then these calls will still
'fail' in that no rays will be cast.

RENDER QUALITY (FINE CONTROL -Q)

Allows you to set the render quality in relation to Motion Blur, Depth of Field, and
Ray Tracing at a finer level.

11.2 PARAMATERS — MICROPOLYGON PAGE

SHADING QUALITY (-S)

The Shading Quality (-s) parameter sets the quality with which the lighting model
(i.e. material) is applied to the object. This means the material applied to the object
can have its sharpness increased or decreased depending on how close your camera
is to that object (enter an expression that changes the Shading Quality based on dis-
tance from the camera).

Decreasing this value speeds up the rendering process, but also decreases the sharp-
ness on which that material is applied. Increasing the Shading Quality improves the
material’s texture map, bumps, and dent quality, but also increases the rendering
time.

The most important thing to remember is that Shading Quality applies to the mate-
rial in general. If there are textures or bumps, dents or erodes in the material, the
Shading Quality value has a tremendous impact on the success of the render.

You therefore want to adjust the Shading Quality for a couple reasons:

e Texture maps with text/font images or texture maps used as decals need a higher
level of Shading Quality to improve the quality of the material and avoid aliasing in
the textures.

e Texture maps with dents, bumps, or erodes with a high frequency need a higher
Shading Quality setting in order to avoid flickering.

If the Shading Quality is not set high enough you will get noise or aliasing artifacts
in your texture map, no matter what your Super Sampling is set to. It can be thought
of as Super Sampling for your materials (lighting models).

note — on level of detail vs shading quality

If you’re using regular mantra, it has two modes of rendering (mantra3 has equiva-
lent modes). Micropolygon uses Shading Quality to adjust the size of micropoly-
gons. Ray-Tracing uses the LOD as a similar control (i.e. they will sub-divide

/\/

750 1] Houdini 6.0 Reference

Mantra Render Command Dialog

)

primitives based on the LOD). Thus, you can think of LOD as the ray-tracing equiv-
alent of Shading Quality. Basically, you can have a lower LOD on a surface which
means it will be coarser in ray-tracing, while keeping the primary rays at a high
quality.

range of values for shading quality

0.01 Extremely low
5 Extremely high (increases render time about 25 times!)
1to2 Nominal.

Note: The Shading Quality parameter is available both per-object (object > Render
page > Shading Quality), and Globally (Output Editor > mantra > Render Com-
mand =7 > Micro Polygon sub-page > Shading Quality). These two values are multi-
plied to determine the final Shading Quality used in the render.

MICRO POLYGON CACHE SIZE (-G)

This option (-G) allows you to specify a cache size for the micro-polygon storage.
By default, this is set to 512. Specifying lower numbers (minimum value 8) causes
mantra to require less memory. However, rendering times will increase since mantra
will be required to do more work.

MICRO POLYGON SPLITS (-S)

If there is a single primitive which spans a large area, but only a portion is visible on
the screen (i.e. a single polygon ground plane stretching to infinity), it’s possible
that some shading artifacts will appear. These will manifest themselves as large
blurry areas on the surface. This occurs when mantra is unable to refine a surface
into small enough micro polygons. It is possible to increase the maximum threshold
of splits by changing this parameter.

11.3 PARAMETERS — OUTPUT PAGE

VERBOSE

Enabling this option provides you with various feedback about what is going on
during the render, including: Render Time and Memory, Loading Information, and
Render Progress.

OUTPUT / APPEND TO FILE

Directs the messages output by the Verbose option to the file specified here. Append
to File does the same thing, but appends the file instead of creating a new file.

/\/

10 - Outputs 1] 751

/A Mantra Render Command Dialog

11.4 MANTRA COMMAND LINE OPTIONS

mantra can be run from a shell script. The above options can be specified form the
command line as well as the Render Dialog Script. The options are listed below:

Usage: mantra [options] [outputimage]

-r Force mantra into ray tracing mode
(no micro-polygon).
-q Set render quality (O to 10):

Below 9 turns off motion blur;
Below 8 turns off depth of field;
Below 5 turns off ray tracing.

-s val Specify shading rate multiplier
-L val Global level of detail factor
(ray-traced shading rate).
-C val Specify ray tracing grid cache size (default 128).
-G val Specify micro-polygon cache size (default 4096).
-M val Specify ray mesh cache size (default 512).
-S val Specify micro-polygon max. splits (default 16).
-v var Specify variance anti-aliasing threshold.
-A Turn off anti-aliasing (default anti-aliasing on).
-B val Specify bucket size for render (default 64).
-J val Set the jitter scale (default 1).
Image Options:
-i Render interactively.
-w val, -h val Specify width & height of output image.
-b val Specify bit-depth of output image

(color image only).

0, any - Use the ‘natural’ bit depth;

8, byte, char - Generate 8 bits per color channel
16, short - Generate 16 bits per color channel
32, float - Floating point data per color channel

The natural depth is dependent on the target
image format.

-E Render image as an even field.

-0 Render image as an odd field.

-z Render averaged z-depth image.

-2 Render z-depth image.

Control Options:

-H hostlist Specify network hosts to render the image on.

The list should be a comma separated list of hosts
(i.e. -H chili,cayenne).
-n val Set the number of processes (default 1).
This option is implemented as:
-H localhost,localhost...

-o file Send verbose output to the specified file.
-p file Append verbose output to the specified file.
-V val Set verbose level.

/\/

752 1] Houdini 6.0 Reference

Mantra Render Command Dialog

-y <addr> Used internally by mantra for network rendering.
-F Use fast interactive device.

/\/

10 - Outputs (1) 753

/A mantra3 Output OP

12 MANTRA3 OUTPUT OP

12.1 DESCRIPTION

Note: mantra3 is kept only for backwards compatibility.
You should use mantra for any new projects.

This Output OP is a front-end interface for setting up a rendering that uses mantra3
which reads a series of IFD commands from standard input. These commands
describe a scene containing objects and light sources. mantra will render the scene
specified and output an image.

12.2 PARAMETERS

RENDER COMMAND

When not generating a script file, Houdini runs an external program (i.e. mantra3) to
actually render the image. The text entered here is the command line that is sent to
drive this external program.

The default string (mantra3 -a -v 0.05) means that the Render Command used will
use the mantra3 rendering program with Variance Anti-aliasing (-v) and Micropoly-
gon rendering (-a) enabled.

For details on the Render command options, refer to Mantra3 Render Command
Dialog p. 759, which is invoked by clicking on the =~ button beside the edit field.

production tip — compressing the output

If you are generating very large RIB or IFD files, with UNIX you can gzip the output
by changing the Render Command command from “render” or “mantra3” to:

gzip [-9] > file.rib.gz
gzip [-9] > file.ifd.gz

It is also possible to render directly from a compressed file:

% gzcat file.rib.gz | render
% gzcat file.ifd.gz | mantra3 [mantra options]

In RenderMan 3.7:
% gzcat file.rib.gz | render
can simply be:

% render file.rib.gz

/\/

754 1] Houdini 6.0 Reference

mantra3 Output OP J

reading an ifd you’ve output to a standalone mantra

If you’ve opted to created an IFD (instantaneous frame description) instead of ren-
dering directly out of Houdini, you will subsequently need to pipe the output of this
IFD file into the standalone mantra application. To do this, you should enter some-
thing like the following in a UNIX shell:

mantra3 -a -v X.xx < file.ifd

The re-direct symbol (<) is used to pass the IFD to mantra3.

SUPER SAMPLE

This parameter affects the quality of the anti-aliasing during the rendering process.
Enter values here for the number of samples (rays sent per pixel) per pixel. The sam-
pling is the product of the value in X times the value in Y. The default is 4 x 4, yield-
ing 16 samples per pixel.

PIXEL ASPECT

The pixel aspect ratio is the ratio of horizontal to vertical pixel size of the rendered
image. The default value of 1 gives square pixels — suitable for viewing on your
screen. The aspect ratio for an NTSC Abekas with 720 x 486 resolution and a 4 x 3
screen aspect ratio is:

4 _ 486 _
3 X0 = 09

FIELDS

A frame of NTSC or PAL consists of two interlaced fields. One field contains the odd
scanlines of the frame and the other field contains the even scanlines and therefore
they are termed the odd and even fields. NTSC displays at the rate of 30 frames per
second which is 60 fields per second. PAL displays at the rate of 25 frames per sec-
ond or 50 fields per second.

When rendering fields, Houdini will automatically render the two fields and com-
bine them into a single image. Each field will be rendered at one half the frame
increment specified in the frame range.

The ability to render and record fields is very important as it can greatly smooth the
motion by doubling the apparent frame rate. The actual computation required to cre-
ate one second of animation on fields is not much more than frames, because only
half as many scanlines are needed for each render.

When rendering an image, there are some things which take the same amount of
time whether your rendering fields or frames:

* Cooking of SOPs and geometry to be sent down to the renderer;
* Loading of the geometry by the renderer;

When rendering NURBS and certain other primitives, there’s also a common over-
head that the renderer encounters. As a result, the time it takes to render some
scenes’ fields may not always double as expected.

/\/

10 - Outputs 1] 755

/A mantra3 Output OP

It is very important to know whether your record and playback device is “odd” or
“even” dominant. That is, whether the odd scanlines are displayed before the even
or vice versa. Most devices display the odd scanlines of a frame first, so that will be
the correct setting for most devices, however, a small test can save a lot of grief.

If you select the wrong dominance for your device, the final result will look jittery
unless you play it backwards. This is so because the motion within each frame will
go from the dominant field to the non-dominant field. Choosing the wrong domi-
nance will cause the motion to play backwards for the two fields within each frame
yielding jittery-looking motion.

full frame

This is the default setting. Many devices only record frames, or it may be more effi-
cient to record frames. Full Frame renders all scan lines for every Houdini frame.
You can also generate a separate picture for each field. This is useful if the device to
which you are recording will record fields. To record fields instead of frames, select
one of the following instead.

even field dominance

Render even fields for Houdini’s odd frame numbers and render odd fields for
Houdini’s even frame numbers.

odd field dominance

Render odd fields for Houdini’s odd frame numbers and render even fields for
Houdini’s even frame numbers.

MOTION BLUR

This parameter allows you to specify the “default” behaviour for motion blur when
rendering. If an object is set to “inherit” motion blur, it will be set to whatever the
output driver says (i.e. the object will inherit the behaviour from the output driver).
See Ref > Objects > Geometry Object > Render page > Motion Blur for details.

Production Tip: Leave most objects as “inherit behaviour”, then specify the motion
blur type in the Output driver. This way you can have one render which does motion
blur, and another that doesn’t.

DEPTH OF FIELD

Objects can be rendered in focus over a limited range of distances. Objects outside
of the limited range of a finite-sized aperture are out of focus. This property is called
depth of field. Computer images are generally in perfectly uniform focus; however,
by specifying lens parameters in mantra3, depth of field can be simulated. The focus
and f-stop channels of the camera object are used to determine the depth of field.

Depth-of-field is not supported from orthographic cameras.
Depth-of-field cannot have scan line optimization.

/\/

756 1] Houdini 6.0 Reference

mantra3 Output OP J

JITTER

The Jitter parameter limits the amount of jitter. mantra makes use of jitter as part of
its anti-aliasing method. A pixel which is to be super-sampled is divided into sub-
pixels. The number of sub-pixels is controlled by the /samplex and /sampley chan-
nels. See Jitter p. 742 for a full description.

DITHER

Dither determines the noise added to an image prior to creating the final output pix-
els. Dithering is the addition of low-level noise to colors before they are converted
from high-precision floating point numbers into 8 bit (0-255) integers. You can
avoid Mach Banding in an image containing slight luminance changes by adding
approximately 0.004 (1/255) noise to them.

Normally, dithering is done in HSV (hue, saturation, value) color space in order to
provide better dithering for highly saturated objects.

GAMMA

Gamma alters a pixel’s intensity in order to compensate for the unique colour char-
acteristics of a given medium. With a Gamma of 1.0 mantra3 thinks a pixel with
50% coverage should be shaded with a 50% intensity. However, many recording
devices do not respond to colour in a linear manner, so this is generally not the case
in actual practice. How much a device diverges from this linear value is measured
by a “gamma curve”. The Gamma for video is 2.2, which differs from that of film
(1.0).

In mantra3, after a pixel is rendered, its floating point color value is modified by the
Gamma value prior to creating the final output 8-bit RGB channels (3x8=24 bits) in
the output image.

The default Gamma is 1.0. Larger values brighten the image (especially within dark
regions) and values between 0 and 1 darken the image. In all cases full black
remains full black and full white remains full white.

typical gamma settings

Film 1.0
SGI Standard Gamma 1.7
Video 2.2

/\/

10 - Outputs 1] 757

/A mantra3 Output OP

12.3 PARAMETERS - SPECIFIC PAGE

WHITE POINT (RAY_WHITEPOINT)

The White Point allows quick brightening or darkening of the final output. When
mantra3 takes floating point colors (typically O - 1), and converts them to integer
channels (0-255 or 0-65535), the White Point determines what a floating point value
of 1 should be scaled to.

If the white-point value is set to 0.25, the floating point colors will be scaled by 0.25
before being converted to integer values. In this case, the whole image will get
darker. In fact, full white (i.e. 1, 1, 1) will be mapped to (0.25, 0.25, 0.25) before
conversion to integer. With eight bit channels, this will result in values of 63, 63, 63
instead of 255, 255, 255.

By lowering the white-point, colors brighter than one can be stored in the image.
This can be used in compositing, or recording to film to get colors brighter than 1
interpreted correctly.

FILTER (RAY_FILTER)

The Pixel Filter parameter specifies a filter to apply to pixels before quantizing them
to integer values. The standard filter types are available for pixel filtering.

Because the filtering occurs before quantization, this will improve anti-aliasing,
especially where colors are larger than the white-point setting.

Warning: There is a current limitation that pixel filter width cannot be larger than
half the bucket size for rendering. The filter size will be clamped to half the bucket
size (meaning that with large filter sizes, renderings may be different when rendered
using different bucket sizes).

The default filter is gaussian 1.5 1.5 which filters samples using a gaussian filter of
1.5 pixel radius.

12.4 PARAMETERS - SCRIPTS PAGE

PRE-RENDER / FRAME SCRIPT

The Pre-Render / Frame script is included in the render before the actual code of the
render or frame. You can use this to customise or modify rendering attributes.

Also see: Pre & Post Frame Render Scripts p. 721.

POST-RENDER / FRAME SCRIPT

Same as the Pre-Render / Frame Script, except it is appeneded to the render / frame.

/\/

758 1] Houdini 6.0 Reference

Mantra3 Render Command Dialog j

I3 MANTRA3 RENDER COMMAND DIALOG

= Dialog Script

| Number of Processes

__| Bucket Size

_ | Level Of Detail

¥ Vvariance Anti-Alias

0015
_ | Tiny Detail Checking
edium quality checks

__|Z-Depth Image

Closest Z Depth
o

/

mantra3 v 0.015

Note: The regular mantra renderer using VEX shaders (SHOPs) is a seperate renderer
also included with Houdini. To use it, use a mantra output instead of a mantra3 out-
put. The regular mantra is faster and more robust than mantra3; while mantra3 is
more compatible with old project files and materials made using TOPs.

THE THREE TYPES OF MANTRA3 RENDERING

mantra3 contains an option to improve both rendering quality and rendering speed
called micro-polygon rendering which is the default. This means there are three
basic ways that you can get mantra3 to render scenes; they are:

* Scan Line Rendering (with no option specified)
* Variance anti-aliased Rendering (with -v option > no Motion Blur but fast)
* Micro-polygon Rendering (with -a option > no Metaballs, but fastest)

See See MicroPolygon Rendering p. 784 for details.

MICRO-POLYGON RENDERING (-A)

Enabling this option (-a) which is the default, allows you to use micro-polygon ren-
dering which is significantly faster than using either scanline rendering or the vari-
ance anti-aliasing method. See MicroPolygon Rendering p. 784 for details.

/\//

[0 - Outputs o 159

/A Mantra3 Render Command Dialog

13.1 MANTRA3 — STANDARD OPTIONS PAGE

NUMBER OF PROCESSES (-N)
If your workstation only has only one CPU, you can ignore the following discussion.

If your computer is equipped with more than one processor the renderer can make
full use of your system’s power. mantra3 can use multiple CPU’s to render a single
image. By using the -n option, the number of processes can be specified. mantra3
permits a single image to be rendered on multiple processors. The #processors text
string of the Render Options Dialog determines how many processors will be used
to render your images. To achieve maximum rendering speed for simple scenes set
this text string to the number of processors you have. However, if you wish to con-
tinue working in Houdini while the pictures are being rendered, you should set this
text string to something less than the maximum. This will avoid bogging down the
system too much.

Complex scenes with large amounts of geometry and/or many texture maps take
longer to render. It is not always true that more processors mean faster rendering.
You may be limited by the amount of memory in your computer. Before rendering a
long sequence you should do a time test. Render a single frame with one processor.
Render the same frame with two processors, with three, four, etc. Then compare the
times. There are also several UNIX tools to handle shared memory management. ipcs
(Inter Process Communication Status) will display all shared memory blocks, sema-
phores, etc. which are currently active. These can be deleted using ipcrm.

The limit on the shared memory segments may be increased by changing the defini-
tion for SHMMNI in the file /usr/sysgen/master.d/shm, then recompiling UNIX. This
should be attempted only by knowledgeable users.

This number will be clamped to the maximum number of configured CPUs of your
system. The -N option can be used to force mantra3 to render with a higher number
of processes than the system has CPUs.

text command alternative
The -n option permits a single image to be rendered on multiple processors:
Houdini-> mantra3 -n 3

Specifies three processes.

flushing left-over mantra processes

When mantra3 renders with multiple processes, all processes share the same data
space. No shared memory will be allocated since all processes share the same mem-
ory. However, to function correctly, semaphores must be used. In some cases when
mantra3 is killed unexpectedly, these semaphores may linger. The following shell
script can be used to destroy these semaphores:

#1/bin/csh -f

foreach sem (‘ipcs -s’)
ipcrm -s $sem >& /dev/null
end

/\/

760 1] Houdini 6.0 Reference

Mantra3 Render Command Dialog J

BUCKET SIZE (-B)

While you are in the process of rendering with mantra3, you can direct the render to
focus on a specific area of the image by clicking on unrendered portions with your
mouse. mantra3 will then concentrate on the area in which you clicked. This is
called interactive rendering. It takes advantage of the fact that mantra3 is a tile-
based renderer. This means that it breaks up the entire image into small tiles and
renders each of these tiles individually. When rendering interactively, mantra3 will
force the bucket size to 16 x 16 pixels. This slows down the render, but provides bet-
ter interactivity. This can be overridden by the -B command line option. When a
small tile size is specified, mantra3 will use less memory, but has to do more work.

The Bucket Size option allows you to specify the size, in pixels, of the area being
rendered at any one time. Altering this parameter is useful for test renders where
you want to check the results in one area only.

Increasing the bucket size yields a faster rendering time. Decreasing the bucket size
produces better feedback from mantra3’s interactive rendering feature.

Three different rendering methods can be controlled:

* If you move the cursor so that it is outside the image window, mantra3 will sim-
ply render the image moving clockwise from the outside in.

* If you click with left mouse (™) in the render window, mantra3 will focus its
rendering activities to the region that was clicked.

When using interactive rendering with multiple processors, only scanlines from the
first processor will be drawn to the screen. The other processors will render com-
plete scanlines from the bottom up. Moving the window displays all processors’
completed pixels. Clicking with the middle mouse (™) will also display all proces-
sors’ completed pixels.

LEVEL OF DETAIL (-L)

The -L option is a global override for Level of detail. When rendering patch sur-
faces, in some cases, mantra3 will sub-divide the surface based on a relative level of
detail. Surfaces close to the camera will be more finely sub-divided than surfaces
further away. The level of detail is usually specified in the Object Editor (see Level
of Detail p. 288 in the Objects section). To speed up renders, the -L option can be
used with a fractional value. For example -L 0.5 will render at half the level of detail
for all objects in the scene. A level of detail of 0.1 will speed up the rendering con-
siderably.

VARIANCE ANTI-ALIAS (-V)

This option (-v option on the command line to mantra3) can be used to specify a dif-
ferent anti-aliasing mechanism. Variance Anti-aliasing takes an argument which
specifies the acceptable tolerance in color contrast between pixels. If the tolerance is
not met, anti-aliasing is performed. This will anti-alias areas of the image which
tend to have aliasing (i.e. edges of primitives, texture maps). Increasing the value of
the variance (maximum of 1) results in faster renderings. Decreasing the value (min-
imum of 0) produces higher quality images.

/—\/

10 - Outputs 1] 761

/A Mantra3 Render Command Dialog

when to use the -v option

The -v option should produce large speed improvements (up to three times) in ren-
dering time if any of the following are true:

* There are lots of reflective or refractive components in your image.

* There is a lot of refraction.

* You are using ray traced shadows (i.e. fastShadow, transShadow, or filterShadow)
* You are using curvature of the lens.

* A large portion of the visible primitives are metaballs.

when not to use the -v option

* When the scene has motion blur.
* When the scene has depth of field.
* Speed improvement will not be dramatic if there is little raytracing in the scene.

Note: This option must be Off for Motion Blur and Depth of Field to render!

TINY DETAIL CHECKING

When rendering reflections, refractions or shadows, there are options for tiny detail
checking. By default, mantra3 will do medium quality tiny detail checking. If there
is very fine detail in the scene (e.g. rendering shadows from a Venetian blind), high
quality tiny detail checking will improve the quality of the shadows or reflections.
This will add to the render time though. Low quality tiny detail checking will speed
up the render, at a cost of anti-aliasing quality.

Tiny Detail Checking uses variance anti-aliasing to check for fine detail during the
rendering process. This method allows you to trade off quality for speed.

Variance checks the luminance values (ranging between 0.0 and 1.0) of adjacent
pixels. By setting the tiny detail checking to high almost every pixel will be super-
sampled — a very slow process. However, if you increase the variance you can speed
up your rendering at the expense of anti-aliasing quality.

VERBOSE

The Verbose option sets the amount of data reported to the shell during the render-
ing process. The higher the value entered in this field, more data will be reported
during the render.

Z-DEPTH IMAGE

mantra3 has the ability to render Z-Depth images instead of RGBA images. The Z-
Depth image will store the distance from the camera to the first object hit. These Z-
Depth images are used for Z-Depth shadows and also by atmospheric lights. The Z-
Depth image allows mantra3 to quickly determine if an object is in shadow or is vis-
ible by a light source. There are two styles of Z-Depth images:

e Closest Z-Depth
e Average Z-Depth

/\/

762 1] Houdini 6.0 Reference

Mantra3 Render Command Dialog J

The Closest Z-Depth will put the Z-Depth of the closest surface to the camera into
the image. The Average Z-Depth will average the distances of the first two surfaces
and put that value into the image. Average Z-Depth images are better for use in Z-
Depth shadow lights since there will be less noise on the surface. However, they will
produce incorrect results for atmospheric lights. By default, mantra3 will generate
closest Z-Depth shadows which will work correctly in either case.

Z-Depth Image generates a file from which shadow depth information can be calcu-
lated. A Z-depth image contains the Z axis information for each pixel in the scene.
Z-depth images are used to produce a more realistic sense of depth, especially in
image compositing.

The options for this parameter allow you to choose between Closest and Average
depths. mantra3 defaults to average, meaning that it uses the average of the dis-
tances of the first two surfaces hit by the ray from the camera. Closest means that
the first surface hit by the ray coming from the camera determines the depth.

13.2 MANTRA3 - MICRO POLYGON PAGE

SHADING QUALITY

The Shading Quality parameter sets the quality with which the lighting model (i.e.
material) is applied to the object. This means the material applied to the object can
have its sharpness increased or decreased depending on how close your camera is to
that object (enter an expression that changes the Shading Quality based on distance
from the camera).

See Shading Quality (-s) p. 750 for more info.

MICRO POLYGON CACHE SIZE

Allows you to specify a cache size for the micro-polygon storage. By default, this is
set to 512. Specifying lower numbers (minimum value 8) causes mantra3 to require
less memory. However, rendering times will increase since mantra3 will be required
to do more work.

MICRO POLYGON SPLITS (-S)

If there is a single primitive which spans a large area, but only a portion is visible on
the screen (i.e. a single polygon ground plane stretching to infinity), it’s possible
that some shading artifacts will appear. These will manifest themselves as large
blurry areas on the surface. This occurs when mantra3 is unable to refine a surface
into small enough micro polygons. It is possible to increase the maximum threshold
of splits by changing this parameter.

The -S option on mantra3 only applies to splits of a primitive which crosses the near
clipping plane. This removes artifacts when rendering small portions of large primi-
tives.

/\/

10 - Outputs 1] 763

/A Mantra3 Render Command Dialog

13.3 MANTRA3 COMMAND LINE OPTIONS

mantra3 can be run from a shell script. The above options can be specified form the
command line as well as the Render Dialog Script. The options are listed below.

- Show command line options

-a Use micro-polygon rendering algorithm
-s <val> Specify shading rate multiplier.
-G <val> Specify cache size (default 4096)
-S <val> Specify max splits (default 16).

-A Turn off anti-aliasing (default off)
-B val Specify bucket size for render (default 64)
-b val Specify bit-depth of output image:

0, any — use the ‘natural’ bit depth.

8, byte, char — Generate 8 bits per color chan.
16, short — Generate 16 bits per color chan.
32, float — Floating point data per color chan.

-C val Specify grid cache size (default 256)
-E Render an even field
-f file Specify a file to load (instead of reading
from stdin)
-w val; -h val Specify a width & height for output image.
-o file Send verbose output to the specified file.
-0 Render an odd field.
-p file Append verbose output to the specified file.
-q Set render quality: below 9 turns off motion blur;

below 8 turns off depth of field; below 5 turns
off ray tracing when using -a .

-S Polygon splits — applies to splits of a primitive
which crosses the near clipping plane.
This removes artifacts when rendering small
portions of large primitives.

-i Render interactively.

-L val Global level of detail multiplier.

-J val Set the jitter scale (default 1).

-n val Set the number of processes (default 1).
-N val Force the number of processes (default 1).
-t val Set tiny detail checking (default 1).

0 = No tiny detail checking;
1 = Medium tiny detail checking;
2 = High quality checking.

-r Force mantra3 into ray-tracing mode.
-v Use variance anti-aliasing.

-V val Set verbose level.

-z Render averaged z-depth image.

-7 Render z-depth image.

-F Use fast interactive device.

/\/

764 1] Houdini 6.0 Reference

Mental Ray Output OP J

14 MENTAL RAY OUTPUT OP

14.1 DESCRIPTION

WHAT IS MENTAL RAY?

Mental Ray is a highly efficient fully featured ray tracing program written by Men-
tal Images GmbH. It supports procedural shading, motion blur, global illumination,
caustics, volumetric effects and many other features.

Futher details may be found at: http.://www.mental.com/

HOUDINI AND .MI SCENE FILES

implementation

The ingredients for a MentalRay scene description file (.mi) come from many differ-
ent places in the Houdini environment. Geometry comes from the SOPs of the dis-
played objects; the camera position is taken from the rendering camera; shader
information is gathered from SHOPs. Finally, the Mental Ray Output OP ties it all
together.

generating .mi files from houdini

The Mental Ray Output OP generates .mi files from Houdini. The output driver
allows you to choose which objects get rendered and to set global parameters to
control how the image will be made.

14.2 PARAMETERS — STANDARD PAGE

CAMERA

The camera parameter allows you to choose which camera the image will be ren-
dered from.

VISIBLE OBJECTS

This parameter provides a pattern of all objects which are visible for the render.

OUTPUT PICTURE

This is the filename that mental ray will render the image to. Houdini automatically
detects the filenames "ip" and "md" and will send these renderings directly to mplay.

OUTPUT IMAGE TYPE

Specify whether 8 or 16 bit images are generated and whether alpha is included in
the output image.

/\/

10 - Outputs 1] 765

/A Mental Ray Output OP

OUTPUT FILRE FORMAT

What format the output file is written in (i.e. TIFF, JPG, etc.)

OTHER PARAMETERS

The rest of these parameters are the same as for mantra and RenderMan.
See: Common Output OP Parameters p. 717 and Parameters — Standard Page p.
740:

e Frame Range

e Start/End/ Inc

e Initialize Simulation SOPs
* Generate Script File
 Script File

* Render in Background
¢ Render Command

¢ Override Default Res
¢ Resolution

* Pixel Aspect

¢ Motion Blur

e Depth of Field

o Jitter

e Gamma

14.3 PARAMETERS - SPECIFIC PAGE

The Mental Ray Renderer (ray) provides command line options for most of the
parameters on this page. These are denoted by "RayOption". Further help is availa-
ble in the ray command by running:

ray -h

SAMPLES

This specifies the sampling quality that mental ray will use to anti-alias the image.

RayOption: -samples

CONTRAST
This is the contrast threshold for anti-aliasing in RGBA.

RayOption: -contrast

TIME CONTRAST
This is the contrast threshold for temporal anti-aliasing (i.e. motion blur)

RayOption: -time_contrast

/\//

766 1] Houdini 6.0 Reference

Mental Ray Output OP J

TRACE DEPTH

Global ray bounce settings.

RayOption: -trace_depth

FILTER
Choose the filter for combining samples.

RayOption: -filter

INCLUDE

This option is very important if you are using non-standard shader. Mental ray
requires the inclusion of a .mi file describing the shaders used in the scene. This
parameter is used to specify the files which need to be included. This should be a
colon (:) or semi-colon (;) separated list of files. On Windows systems, semi-colons
are typically required because of drive specifications. We recommend that Unix
users use semi-colons as well for cross platform compatibility.

LINK WITH

Not only does Mental Ray require the including of .mi files describing custom shad-
ers, it also requires linking with the actual shader DSO. This parameter allows you
to specify which shaders to link against by listing the files in a colon (:) or semi-
colon (;) separated list.

RayOption: -link

LEVEL OF DETAIL

This is a global multiplier for the level of detail specified in each geometry object’s
Render page. For more information on how LOD affects quality please see the help
below.

BSP SIZE
The maximum number of nodes allowed in each voxel of the BSP tree.

RayOption: -bsp_size

BSP TREE DEPTH
The maximum number of branches in the BSP tree.

RayOption: -bsp_depth

SURFACE DERIVATIVES

Whether or not Mental Ray should compute surface derivatives for geometry.

/\/

10 - Outputs 1] 767

/A Mental Ray Output OP

SURFACE APPROXIMATION

Mental Ray has two different models for tesselation of geometry. The tesselation
can be view dependent or view independent. For more information, please see
below.

SHADOWS
Turns sorting of shadow intersections on or off.

RayOption: -shadow

SHADOW MAPS

Turn generation of shadow maps on or off.

RayOption: -shadowmap

REBUILD SHADOW MAPS

Re-build shadow maps for each render (or use static maps)

RayOption: -shadowmap

SHADOW MAP MOTION

Whether to incorporate motion blur into shadow maps

RayOption: -shadowmap

REFELCTION MAPS

Whether reflection maps should be auto-generated for reflecting object (this is the
auto-generate reflection map option in geometry objects Shading page).

SHOP LENS
Which SHOP lens shader should be used (if any)

SHOP OUTPUT
Which SHOP output shader should be used (if any)

OUTPUT SHADER TYPE

The type of data which the output shader requires

SHOP ENVIRONMENT

The global environment shader (if any)

/\//

768 1] Houdini 6.0 Reference

Mental Ray Output OP J

SHOP CONT STORE

The contour store shader (if any)

SHOP CONT CONTRAST

The contour contrast shader (if any)

CAUSTICS

Turn on rendering of caustics

RayOption: -caustic

GLOBAL ILLUMINATION

Turn on rendering of global illumination

RayOption: -globillum

CAUSTIC ACCURACY
Caustic estimation parameters

RayOption: -caustic_accuracy

CAUSTICS FILTER

Filter used in caustic reconstruction

PHOTON TRACE DEPTH
Maximum ray-bounces when generating photon maps

RayOption: -photon_depth

PHOTON MAP FILE

Path where the photon map will be written.

RayOption: -photon_mapfile

PHOTON MAP REBUILD

Whether to re-build photon maps for every render

GLOBAL ILLUM ACCURACY

Global illumination estimation parameters

RayOption: -globillum_accuracy

/—\/

10 - Outputs (1) 769

/A Mental Ray Output OP

PHOTON VOLUME

Photon volume accuracy controls

RayOption: -photonvol_accuracy

FINAL GATHERING
Enable or disable final gathering
RayOption: -finalgather

FINAL GATHER
Controls over accuracy of final gathering

RayOption: -finalgather_accuracy

14.4 PARAMETERS - SCRIPTS PAGE

PRE-RENDER SCRIPT

Execute this script before any rendering.

PRE-FRAME SCRIPT

Execute this script before each frame.

POST-FRAME SCRIPT

Execute this script after each frame.

POST-RENDER SCRIPT

Execute this script after all rendering.

14.5 GEOMETRY AND .Ml FILES

SUPPORTED PRIMITIVES

This is the list of primitives currently supported by the Mental Ray output driver:
Open Polygons
Particle Primitives

Metaball Primitives These polygons are silently ignored when generating
.mi files. Particle instancing is not supported in this
release.

Closed Polygons/Meshes These are output directly to Mental Ray.

/—\/

770 (1) Houdini 6.0 Reference

Mental Ray Output OP J

Sphere/Tube/Circle These are converted to NURBS surfaces and output to
Mental Ray.
Bezier/NURBS Surfaces These are output directly to Mental Ray. Trim curves

are supported natively. *

* If no texture coordinates exist on the NURBS surface, default texture coordinates
will be generated which map the unit square to the texture space of the NURBS sur-
face.

TESSALATION CONTROLS FOR BEZIER/NURBS SURFACES

In the Mental Ray Output OP, there are controls over tesselation for surfaces. It is
possible to choose: Don’t use view-independent approximation; Always use view-
independent approximation; Only for objects with multiple instances.

Mental Ray has the option to tesselate geometry based on the space of the object
defined (SOP or view-independent) or based on raster space (view-dependent). In
general, view based approximations are easier to deal with since as an object gets
smaller in screen space, fewer triangles will be required.

When not using view independent approximations, the "view" keyword is output to
MentalRay when defining surface approximations.

The level of detail for the object (determined by the value in the object’s Render
page), is used to determine the distance and angle tolerances for approximation.

The distance tolerance is determined differently based on whether view-dependent
or view-independent approximations are used. The following table indicates how
each type of approximation is computed:

Dist (View Dist (View Angle
Dependnt) Independent)
Length (1) 2.0/LOD 0.2/LOD 10.0/LOD
Surface (2) 2.0/LOD 0.01/LOD 5.0/LOD
Displace (3) 3.0/LOD 0.02/LOD 10.0/LOD
Trim (4) 2.0/LOD 0.01/LOD 5.0/LOD

1) The length approximation is output for polygons or meshes only.

2-4) When NURBS surfaces are output, separate tesselation controls are generated
for Surface/Displacement and Trim curve tesselations.

ATTRIBUTE SUPPORT

Currently, only texture coordinates, surface normals and material attributes are sup-
ported in .mi file generation.

/—\/

10 - Outputs 1] ul

/A Mental Ray Output OP

14.6 APPLYING SHADERS

Mental Ray supports a large suite of shaders. There is support for all shaders
(excepting lightmap shaders) in houdini. The shaders are applied in different parts
of the Houdini Environment. Shaders are all defined in Houdini using SHOPs. Each
mental ray shader has a SHOP associated with it. The SHOP controls the parameters
to the shader, not how the shader is constructed.

The following table describes what and where to apply the shaders.

Shader Meaning Where
Surface The surface shader OBJ/SOP
Surface Shadow Surface shader for OBJ/SOP
shadow rays
. The Surface
Displacement displacement shader OBJ/SOP
Geometry The object geometry OBJ/SOP
shader
Atmosphere Volume.s.h ader OBIJ/SOP
definition
Background Environment shader OBIJ/SOP
Contour Contour shader OBJ/SOP
Photon Photon shader OBJ/SOP
Photon Volume Photon shader for OBJ/SOP
volume
Light Shader Illummat%on from the Light
light
Emitter The photon emitter Light
shader
Lens Shader The camera lens shader Output
Output The output shader Output
The global
Background environment shader Output
The shader to store
Contour Store information for Output
contour shading
Contour Contrast The contrast sha<.ier for Output
contour shading

Note: OBJ/SOP refers to Geometry Object or Shader SOP.

/\/

m 1]

Houdini 6.0 Reference

Mental Ray Output OP J

14.7 MAKING SHOPS FOR MENTAL RAY

Houdini 5.x ships with a program called “mids”. It will parse a .mi file and scan it
for shader definitions. When it finds a shader, it generates a dialog script from the
shader parameters.

Unfortunately, because the .mi file definition doesn’t contain default values for
parameters, the default values in the dialog script will not have intelligent initial set-
tings. To set better defaults, you can either edit the .ds file by hand, or in Houdini,
set up the SHOP as you’d like and then choose "Make Permanent Defaults" from the
preset menu of the SHOP.

14.8 TIPS AND TRICKS

AREA LIGHTS

Currently, there are no controls for area light sources in Houdini. However, by plac-
ing the appropriate string in the post-include file of the light source, area lights can
be directly output in the .mi stream. For example:

opparm lightl post include ("rectangle -.3 -.3 -.3 .3 .3 .3")

will turn lightl into an area light source. Please see the mental ray documentation
for details on area light specifications.

SETTING DEFAULTS

Rather than hand editing the dialog script generated by mids, choose "Make Perma-
nent Defaults" in the presets (properties 5.1)

/\//

10 - Outputs 1] UE

/A Object Scene Output OP

I5 OBJECT SCENE OUTPUT OP

I15.1 DESCRIPTION

Use the Object Scene Output OP to generate Gouraud Shaded renderings like the
ones in the Viewport, or to generate Geometry.

Because the Object Scene Output OP generates renderings that are similar to or the
same as the Gouraud shaded view in the Viewport, it is ideal for setting up very fast
Gouraud shaded test renders.

You can also use this Output OP to output geometry to Inventor and VRML files. The
Renderer menu allows you to choose the type of output to create.

15.2 PARAMETERS

Only those parameters unique to this operator are discussed in this section.

RENDERER

This pop-up menu lets you select which renderer to use to produce the scene.

gl-hidden line

Produces a hidden line wireframe image of the scene. This provides a reasonable
compromise in speed between Shaded and Wireframe output.

When rendering Wireframe/Hidden line, the Anti-aliasing levels are used to deter-
mine whether OpenGL line anti-aliasing is used. If the Anti-aliasing levels are 1x1
then no anti-aliasing will be performed in Wireframe renderings. If the values are
larger than 1, then anti-aliased lines will be rendered.

gl-shaded

This uses the graphics hardware of your machine to generate a Shaded image of the
scene. The output will be very similar to the Gouraud shaded display in the Object
Editor’s Viewport. This allows you to create quick tests of your animation.

This renderer is special in that when rendering to a flip book, all the images are sent
to the same flipbook.

When this renderer starts, a new window will appear. This is where the render will
occur. It is important not to occlude this window with any other windows, otherwise
the output images may be corrupted.

gl-wireframe

This output driver is similar to the GL Shaded renderer, except that this renderer will
render in wireframe instead of shaded display.

/\/

174 1] Houdini 6.0 Reference

Object Scene Output OP J

When rendering Wireframe/Hidden line, the Anti-aliasing levels are used to deter-
mine whether OpenGL line anti-aliasing is used. If the Anti-aliasing levels are 1x1
then no anti-aliasing will be performed in Wireframe renderings. If the values are
larger than 1, then anti-aliased lines will be rendered.

inventor

This renderer will generate geometry instead of generating an image. Each object
will be placed in the Inventor file under a unique separator node. To output Inventor,
you must fill in the script name.

Inventor does not handle conversion of the following primitive types:
Primitive Circles, MetaBalls.

When using texture maps, for Inventor conversion, they should be in SGI format
(.sgi) for other Inventor applications to be able to read them.

You can test inventor output by running “ivview”.

vrml

Like the Inventor renderer, this renderer will generate geometry rather than an
image. VRML (Virtual Reality Modeling Language) is the geometry format used on
the World Wide Web.

Because this renderer requires a converter from Inventor to VRML which is supplied
by SGI (ivToVRML), IRIX 5.3 or greater is required — NT machines will be unable
to use this feature. Version 2.0 VRML can be generated (or 1.0) depending on the ver-
sion of the converter installed on your machine).

To test VRML output, you need to have a VRML plug-in for your web browser. Then
open the .wrl file within the web browser.

This converter used can be overridden by setting the environment variable:
SESI_VRML_CONVERT to a different application. For example:

setenv SESI_VRML_ CONVERT myVRMLConverter

USE DISPLAY INSTEAD OF RENDER SOP
Allows you to choose to render the display SOP instead of the Render SOP.

Why is this option available in this Output OP and not the others? Because in gen-
eral, when working with Gouraud shaded views in the Viewport, you will want to set
the display sop differently than the render SOP — often you will want the render sop
to output a more sophisticated view, such as after a Texture and Material SOP, and
the display SOP to a simpler/faster view for Gouraud shading in the Viewport.

Because this Output OP outputs a rendering that is to be similar to the Gouraud
shaded view in the Viewport (unlike the other Output OPs such as mantra or Render-
Man), this is the only Output OP to have this option, because it is the only one for
which it commonly makes sense.

/\/

10 - Outputs 1] 775

OpenGL Output OP

16 OPENGL OUTPUT OP

16.1 DESCRIPTION

Use this Output OP to create images based directly on OpenGL output. This is very
similar to the Object Scene output driver (when using OpenGL rendering), except
that the OpenGL driver has specific parameters to control hidden line rendering.

16.2 PARAMETERS

Only those parameters unique to this operator are discussed in this section.

RENDERER

GL Hidden Line Produces a hidden line image using OpenGL.
GL Shaded Outputs a shaded view of the scene.

VEX Shaded Outputs a VEX Shaded view of the scene.
GL Wireframe Wireframe image producing using OpenGL.

USE DISPLAY INSTEAD OF RENDER SOP

Allows you to choose to render the display SOP instead of the Render SOP.

Why is this option available in this Output OP and not the others? Because in gen-
eral, when working with Gouraud shaded views in the Viewport, you will want to set
the display SOP differently than the render SOP — often you will want the render sop
to output a more sophisticated view, such as after a Texture and Material SOP, and
the display SOP to a simpler/faster view for Gouraud shading in the Viewport.

LINE WIDTH

Applies to the GL Hidden Line and GL Wireframe renderers, but not the GL Shaded
renderer. It controls the width of the lines drawn by the renderer. Its default is 1. If
you choose 2, lines will be drawn 2 pixels in width, etc. You can also enter fractional
values (eg. 1.5). What you see for those values may depend on your video card.

VARIABLE/CONSTANT SENSITIVITY

This provides the same function as the Variable/Constant parameter in Viewport
options (Interface > Hidden Line Sensitivity p. 133). SGI users will need to tweak it
to find appropriate values, but most NT users can leave it alone. Unlike the Viewport
options on NT, this setting doesn’t depend on the kind of video card you have—even
if you have a bad card, the default values of: 2.0, 1.1 will usually give good results.

Note: Only available for the GL Hidden Line Renderer. It is not available for the GL
Wireframe or GL Shaded Renderers.

/\/

176 1] Houdini 6.0 Reference

RenderMan Output OP J

17 RENDERMAN OUTPUT OP

17.1 DESCRIPTION

This output operator uses Pixar’s RenderMan rendering program to produce your
image(s). The Output OP sets up all necessary options and then invokes Render-
Man. Alternately, the output can be saved to disk as a RIB file to be rendered later.
For detailed information on RenderMan, see the RenderMan section of the User
Guide.

17.2 PARAMETERS — STANDARD PAGE

Only those parameters unique to this operator are discussed in this section.

PRMAN VERSION

This parameter determines which version of RenderMan to use. You have a choice
between versions 3.6 - 3.9, and RenderDotC. Some notes about the various Render-
Man versions:

» Uniform attributes on polygons were reversed in version 3.6; they are not in version
3.7, so you can expect a difference in output in the later version.

e prman 3.7 uses the Points primitive type when rendering particles employing the
disk rendering type. The particles’ motion is blurred correctly. The pscale attribute
is mapped to the width variable in prman 3.7, meaning that the particle width is
ignored for particles using the Points primitive.

e Version 3.7 renders particles using the new Curves (RiCurve) primitive providing
the particle rendering type is set to lines.

IMAGE DEVICE

From the Image Device I> menu, you can select an output format, including Post-
script, TIFF, Targa, and SGI, for the render. For more on the image file formats,
please see Image File Formats p. 263 in the Formats section.

RENDER COMMAND

The string in this field is used to invoke the commandline which is actually used to
create a RenderMan RIB file and invoke RenderMan. Clicking =~ displays a dialog in
which you can interactively set the options for this. Renderman output is discussed
in the User Guide > Renderman chapter.

/\/

10 - Outputs 1] 117

/A RenderMan Output OP

PIXEL ASPECT

The pixel aspect ratio is the ratio of horizontal to vertical pixel size of the rendered
image. The default value of 1 gives square pixels — suitable for viewing on your
screen. The aspect ratio for an NTSC Abekas with 720 x 486 resolution and a 4 x 3
screen aspect ratio is:

=09

4 _ 486
3 X0

MOTION BLUR

This parameter allows you to specify the “default” behaviour for motion blur when
rendering. If an object is set to “inherit” motion blur, it will be set to whatever the
output driver says (i.e. the object will inherit the behaviour from the output driver).
See Ref > Objects > Geometry Object > Render page > Motion Blur for details.

Production Tip: Leave most objects as “inherit behaviour”, then specify the motion
blur type in the Output driver. This way you can have one render which does motion
blur, and another that doesn’t.

DEPTH OF FIELD

Objects can be rendered in focus over a limited range of distances. Objects outside
of the limited range of a finite-sized aperture are out of focus. This property is called
depth of field. Computer images are generally in perfectly uniform focus; however,
by specifying lens parameters in mantra, depth of field can be simulated. The focus
and f-stop channels of the camera object are used to determine the depth of field.

Depth-of-field is not supported from orthographic cameras.
Depth-of-field cannot have scan line optimization.

JITTER

The Jitter parameter limits the amount of jitter. mantra makes use of jitter as part of
its anti-aliasing method. A pixel which is to be super-sampled is divided into sub-
pixels. The number of sub-pixels is controlled by the /samplex and /sampley chan-
nels. See Jitter p. 742 for a full description.

GAMMA

Gamma alters a pixel’s intensity in order to compensate for the unique colour char-
acteristics of a given medium. With a Gamma of 1.0 mantra thinks a pixel with 50%
coverage should be shaded with a 50% intensity. However, many recording devices
do not respond to colour in a linear manner, so this is generally not the case in actual
practice. How much a device diverges from this linear value is measured by a
“gamma curve”. The Gamma for video is 2.2, which differs from that of film (1.0).
See Gamma p. 757 for a full description.

/\/

778 1] Houdini 6.0 Reference

RenderMan Output OP J

17.3 PARAMETERS - SPECIFIC PAGE

INITIALIZE

Use this button to clear or set the parameters to their default values (i.e. the prman
defaults).

TRANSFORMS

This tag allows you to combine the camera transform with object transforms when
generating RIB. The downside of this is that you can’t easily determine the differ-
ence between camera space and world space from within a shader. The plus side of
this is that Houdini uses double precision arithmetic for transform computations.
Also, the matrix computations are more robust than the ones used in RenderMan. In
some cases combining the transforms in Houdini will produce more accurate images
(e.g. if both the geometry and camera are transformed 10000 units from the origin,
the transforms will be much more accurate).

INSTANCE

Typically, Houdini will use the retained model paradigm in RenderMan to minimize
the amount of duplication of geometry. Some RIB renderers other than prman do not
handle instancing very well. For these renderers, it is better to avoid instancing
entirely. This parameter allows the user to do this.

NULL SURFACE

When generating shadow depth maps, Houdini will by default replace surface shad-
ers with a “null” shader for faster Rendering by RenderMan. However, if users do
displacement mapping in their surface shaders, or have totally transparent surfaces,
this can sometimes cause problems. This option allows the surface shader to be
passed down intact.

DICE STITCH

Turns on or off the Dice Stitch option when using Pixar's RenderMan 3.9.

RENDERING USAGE / PROGRESS / DEBUG

These options allow for more rendering statistics to be displayed.

OTHER PARAMETERS ON THIS PAGE...

These parameters map directly to features in RenderMan. Various options and
attributes can be set using these parameters. If a parameter is blank, then no value
will be output in the RIB (i.e. the default values from the rendermn.ini file will be
used). Please refer to the RenderMan documentation for explanations of these
parameters.

/\/

10 - Outputs 1] 19

/A RenderMan Output OP

17.4 PARAMETERS — AUX FILES PAGE

FILENAME / DEVICE / VARIABLE

You can output multiple images simultaneously from mantra/prman. In prman, you
must specify a Filename, Device, and an output Variable and its Type.

QUANTIZATION / DITHER

Optionally, you can specify a Quantization statement and Dither control for the
image.

Tip: Up to 6 auxiliary files to be specified. However, it is possible to add additional
output images using the pre-include/post-include statements for cameras.

17.5 PARAMETERS - SCRIPTS PAGE

PRE-RENDER SCRIPT

Execute this script before any rendering.

PRE-FRAME SCRIPT

Execute this script before each frame.

POST-FRAME SCRIPT

Execute this script after each frame.

POST-RENDER SCRIPT

Execute this script after all rendering.

17.6 LOCAL VARIABLES

$N The current frame of the range specified. This always
starts at 1.
$NRENDER Total number of frames being rendered.

/—\/

780 (1) Houdini 6.0 Reference

Wren Output OP J

18 WREN OUTPUT OP

18.1 DESCRIPTION

The Wren Output OP produces a hidden line output with a wireframe around the sil-
houette of objects. For example, when rendering a polygonal sphere, the edges of
the sphere (in camera space) are considered to be silhouette edges. The other poly-
gon edges are considered to be internal edges. If an internal edge of a polygon has
unique points, it is also rendered in wireframe. This allows you to choose which
edges you want revealed on the interior of objects. The Cusp Polygons option in the
Facet SOP can be used to “harden” edges in smooth models based on a specified
angle tolerance.

Sample output from wren — 3D geometry is rendered as a line illustration.

wren will read a scene description file from stdin. The scene description is similar to
an IFD, but is much simpler in nature (i.e. no light, fog or material information is
required or used by wren).

If polygon colors are attached to the geometry (e.g. with the Cd attribute in the
Primitive SOP), these colors will be used to fill the interior of polygons.

When open polygons are rendered, their color is determined by the “Cd” primitive
attribute. If the attribute does not exist, then the default wire color is used.

This renderer only supports polygonal models. Therefore, you will have to convert
any spline-based (NURBS or Beziers) to polygons before output using a Convert SOP.

Tip: In general, you should use a Facet SOP to generate unique points for Wren.

/\/

10 - Outputs 1] 81

Wren Output OP

18.2 PARAMETERS

Only those parameters unique to this operator are discussed in this section.

RENDER COMMAND

The string in this field is used to invoke the commandline which is actually used to
create the Wren output. Clicking =~ displays a dialog in which you can interactively
set the options for this.

usage

wren [options] [outputfile]

options

-w width Specifies width of output image.

-h height Specifies height of output image.

-n Image will be rendered in “negative” (i.e. a black
image with white wireframe).

-V level Specifies verbosity level.

-1 width Specifies wire line width.

-s Render with no smoothing.

-L val Global level of detail multiplier.

-J jitter Specify jittering.

-c Disable point consolidation.

-u attrib UV render of the named attribute. This option Replaces
the position of the points with a named attribute for
rendering. The render window will be automatically
converted to an orthographic rendering with the bottom
left corner mapping to (0,0) and the top-right corner
mapping to (1,1). This option allows users to render the
texture-space representation of polygons.

- m model Shading mode — 0-5 (*see note Below):

0 - White Wire / Normal Fill
1 — Black Wire / Normal Fill
2 — White Wire / Ghost Fill
3 — Black Wire / Ghost Fill
4 — White Wire / Matte Fill
5 — Black Wire / Matter Fill
-p Output a Postcript File.
-P Output polygons in Postcript mode.

/\/

782 1] Houdini 6.0 Reference

18.3 EXAMPLE

SHADING MODE *

These provide variations of black and white wires, and matte/primitive colour filling
as shown:

M L

White Wire/Black or Prim Colour Fill ~ Black Wire/White or Prim Colour Fill

T

White Wire/Matte Fill Black Wire/Black Fill

The above examples use the object silhouette as seen from the camera to draw the
lines. In order to draw internal lines, each polygon must have unique points.
Appending a Facet SOP to the table with the Unique Points option enabled (Cusp
Polygons achieves the same result) and rendering using Shade Mode: 0 gives the fol-
lowing result — notice how the edges and legs of the table are more defined:

LML

\—/—\

183 o Houdini 6.0 Reference | 10 - Outputs

/A MicroPolygon Rendering

2 Useful
Rendering Info

MICROPOLYGON RENDERING

INTRODUCTION

There are three basic ways that you can get mantra to render scenes; they are:

e Scan Line Rendering
e Variance anti-aliased Rendering
e Micro Polygon Rendering

PROS AND CONS OF RENDERING METHODS

Algorithm

Pros

Cons

Scan Line

* Fast for polygon scenes
with no ray-tracing

* Poor anti-aliasing quality
e Primitives other than pol-
ygons are slow

* Ray-tracing is very slow
(shadows/reflections/refrac-
tions)

Variance

* Fast anti-aliasing of ray-

traced scenes

* Some primitives (sphere/
tube/circle) are very fast to
render

* No support for Motion
blur or Depth of Field
effects

e Slows down when there
are high-frequency textures

Micropolygon

* High quality anti-aliasing
* Fast NURBS rendering

* Similar speed to variance
for ray-traced scenes

* Good user control over
speed vs quality

e Faster motion blur (lower
quality)

* Polygon scenes are slower
than Scan Line

* Memory usage is higher

* Doesn’t render metaballs
* Doesn’t handle depth
complexity well

/\/

184

Houdini 6.0 Reference

MicroPolygon Rendering J

1.2 TIPS & TRICKS FOR MICRO POLYGON RENDERING

DEALING WITH MEMORY

The micro-polygon algorithm is slightly more memory hungry than the other algo-
rithms. You can notice this by using the -V2 option to mantra (which will display the
memory usage). The increased memory is used for keeping around sets of micro
polygons for faster rendering. There is one control which allows you to tradeoff ren-
dering speed for memory usage. If too much memory is being used, swapping will
occur which will slow the render down (or kill the process).

Using the -G option on the mantra command line, it’s possible to specify a cache
size for the micro-polygon storage. By default, this is set to 512. Specifying lower
numbers (minimum value 8) causes mantra to require less memory. However, ren-
dering times will increase since mantra will be required to do more work. For exam-

ple:
Less Memory/Longer Render mantra -a -G 64
More Memory mantra -a -G 8000

1.3 SPEED VS QUALITY

The biggest advantage of the micro-polygon algorithm is that you can specify how
quickly objects are to be shaded. This is specified through the “Shading Quality”
parameter in the Render page of an object. A number less than one (0.5 or 0.2)
causes an object to be rendered much faster. A number bigger than one improves the
Shading Quality of the object at the cost of rendering time (a value of 1.0 will ussu-
ally suffice). One important thing to realize is that the Shading Quality can be speci-
fied on a per object basis. If an object is taking too long to render, simply lower its
Shading Quality a bit (of course, lowering the quality too much will result in poor
image quality).

As this is a very important option for micro-polygon rendering, there is a new com-
mand line option for mantra which specifies a multiplier for the Shading Quality.
So, for example:

Test Render mantra -a -s 0.3
High Quality mantra -a -s 1.4

The Shading Quality parameter controls the overall quality of the shading on an
object. When dealing with shadows, or reflections, there are additional controls. It’s
possible to decrease the shadow/reflection quality without very much loss in image
quality. This can speed up renders significantly depending on the scene. If you’re
doing test renders, you can cut the shading rate way down.

Because of the nature of the algorithm, you may find that you need to increase the
Shading Quality for reflective/refractive surfaces to get the anti-aliasing you require.
If this is the case, you can almost definately turn down the shadow/reflection quality
for the object.

/—\/

10 - Outputs (2] 785

/A MicroPolygon Rendering

1.4 TIPS

It’s possible to specify a higher shader quality for a surface which is textured and is
causing anti-aliasing problems. The higher shader quality will improve the anti-
aliasing on that surface. The rest of the scene will remain unaffected both in quality
and time.

When rendering constant shaded or matte objects, it’s possible to set the Shading
Quality very low — as long as it’s not a NURBS or quadric surface, since that would
affect the facetting of the edges. However, you will notice artifacts if the surface has
texture or atmosphere.

If an object has a large amount of motion blur, decrease the Shading Quality. Typi-
cally, a large amount of motion blur hides the shading detail of an object, so it’s pos-
sible to speed the render up with no visible image quality loss.

SHADING ARTIFACTS

If there is a single primitive which spans a large area, but only a portion is visible on
the screen (i.e. a single polygon ground plane stretching to infinity), it’s possible
that some shading artifacts will appear. These will manifest themselves as large
blurry areas on the surface. This occurs when mantra is unable to refine a surface
into small enough micro polygons. It is possible to increase the maximum threshold
of splits by using the -S option on the command line.

VARIANCE SHADOWS/REFLECTIONS

When rendering using the micro-polygon algorithm, reflections and shadows are
anti-aliased using variance rendering. Therefore, it is possible to specify a variance
on the command line even when using micro-polygon rendering. If the -a option is
specified, mantra will use micro-polygon rendering over any other algorithm.

The -v option does not override the -a option. It works in conjunction. When reflec-
tions are done on the -a option, the -v option is used to determine which micro-poly-
gons get anti-aliased.

MOTION BLUR

There is a known bug with motion blur. This may or may not affect your renders.
The bug is most visible when primitives are scaling in screen space (i.e. moving
away from the camera, rotating, or scaling). The artifact is more visible when the
motion blur is large.

On the plus side, deformation motion blur is supported for all primitives. This
means that it is possible to have deformation blur on NURBS surfaces.

LEVEL OF DETAIL

Level of detail is not currently used by the micro-polygon algorithm. However, the
level of detail will still affect reflections, shadows and refractions.

/\/

786 (2] Houdini 6.0 Reference

Rendering Scripts

2 RENDERING SCRIPTS

2.1 INTRODUCTION

It is often much more efficient, in a production environment, to set up your own cus-
tom shell script to do your rendering for you then to do all rendering from within
Houdini by selecting the Render command.

Below, is a full script which you can use as a template to make further modifica-
tions. You should setup your render driver as “mantral” (the default name for a man-
tra output item). Note that with mantra3, you won’t need to use the shmutil since
shared memory management is already handled by mantra.

Tip: A great deal of what is achieved by setting up specialized rendering scripts can
be taken care of by using Pixar’s Alfred interface and the Alfred output driver.
Alfred allows you to send and manage rendering processes to multiple hosts, and
manage a large setup of renders easily. See the Alfred Output OP p. 724 for details.

2.2 C-SHELL SCRIPT FOR RENDERING

#!/bin/csh -£f

if ($#argv < 3) then
echo Usage: $0 hipfile startframe endframe increment
exit 1

endif

set hipfile = “$1"
set start = “$2~
set end = “$3”

if (s$#argv > 3) then
set inc = “$4”
else
set inc
endif

1

echo ‘Rendering from:’ $hipfile
echo * Frame range:’ $start ‘to’ $end ‘by’ $inc

#
You might want to use something like:
hscript $hipfile >& logfile << ENDCAT
to keep a log of what gets rendered...
#
hscript $hipfile << ENDCAT
opcf /out
set foo = \“execute(”opls mantral”)\"
if (“\$foo” != “single”) then
echo “Sorry, can’t find output driver ‘mantral’”
else
Turn the frame range for single off
opparm mantral trange (off)
If we're using renderman, you might want to uncomment the following
opparm single device (“tiff”)

/\/

10 - Outputs (2] 787

Rendering Scripts

#
Put additional initialization commands in here
#
for i = $start to $end step $inc
opparm mantral picture (/tmp/\$i.pic)
fcur \$i
echo \ system(“date ‘+%A, %R’)\ " : Frame \$i to \ chs(“single/picture”)\"

Put additional commands in here, i.e. ‘unix shmutil’
#
render mantral
end
endif
ENDCAT

SAMPLE OUTPUT
This is a sample output from the script:

Rendering from: script.hip

Frame range: 1 to 3 by 1
hscript Version 1l.la (Compiled on 09/20/96)
Monday, 12:51 : Frame 1 to /tmp/l.pic
Monday, 12:52 : Frame 2 to /tmp/2.pic
Monday, 12:52 : Frame 3 to /tmp/3.pic

/—\/

788 o Houdini 6.0 Reference

Rendering Attributes J

3 RENDERING ATTRIBUTES

Following is a list of attributes which Mantra and Wren check for:

3.1 MANTRA
Attribute Type Point Vertex Primitive
width float . J .
pscale float J
orient vector °
N vector . o

surface string .

displacement string .

3.2 MANTRA3 (OLD MANTRA)

Attribute Type Point Vertex Primitive
uv vector J o
Cd vector . . .
Alpha float . J .
rest vector . J
N vector .
rnml vector o
material string .
3.3 WREN
Attribute Type Point Vertex Primitive
linewidth float J o .
Cd vector o

/—\/

10 - Outputs (2] 789

Rendering Attributes

3.4 MEANING OF ATTRIBUTES

width The width of open polygon/Bezier/NURBs curves.
These are rendered as "ribbons" which have the width
specified.
(Point, Vertex, or Primitive SOP followed by an
Attribute SOP)

pscale If open polygons/curves are found that do not have a
"width" attribute, then pscale is used to determine the
width of the ribbons.

(Render POP, Point SOP, Particle SOP)

orient Without this attribute, open polygons/curves will be
oriented so that their normal points roughly toward the
camera. The "orient" attribute specifies an alternative
direction for the normal of a ribbon to point at.
(Point SOP followed by an Attribute SOP)

N The surface normal. This attribute is ignored for primi-
tives other than polygons/mesh types.
(Point SOP, Facet SOP, etc)

surface Specifies a VEX surface shader for the primitive.
(Shader SOP)

displacement Specifies a VEX displacement shader for the primitive.
(Shader SOP)

uv Texture coordinates

(Texture SOP, Point/Vertex SOP)

cd Diffuse color
(Point/Vertex/Primitive SOP)

Alpha The opacity of a point/vertex/primitive
(Point/Vertex/Primitive SOP)

rest/rnml The rest position/normal of a surface.
(Rest position SOP)

material Specifies a material for the primitive.
(Material SOP)
linewidth The width of a line (in pixels). This attribute is only

currently supported for open polygons.

/\/

790 (2] Houdini 6.0 Reference

| OVERVIEW

. oveiew
"/

3 RenderMan
Rendering

1.1 WHAT IS RENDERMAN?

1.2 QUICK START

Houdini can render images with several different renderers; one of these is Render-
Man. Whereas the mantra renderer comes with Houdini, the RenderMan-compati-
ble renderer prman must be purchased separately from Pixar.

RenderMan is actually a specification written by Pixar. This specification describes
a language for how a modeling or animation package can communicate with a Ren-
derMan compatible renderer.

PhotoRealistic Renderman, or prman, on the other hand, is the name of a Render-
Man compatible renderer sold by Pixar. For convenience, we will generally use the
terms “RenderMan”, “RenderMan compatible renderer”, and prman interchangea-
bly.

This chapter outlines the subset of RenderMan supported by Houdini.

Houdini can output complete RenderMan scene descriptions (i.e. ‘RIB Files’).
These scene descriptions will include various surface types, shaders, viewing con-
trols, lights, texture maps, and many other rendering controls.

Providing that you have installed RenderMan on your system, using it with Houdini
is as simple as clicking an icon.

@ﬂ o] nocamera | B @ﬂmﬂ

Click the Render Icon to see the Rendering pop-up menu

Clicking the Render icon (located at the bottom of the Viewport) pops up a menu
with at least the following entries: View > Mantra and View > R-Man.

It also lists any Render Output OPs you have created. For a simple single-frame
render of the current viewport scene, select the View: R-Man option — a window
appears on the screen, and the scene is rendered with RenderMan.

/\/

[0 - Qutputs

© 91

 oeniew N

1.3 FURTHER REFERENCE

PIXAR

Pixar’s PhotoRealistic RenderMan renderer, and the RenderMan Specification, is
available from:

Pixar Inc.

1001 West Cutting Boulevard
Richmond, CA, 94804 (U.S.A.)
Tel: 415.236.4000

THE RENDERMAN SPECIFICATION

For a complete explanation of the RenderMan Specification, including shading lan-
guage, the following book is the best reference:

The RenderMan Companion, by Steve Upstill
(A programmer’s guide to realistic computer graphics)
Addison-Wesley Publishing Company, 1990.

RENDERMAN REPOSITORY ON THE WEB
http://www.renderman.org/RMR/

This page is just full of RenderMan related information — check it out.

BLUE MOON RENDERING TOOLS

http://www.exluna.com/bmrt/

PRMan isn’t the only RenderMan compatible renderer in existence. A shareware
RenderMan compatible ray-tracer is available called ‘Blue Moon Rendering Tools’.
Its a bit slow, but produces excellent results — perfect for learning RenderMan.

RENDERDOTC

http://www.dotcsw.com

RenderDotC is one of the highest performance photo-realistic renderers available,
and since it is fully RenderMan compliant, version 3.0.1 (and later) work very well
with Houdini.

The most significant thing about this renderer is that the shaders are first compiled
to C++ and then compiled to machine language. This results in shaders that evalu-
tate very fast.

/\/

792 © Houdini 6.0 Reference

RenderMan Setup J

2 RENDERMAN SETUP

2.1 RENDERMAN SET-UP

This section assumes that RenderMan is properly installed and running and is of
version 3.6 - 3.9. If you type "which render" you should get a path to the Render-
Man render command which should be something like:*

/usr/local/prman/bin/render

You will need to see your RenderMan installation guide to properly install Render-
Man. If you are setting up RenderMan for NT, there will be some minor differences.

2.2 ENVIRONMENT VARIABLES

To properly set up RenderMan with Houdini, you first need to set up some environ-
ment variables. These are:

HOUDINI_RI_SHADERPATH
Search path for RenderMan shaders (sets option)

HOUDINI_RI_TEXTUREPATH
Search path for RenderMan textures (sets option)

HOUDINI_PATH
Houdini search path (this is used for the dialog files)

HOUDINI_RI_SHADERPATH

setenv JOB /usr/jobs/ROGI # Make sure directory exists
setenv RMAN_SHADERPATH ".:$JOB/Shaders:$HOME/Shaders:/usr/local/houdini/houdini/
ri_shaders:&"

Note: the $JOB location is optional and can be omitted along with the first line set-
ting the $JOB variable.

By setting this variable, its contents will be inserted into the RIB stream, and will
tell the renderer where to go and look.

The $JOB/Shaders location is a user created location and is one example of custom-
izing the environment.

In General, this variable tells RenderMan to first go look for shaders in the local
directory, then in a $JOB sub directory called "Shaders" (the job shaders), then it
will scan your personal shader directory, then the Houdini default directory, and
finally, everything that was already there (the '&'). This '&' will let houdini find all
the basic staple shaders like "plastic" that ship with RenderMan.

This variable can be set in Houdini's textport but is generally set or sourced in to
your .login file.

/\/

[0 - Qutputs

RenderMan Setu

HOUDINI_RI_TEXTUREPATH

setenv RMAN_TEXTUREPATH "?22?2"

This controls where the RenderMan render searches for texture maps.

Please remember that RenderMan requires textures to be in a specific format. Con-
vert the image file to a TIFF file, then run the program txmake on the TIFF.

Also, the Houdini FBio table has .tx as an extension for RenderMan texture files so
that it will automatically create a texture file for you if you do the following:

icp mypicture.pic for rman.tx

At this point, RenderMan is ready to interact properly with Houdini. You should be
able to go to an object, bring up the renderman dialog for any shader type, see all the
RenderMan default shaders, then press the edit button and edit your shader with a
text editor (like vi).

HOUDINI_PATH

setenv HOUDINI_PATH ".:$JOB:$HOME/houdini:/usr/local/houdini:$ROGI:$HFS/houd-
ini:@"

Note: the $JOB location is optional and can be omitted.

This defines Houdini's search path for shader dialog files. You only specify the job
root directory in the path and not the actual directory containing the Scripts.

Houdini expects the job directory to contain a config/Scripts directory where the
dialog files are located and named properly.

The "@" symbol will include all "default" houdini paths since this path is used for
other parts of Houdini. For example, the HOUDINI_PATH directory defines the
location for all material palettes.

NOTES ABOUT SETTING VARIABLES VARIABLES

@ signifies the “standard shader path”.

& signifies “whatever was set there before”.

The default renderman.ini file states the shaderpath as ".:@", which means "this

directory plus the standard shader path" (which is ${RMANTREE}/lib/shaders).

MORE VARIABLES
Following is a table with all the key RenderMan and Houdini variables.

There are more environment variables specific to RenderMan than what are listed
here. Please see the PRman documentation for explanations of their use.

For more on environment variables, see the Scripting section in the Reference man-
ual.

/\/

794 © Houdini 6.0 Reference

RenderMan Setup J

2.3 RENDERMAN AND HOUDINI VARIABLES QUICK REFERENCE

HOUDINI_PATH ¢ Houdini variable

» Search path for shader dialog script files.

* Specify only the job directory in the path.

* Must contain a config/Scripts directory where
dialog files are located and properly named.

* All specific shader dialogs of the proper type
must be compiled from the .slo shader using the
rmands command.

HOUDINI_STEDITA * Specify the program to invoke when editing a
shader within Houdini.
HOUDINI_STPATH * The place to look for source for the shaders.

* This is a path. For example:
setenv HOUDINI_STPATH \
"$HOME/shadetree: $STREE DIR/
prman-3.7/examples
so it would pick up different sets of shaders.
HOUDINI_VIEW_RMAN * Specifies a command to use for View:R-Man
in the Viewport Render menu.
setenv HOUDINI VIEW RMAN = render
HOUDINI_VIEW_MANTRA | ¢ Specifies the command to use for View:Man-
tra in the Viewport Render menu.
setenv HOUDINI_ VIEW MANTRA =
mantra -a -s 0.7 -v 0.15
RI_SHADER_PATH * Sets the path for ri_shaders directories.
RMAN_CURVE_BASIS ¢ Used to control the curve basis for RiCurve
level of detail. RiCurve is generally used for re-
creating hair effects (Houdini 2.5 and later).
e Can be set to linear (default) or cubic. Just
ensure there are the correct number of points
when you use cubic (see the PRman documen-
tation for details).
setenv RMAN_ CURVE_BASIS = cubic
RMAN_FORMAT * Determines rendered image file format.
¢ Used in the absence of an output driver.
e Use "sgif" for .rgb format files, "tiff" is the
default. Others are also available.
RMAN_SHADERPATH ¢ RenderMan variable
e Search path for compiled .slo shaders
* The directory containing shaders is directly
specified in the path
RMAN_TEXTUREPATH ¢ RenderMan variable
» Search path for all required RenderMan .tx
texture files.
SESI_SLO_PATH ¢ Houdini variable.
* Specify the directory to build .slo shaders for
automatically generated RenderMan shaders.
* Used only when rendering to RenderMan and
converting materials on the fly.

/—\/

10 - Outputs © 795

RenderMan Setu

2.4 RECOMMEND PROJECT DIRECTORY PATH SETUP

You should create a custom directory for your shaders and dialogs. The location is
determined by the RMAN_SHADERPATH and HOUDINI_PATH variables.

Here is a recommended generic Job or Project set-up directory structure:

Project
bin
config

Scripts
dso
geo
hip
map
mat
pic
presets
scripts
Shaders

The two paths you will need for RenderMan will be the Shaders directory and the
config directory indicated above in bold. The config directory will also need a
Scripts sub-directory, so what you end up with are:

Project/Shaders All .sl and .slo files are to be placed here.

Project/config/Scripts
All .ds files required for the dialogs in Houdini should
be placed here.

CREATING A COMPILED SHADER FROM YOUR .SL SHADER

Your shaders should be placed in the $JOB/Shaders directory for your job specific
shaders, or in $HOME/houdini/Shaders (create the directory if it doesn’t exist).

In the Shaders directory, you need to compile your .sl shaders with the “shader”
command. This will create a .slo file for you. The shader command is a RenderMan
application so see the RenderMan documentation for more information.

Example: If you have created a shader called foo.sl, you will need to enter the fol-
lowing command:

shader foo.sl

This will create a compiled shader file called foo.slo

CREATING RENDERMAN DIALOGS FOR HOUDINI

Once a shader has been created, you now have to create the dialog interface that will
be used in Houdini.

All specific shader dialogs of the proper type must be compiled from the .slo shader
using the rmands command, for example:

rmands -c¢ -d foo.slo

/\/

196 © Houdini 6.0 Reference

RenderMan Setup J

or to compile all the shaders at once with some preference options and place the dia-
logs in the proper config/Scripts directory:

rmands -c¢ -g 8 -d $JOB/config/Scripts *.slo *.via

Please note that running rmands on all of the shaders in the directory will concate-
nate all of them and then save them to the proper shader dialog file automatically for
you as follows.

RMatmosphere.ds contains all the atmosphere shader dialogs.
RMdisplace.ds contains all of the displacement shader dialogs.
RMlight.ds contains all of the light shader dialogs.
RMshader.ds contains all of the shader dialogs.

You need to put the resulting .ds file(s) in a directory named /config/Scripts and to
be consistent with above, $JOB/config/Scripts.

A good idea would be to write a script something like:

echo creating dialog for shaders...
rmands -¢ -d . ../../Shaders/*.slo ../../Shaders/*.via

or:

echo creating dialog for shaders...
rmands -c -d . $JOB/Shaders/*.slo $JOB/Shaders/*.via

This script should go in the config/Scripts directory.

2.5 SETTING YOUR SHADER EDITOR APPLICATION

Houdini can use any text editor or ShadeTREE to edit a shader interactively from
within houdini.

HOUDINI_STEDIT can be used to define your shader editor explicitly or you can
rely on the default script that ships with Houdini located in:

$HFS/houdini/ri_shaders/editshader.sh

This script tests if the shader file to see if it was created with ShadeTREE and if it
was, launches ShadeTREE. If not, it uses the text editor defined by your SEDITOR
environment variable.

This script is also responsible for automatically re-compiling the shader, and re-
building the dialog script after committing your changes when you exit the shader
editor.

You can make a copy of this script somewhere in your path and edit the file to call
up different editors. Or you can use the following environment variable to force
Houdini to always use a specific editor.

The example below instructs Houdini to always use ShadeTREE to edit shaders:

setenv HOUDINI STEDIT "$STREE DIR/bin/st -prman3.7 -f"

/\/

10 - Outputs © 797

RenderMan Setu

2.6 GETTING PRMAN TO RENDER TO MPLAY

Through the proto_install utility, it's possible to install display drivers for Render-
Man which allow prman to render to mplay.

1) Run proto_install
2) Choose: RManDisplay.inst
3) Choose a location to install the driver

You will be asked:

It is possible to override the default "framebuffer" output device to use mdisplay
instead. Would you like to do this? Would you like to do this? [y]

If you select yes, when prman renders images to the "framebuffer" device, they will
be sent to the mplay window instead of the default prman framebuffer.

You will then be asked whether you want to test the driver.

This process will have added two new display devices to prman. Choosing "houd-
ini" or "mdisplay" in the device field of the RenderMan output driver will cause
images to be rendered to mplay. If you chose to override the "framebuffer" device,
then images rendered to the "framebuffer" will also be rendered to mplay.

This process will modify your SHOME/rendermn.ini file.

2.7 INSTALLATION FOR ENTROPY

1) Run proto_install
2) Choose: EntropyDisplay.inst
3) Choose a location to install the driver

Entropy does not allow users to override the "framebuffer" device. You will then be
asked whether you want to test the driver.

This process adds one new display device to Entropy. Choosing "houdini" in the
device field of the RenderMan output driver will cause images to be rendered to
mplay.

This process will modify your SHOME/.entropyrc file.

REFERENCE

The display drivers use the "imdisplay" program to transfer data from the renderer
to the mplay program. For more information on how this process works, type
"imdisplay -", or look at $SHH/public/tomdisplay.tar.gz.

/\/

798 © Houdini 6.0 Reference

RenderMan Setup J

2.8 BLUE MOON RENDERING TOOLS SETUP

Blue Moon Rendering Tools
http ://www.exluna.com/bmrt/

Blue Moon Rendering Tools (BMRT for short), is a royalty-free rendering program
written by Larry Gritz. Some of the things that make BMRT attractive are:

e Itis free (just download and go)

e [It reads standard RenderMan .rib files, and uses .sl shader files.
e It supports ray-tracing and raydiosity

e It generates very good looking images.

e It supports multiple platforms, including WinNT and Linux.

The downside of BMRT is that it is very slow — making it unsuitable for production.

Many users first use BMRT to learn to write shaders, and then purchase PRMan
when they become more knowledgeable and they get work that justifies purchasing
a copy PRman.

SETTING UP BMRT

* BMRT is very similar to RenderMan in setup.
e Setup BMRT per the instructions in the BMRT documents.

COMPILING BMRT SHADERS

* You will have to copy all of the RenderMan .sl shaders that come with Houdini
into your BMRT shader directory.

* Next you have to compile your shaders using sic — the BMRT shader compiler,
not shader as with PRMan.

* Any other shaders you want to use have to be saved out of the Houdini material
editor and recompiled with BMRT's shader compiler.

* You cannot dynamically render through BMRT as you can with RenderMan.

* Once all the shaders are setup, create a RenderMan Output OP. In the render com-
mand field, change the render command to: rendrib (add any command line
options you need — although you will not be able to use any RenderMan options).

* To speed things up, set the Super Sample rate to: 1:1 .

* Visit the BMRT site and read the Incompatibilities with PRMan section for more
information on how the two applications, PRMan and BMRT, differ.

* Please make sure that you are using the latest version.

KNOWN PROBLEMS

Houdini uses object instancing in its .rib files a lot. Older versions of BMRT did not
handle object instancing very well, as versions prior to 2.6.-18 corrupted all of the
transforms. You will need to use BMRT 2.6.-18 or later to avoid these problems.

/\/

10 - Outputs © 799

RenderMan Setu

2.9 EXAMPLE .LOGIN SETUP

unsetenv pathset
limit coredumpsize 0

#---| basic setup procedure |---
alias cd 'set old=$cwd; chdir \!*'
alias dir 'ls -la'

unset noglob

Set the interrupt characer to Ctrl-C
if (-t 0) then
stty intr '"C' echoe
endif

Set the default X server.
if ($?DISPLAY == 0) then
if ($?REMOTEHOST) then
setenv DISPLAY ${REMOTEHOST}:0
else
setenv DISPLAY:0
endif
endif

setenv MOZILLA HOME /usr/local/netscape
setenv LD _LIBRARYN32 PATH "/usr/1ib32:/1ib32"

#---| end of basics |---

source /usr/local/bin/baseline
echo "baseline is sourced"

go home because baseline script leaves me in $HFS
cd S$HOME

These lines are to make local/bin precede the default $HFS/bin
set path = (SHOME/bin $path /usr/local/prman/bin)
rehash

#---| RenderMan Specific Environment Settings |---

Set the RenderMan shader path
if ($?HFS) then
setenv RMAN_ SHADERPATH ".:$ROGI/Shaders:$HFS/houdini/
ri_shaders:@"
setenv HOUDINI STPATH $SRMAN SHADERPATH
endif

/\//

800 © Houdini 6.0 Reference

RenderMan Setup JZ

#---| Project mat Directory |---

Set houdini path so that there can be a mat directory for

each project. Note that there is a period as the first directory

location. This will be the current working directory- or your

SHIP or $JOB directory

if ($?HFS) then
setenv HOUDINI PATH ".:$HOME/houdini:/usr/local/houdini:$HFS/
houdini:@"

endif

#--—| Custom |--—-

setenv HOUDINI_ PATH ${HOUDINI_PATH}:/usr/staff/drew/work/Custom-
Shaders

setenv RMAN SHADERPATH ${RMAN_SHADERPATH):/usr/staff/drew/work/Cus-
tomShaders/shaders

#---| TCL/TK Settings |---—

set path = (/n/moca/staff/drew/TCL/tcl8.0/unix \
/n/moca/staff/drew/TCL/tk8.0/unix $path)

setenv TCL LIBRARY $HOME/houdini/scripts/tcl8.0

setenv TK LIBRARY S$HOME/houdini/scripts/tk8.0

#---| spy settings |---

echo -n "Do you want to enter spy? "
set n = $<

if ("$n" != "N" && "$n" != "n" && "$n" != "no") then
Spy
endif
if (! $?ENVONLY) then
sSpy
endif

NOTE: Do not set environment variables after setting spy
EOF

/—\/

10 - Outputs © 801

/A the RenderMan Scene description

3 THE RENDERMAN SCENE DESCRIPTION LANGUAGE

3.1 IMPLEMENTATION

The ingredients for a RenderMan scene description file come from many different
places in the Houdini environment. Geometry is taken from the SOPs of the dis-
played objects; the camera position is taken from the camera OP; all objects have
entries for the various shader types; their position gets set from the transformation
entries in the geometry OPs. Finally, the output OPs tie it all together.

3.2 RIB IS A KNOWN FORMAT

It is also possible to have Houdini write out RIB “snippets”. These snippets contain
only geometry items. This is made possible by having RIB be a known geometry
format (write-only, however). Check out the entries in the file /hfs/houdini/GEOio.

3.3 ACCESSIBLE “MANYWHERE”

There are many different places where you can tell Houdini to write out a RIB
stream. These include:

From SOPs, as “Save Object...” and “Save Geometry...” From any view, using the
render button From the output OPs, by hitting the “Render” button

3.4 DIFFERENCES FROM PRISMS’ ACTION IMPLEMENTATION

If you have used PRISMS, you will find that the RenderMan capabilities of Houdini
are similar to action’s. However, many controls in action were afterthoughts, and
hence had to be “hacked” in. action’s Trail SOP motion blur is a prime example of
such a “hack”. In Houdini, RenderMan was part of the design consideration. Hence,
the entire implementation is much cleaner, straightforward, and powerful.

/\/

802 © Houdini 6.0 Reference

Getting RIB out of Houdini

4 GETTING RIB OUT OF HOUDINI

4.1 RIB STREAMS

A RIB (RenderMan Interface Bytestream) stream is a collection of RenderMan
commands. There are two things that you can do with a RIB stream: you can write it
to a file, thus creating a “RIB file”, or, you can send the RIB stream directly to the
renderer, which, hopefully, will produce a pretty picture.

To send a RIB stream to be rendered, click on a Render button below a Viewport.
Selecting View: R-Man sends the RIB stream directly to the PRMan renderer.

To create a RIB file, you first have to create an output OP (described below). From
there, you can then create RIB files rather than simple single-frame renderings.

4.2 SAVING RIB FROM SOPS

While you’re in the SOP Editor, you can direct the SOP to write a RIB file. To see the
choices, select from the the SOP Tile’s menu. There are two choices:

Save Geometry This option saves the SOP’s geometry to a file. In the
file saver dialog, naming the output file with a “.rib”
extension will automatically create a rib snippet con-
taining just the geometry for that SOP.

Save Scene Description This option creates a renderable RIB file, using the cur-
rent SOP as the display SOP. The camera setting is the
one that matches the current viewport.

4.3 THE RENDERMAN OUTPUT OP

The output OPs in the Output List mode present a unified method of exporting
imagery from Houdini. You create sequences of pictures or RIB files through the
output OPs. To create a RenderMan output OP, click on the RenderMan icon at the
top of the list of output OPs. This adds an entry such as “rmanl” to the list of output
OPs.

CAMERA

In the parametres area for the rman output OP, the Camera pop-up menu lists avail-
able perspective objects. Perspective objects are ones through which you can view
and render the scene. Houdini considers both cameras and lights to be perspective
objects, and thus allows you to render from the vantage point of either of them.

/\/

10 - Outputs © 803

Getting RIB out of Houdini

VISIBLE OBJECTS

By default, this edit field is set to render all visible geometry (denoted by the “*’
wildcard character). Substituting a list of of object names into this field causes only
those named objects to be considered for the render.

OUTPUT PICTURE

This option specifies the name of the image filename that will be created upon ren-
dering (unless ‘image device’ is set to ‘framebuffer’ — see the next section Image
Device p. 804). A typical entry is: $JOB/Render/foo \$F4.tif. It is important to corre-
late the filename extension, “.tif”” in this case, with a proper image device driver.

IMAGE DEVICE

This option determines the image file format of the rendered picture. This is depend-
ent on the image file drivers that are installed in the rendering software. The pop-up
to the right of the entry lists most of PRMan’s installed display drivers. Enter
‘framebuffer’ to have the resulting image go to the screen rather than to a file.

FRAME RANGE

If the Frame Range button is enabled, you can enter Start/End/Increment values,
which determine which frames are output.

GENERATE SCRIPT FILE

By clicking this button, instead of directly rendering Houdini’s output, RIB files are
created. A typical script filename would be $JOB/Ribseq/foo \$F4.rib .

RENDER COMMAND

If you are having Houdini instantly render your frames, this specifies the name of
the executable that will render the frames. Clicking on the =r to the right allows you
to select parameter flags via a dialog.

SUPER SAMPLE

This is the control for the PixelSamples statement. Adding the channel here causes
the PixelSamples statement to be inserted into the RIB stream.

OVERRIDE DEFAULT RESOLUTION

The resolution of the rendered file is determined by the camera’s /resx and /resy
channels. You can override the settings here. You can enter a horizontal and vertical
pixel count for the picture. Additionally, the pixel aspect ratio can also be set here.

/\/

804 © Houdini 6.0 Reference

Getting RIB out of Houdini

)

MOTION BLUR

The Motion blur parameter controls the output of motion blocks into the RIB file.
There are three settings: none, transformational, and deformational. Selecting
“Transformational Blur” will cause changing Scale/Rotation/Translations to be
written out with motion blocks. Selecting “Deformational Blur” will cause topolog-
ically consistent yet deforming primitives to be written out with motion blocks. The
“motion blur” setting will be inherited by all objects whose “motion blur” parameter
is left in it’s default “inherit behaviour” position.

DEPTH OF FIELD

Because it’s an expensive rendering option, depth of field is turned off by default. If
your camera has an active focus channel and depth-of-field is checked on, you
should see a DepthOfField statement in the RIB stream.

JITTER

What your pixels do when they see a scary movie.

Jitter can only be 0 or 1 for RenderMan. When 0, it specifies a regular pattern of
super-samples; when 1, it specifies that the super-samples be randomised (jittered).

GAMMA

The output gamma of the picture.

4.4 KEYBOARD COMMANDS - ‘RENDER’ AND OPSAVF’

The ‘render’ command is used to invoke an output OP to put out what it’s set up to
do. This is exactly like clicking the Render button in the interface of the output OP.

houdini-> render rmanl

The opsave command causes an OP to write out either geometry (in the case of a
SOP) or the scene (in the case of an object OP). In either case, specify the filename
with a .rib extension.

houdini-> opsave /obj/geol/fontl foo.rib# just geometry
or

houdini-> opsave /obj/geol foo.rib # whole scene

/\/

10 - Outputs © 805

Structure of a Houd
/8

5 STRUCTURE OF A HOUDINI RIB FILE

Being able to understand a RIB file can be extremely helpful if the rendered image is
not what you expected.

Following is a very simple RIB file output by Houdini. When rendered, it creates a
grey square in the middle of the picture.

5.1 RIB FILE EXAMPLE #1

##RenderMan RIB # linel
RIB Generated by Houdini

version 3.03

Option “searchpath” “shader” [“.:Q@"] # line 5
ShadingInterpolation “smooth”

Object geol

ObjectBegin 2

PointsGeneralPolygons

[1] # line 10
[4]
[2310
]
“p” [-0.5 -0.5 0 0.5 -0.5 0
-0.5 0.5 0 0.5 0.5 0] # line 15

“N” [00 -100 -1
00-100 -1]
ObjectEnd# geol
FrameBegin 1
Display “/usr/people/antoine/Render/fo0.0001.rgb” “framebuffer” “rgba”
Format 320 243 1 # line 20
PixelSamples 4 4
ScreenWindow -1 1 -0.759375 0.759375
Projection “perspective” “fov” [45]
Transform [1 0 0 0 0 1 0 O

00-1000S51] # line25
WorldBegin
TransformBegin
CoordinateSystem “worldspace”
TransformEnd
line 30

Light: ambientl
LightSource “ambientlight” 1 “lightcolor” [0.1 0.1 0.1]
#

Light: lightl

Transform [0.707107 0 -0.707107 0 -0.408248 0.816496 -0.408248 0 # line 35
-0.57735 -0.57735 -0.57735 0 1.5 1.5 1.5 1]

LightSource “attenlight” 2 “lightcolor” [0.8 0.8 0.8]

Identity# Make sure space is well defined
line 40
Object: geol
AttributeBegin
Attribute “identifier” “name” “geol”
Color [0.509746 0.549 0.156465]
Opacity [1 1 1] # line 45
Transform [1 0 0 0 0 1 0 O
0010000 1]
Surface “plastic”
Transform [1 0 0 0 0 1 0 O
0010000 T1] # line 50
ObjectInstance 2
AttributeEnd
WorldEnd
FrameEnd

806 © Houdini 6.0 Reference

Structure of a Houdini RIB file J

5.2 ANALYSIS OF RIB FILE

OBJECT DEFINITIONS (LINES 7 - 17)

The object definitions are the first to appear in the RIB file. The object definitions in
this case are in an ObjectBegin/ObjectEnd block. The object number is equivalent to
the object’s position in the objects list (“Houdini-> opls /obj”).

FRAME HEADER INFORMATION (LINES 19 - 23)

Following inside the FrameBegin are frame header information, such as the name of
the output image file, image size, shading rate, etc.

CAMERA POSITION (LINES 24 - 25)

Right before the WorldBegin is the camera’s transformation matrix. This positions
the RenderMan camera in accordance with the Houdini camera chosen by the output
OP, or is the inspection camera of the viewport.

LIGHTS (LINES 31 - 39)

Next follow all the light definitions. Lights are just another type of shader. The
transforms right before the lights position the lights. Lights are on by default. The
final Identity statement clears out any existing transformations.

OBJECTS AND ATTRIBUTES (LINES 41 - 52)

Finally come the objects that will be rendered, assuming that they’re displayed in
Houdini. Each object is in its own “block™ (a chunk of RIB), delimited at the begin-
ning and end by and ‘AttributeBegin’ and ‘AttributeEnd’ statement, respectively.
The object is ‘identified’, then given a ‘Color’ and ‘Opacity’. The first ‘transform’
sets up the “shader space” for the subsequent ‘Surface’ statement, in this case the
“plastic” surface shader. The next ‘transform’ actually positions the object. Finally,
an ‘ObjectInstance’ recalls the object that was defined at the very beginning of the
RIB file.

END OF THE WORLD (LINES 53 - 54)

The part of the scene that is rendered is actually inside a WorldBegin/WorldEnd
block. The FrameBegin/FrameEnd facilitates multiple render frames inside one RIB
file. When rendering Z-depth shadows, you should see one FrameBegin/FrameEnd
for each shadow picture, and then one for the main camera view.

/\/

10 - Outputs © 807

Geometry and RIB files

6 GEOMETRY AND RIB FILES

This section describes the various types of geometry that Houdini can put into a RIB
file. When it comes to creating RIB files, Houdini is very WYSIWYG — “what you see
is what you get”. These geometries are translated directly to RIB, with no embellish-
ment, degradation, or translation in the process. You can thus expect to be rendering
exactly what’s on the screen.

6.1 GEOMETRY TYPES

PRIMITIVES

Houdini supports just about all the RenderMan primitives. The following Render-
Man primitive types and their source inside Houdini.

RiSphere() Sphere SOP

RiHyperboloid() Tube SOP

RiDisk() Circle SOP, end-caps of Tube SOP
POLYGONS

Houdini happily writes out polygons in the RIB stream. Normal interpolation is on
by default (ShadingInterpolation “smooth”). Thus, faceting must be accomplished
by creating unique points for each polygon (Facet SOP > Unique points).

RiPointsGeneralPolygons() All SOPs showing polygons

PATCH MESHES

The only current patch mesh supported is a “bilinear” patch.

RiPatchMesh(“bilinear”) All sops showing meshes

NURBS
NURBS are directly supported. NURBS patches are handled by almost every SOP.

RiNuPatch() All SOPs showing NURBS patches

BEZIER PATCHES

Bezier patches are also supported, but are written as NURBS, of which they are a
form.

RiNuPatch() All SOPs showing Bezier patches.

PARTICLES

Particles from the Particle SOP are currently written out as spheres. To get something
else you need to use the Copy SOP to place different geometry at each point.

RiSphere() All particle systems

/\/

808 © Houdini 6.0 Reference

Geometry and RIB files

)

6.2 GEOMETRY FILE INCLUSION

Houdini has several different places where any extra geometry can be inserted into
the RIB stream. These are called “file includes”. Each object has a pair of these, one
labelled “pre-include” and the other “post-include”.

6.3 RIB FILE EXAMPLE #2

In addition, the camera and all the lights also sport file pre- and post- includes.
Below is a RIB file with each object type including a single line of text.

##RenderMan RIB
RIB Generated by Houdini
version 3.03

Option “searchpath” “shader” [“.:Q@"]
FrameBegin 1
Display “ip” “framebuffer” “rgba”
Format 320 243 1
PixelSamples 4 4
ScreenWindow -1 1 -0.759375 0.759375
Projection “perspective” “fov” [45]
Including /job/rman/Rib/caml.rib
CAMERA PRE-INCLUDE FILE
End of include of /job/rman/Rib/caml.rib
Transform [1 0 0 0 0 1 0 O
00-100051]
WorldBegin
TransformBegin
CoordinateSystem “worldspace”
TransformEnd
Including /job/rman/Rib/lightl.rib
LIGHT PRE-INCLUDE FILE
End of include of /job/rman/Rib/lightl.rib
#

Light: ambientl

LightSource “ambientlight” 1 “lightcolor” [0.1 0.1 0.1]
Including /job/rman/Rib/light2.rib

LIGHT POST-INCLUDE FILE

End of include of /job/rman/Rib/light2.rib

HH ¥ H

Identity# Make sure space is well defined

Object: geol
AttributeBegin
Attribute “identifier” “name” “geol”
Including /job/rman/Rib/objectl.rib
OBJECT PRE-INCLUDE FILE
End of include of /job/rman/Rib/objectl.rib
Color [0.509746 0.549 0.156465]
Opacity [1 1 1]
Transform [1 0 0 0 0 1 0 O
0010000 1]
Surface “plastic”
Including /job/rman/Rib/object2.rib
OBJECT POST-INCLUDE FILE
End of include of /job/rman/Rib/object2.rib
Transform [1 0 0 0 0 1 0 O
0010000 1]
ShadingInterpolation “smooth”
Object geol
PointsGeneralPolygons
[111111]
[4 44444
[3210

H ¥ H

7654

11 10 9 8
15 14 13 12
19 18 17 16
23 22 21 20

10 - Outputs © 809

810

Geometry and RIB files

1
“p” [0.5 -0.5 -0.5 0.5 0.5 -0.5
-0.5 0.5 -0.5 -0.5 -0.5 -0.5
0.5 -0.5 0.5 0.5 0.5 0.5
0.5 0.5 -0.5 0.5 -0.5 -0.5
-0.5 -0.5 0.5 -0.5 0.5 0.5
0.5 0.5 0.5 0.5 -0.5 0.5
-0.5 -0.5 -0.5 -0.5 0.5 -0.5
-0.5 0.5 0.5 -0.5 -0.5 0.5
0.5 -0.5 0.5 0.5 -0.5 -0.5
-0.5 -0.5 -0.5 -0.5 -0.5 0.5
0.5 0.5 -0.5 0.5 0.5 0.5
-0.5 0.5 0.5 -0.5 0.5 -0.5]
“N" [00 -100 -1
100 -1

ocooocoo

01
01
10
10

|l oo~ KrO

HFHOOOO

1
1

OFrRrHOOKHRFOO

00
00
-10
10

ocooo

0
0

oo |

1001
010010]
TransformBegin
ConcatTransform [1 0 0 0 0 -4.37114e-08 1 0
0 -1 -4.37114e-08 0 0 0 0 1]
Sphere 1 -1 1 360
TransformEnd
TransformBegin
ConcatTransform [1 0 0 0 0 1 0 O
0010000T1]
Disk 0 1 360
TransformEnd
TransformBegin
ConcatTransform [1 0 0 0 0 -4.37114e-08 1 0
0 -1 -4.37114e-08 0 0 0 0 1]
Hyperboloid 1 0 0.5 1 0 -0.5 360
TransformEnd
TransformBegin
ConcatTransform [1 0 0 0 0 -4.37114e-08 1 0
0 -1 -4.37114e-08 0 0 0 0 1]
Hyperboloid 1 0 0.5 1 0 -0.5 360
Disk -.5 1 360
Disk .5 1 360
TransformEnd
PatchMesh “bilinear” 2 “nonperiodic” 2 “nonperiodic”

4P [-0.5 -0.5 0 0.5 -0.5 0
-0.5 0.5 0 0.5 0.5 0]
“N" [001001
00100 1]

NuPatch 4 4 [000011 11]01
44[000001111]01
“Pw” [-0.5 -0.5 0 1 -0.166667 -0.5 0 1
0.166667 -0.5 0 1 0.5 -0.5 0 1

-0.5 -0.166667 0 1 -0.166667 -0.166667 0 1
0.166667 -0.166667 0 1 0.5 -0.166667 0 1
-0.5 0.166667 0 1 -0.166667 0.166667 0 1
0.166667 0.166667 0 1 0.5 0.166667 0 1
-0.5 0.5 01 -0.166667 0.5 0 1
0.166667 0.5 0 1 0.5 0.5 0 1]
AttributeEnd

Including /job/rman/Rib/cam2.rib

CAMERA POST-INCLUDE FILE

End of include of /job/rman/Rib/cam2.rib

WorldEnd

FrameEnd

Houdini 6.0 Reference

Using Shaders Directly J

7 USING SHADERS DIRECTLY

7.1 SELECTING SHADERS

The ability to install custom shaders is one of the main reasons for using Render-
man. Shaders allow complete flexibility in the final look of the rendering. However,
using RenderMan shaders directly entails more work than just drag-and-dropping
material editor components.

All RenderMan shaders are selected in the Shading page of the Object OP’s dialogs.
Houdini supports surface, displacement, atmosphere, and lightsource shaders.

JEE ~o Lo B 0 Ohjects |Jfgeol.|’—> SDED
(3 Geormetry # 4 7
fTransform \ Shading VRender ‘.fPhysicaI UMisc

Shader Space “w, This Object
Displace Space " This Object

SHOP Surface ™| [
SHOF Displacems ™ [
Light Mask = |
Reflection Mask [+ |

[Smooth Shading
| Backface Removal
| Auto-Gen Reflection Map

thap Mame C: /TEMP /508, rat
3 123
o SHOP \ RIE VMentaIRay USound
__|RIE Colors
: 1 1 1
1 1 1
RIE Shader ['plastic® | =
RIE Displace [=
@
Surface Shaders Object OP > Shading > RIB Shader
Displacement Shaders Object OP > Shading > RIB Displace
Lightsource Shaders Light OP > Shading > RIB Shader
Atmosphere Shaders Atmosphere OP > Shading > RIB Shader

7.2 SEMI-AUTOMATIC SELECTION

If you write out a RIB file, you’ll find many shader calls. How did they get there,
even though you didn’t select any manually? In addition, how did the parameters to
the shaders get set?

There are various RenderMan shader defaulting mechanisms in place. Learning
what these are is important, for if you substitute your own shaders, you are forced to
manually duplicate the automatic processes.

/—\/

[0 - Outputs o 811

Using Shaders Directl

However, if you create a new shader that has similar parameters to what Houdini
puts out by default, you can get the same convenient channel-based control. If you
have a three-float parameter such as ‘specularcolor’, simply add the following
parameters in the dialog script’s edit fields (and the dialog script will automatically
add the back-quotes in the command string at the bottom):

Parameters: ch($0S/specr) ch($0S/specg) ch($OS/specb)
Generated cmd string: “ch($0S/specr)” “ch($0S/specg)” “ch($OS/specb)’

The shader is now under channel control.

7.3 SURFACE SHADER AUTOPARAMETERS

By default, Houdini defaults the surface shader to “plastic”. There are no longer any
autoparameters. For comparison, action’s “phong”, which mapped to “plastic”, had
these autoparameters:

RMan shader params Houdini channels
Ka average of amb?,
Kd, Ks hardwired to 1,
specularcolor spec?

roughness rough

Closely related (but not actually part of the shader) are the Color and Opacity state-
ment that precede the Surface call. Their values are set by the average of diff? and
amb?.

VALID RANGES

In RenderMan shaders (as in most shaders), all parameters are typically O-1.
0-255 is typically only used when dealing with an 8 bit image.
0-65535 is used when dealing with a 16 bit image.

/\/

812 © Houdini 6.0 Reference

Using Shaders Directly J

7.4 LIGHTSOURCE SHADER AUTOPARAMETERS

Depending on the settings in a light object’s OP shading dialog, one of the following
lightsource shaders is used: attenlight, attenshadow, attenshadowspot, or attenspot.
However, to get a shader that actually exists (in $HFS/houdini/ri_shaders), you have
to leave the shader setting at the default (which is blank).

By default, attenlight is used. If you have a string in the ‘shadow pic’ field, then
attenspot shader is used. If you create a lightangle channel, then attenlight becomes
attenspot, and attenshadow becomes attenshadowspot.

RMan shader params Houdini channels
atten lightatten

lightcolor light?

coneangle lightangle
conedeltaangle lightdelta
beamdistribution rolloff

from hardwired to [0 0 0]
to hardwired to [0 0 -1]

If shadows are being created, the light’s resx and resy channels determine the size of
the z-depth picture.

7.5 OTHER SHADER AUTOPARAMETERS

There are no autoparameters for any of the other shader types.

/—\/

10 - Outputs © 813

Shader Dialog Scripts

8 SHADER DIALOG SCRIPTS

8.1 SHADER DIALOG SCRIPTS

Writing shaders is a fun part of using RenderMan. A good starting place is to take a
distributed shader and change it a bit, maybe adding a parameter or two. Once
you’ve compiled your shader, you can make a new dialog script for it; this will give
you access to all the parameters from within Houdini.

8.2 THE ‘RMANDS’ COMMAND

8.3 SEARCHPATH

The ‘rmands’ application that comes with Houdini will take any number of Render-
Man shaders (.slo) or RenderMan “Looks” (.vma) and create dialog scripts usable
inside Houdini.

The first step is to create a home for the soon-to-be created dialog files. From your
$JOB directory,

Unix% mkdir -p config/Scripts
Then, build the dialog scripts:
Unix% rmands -d config/Scripts Shaders/*.slo

Rmands goes through all the compiled shaders and automatically generates four dia-
log scripts:

RMshader.ds for surface shaders
RMdisplacement.ds for displacements

RMlight.ds for lightsource shaders
RMatmosphere.ds for atmosphere volume shaders

The above UNIX command not only creates these four dialog scripts, but it will place
them in the config/Scripts directory where they will be seen.

Now go back into Houdini and click on the button to the right of the RMan Surface
shader. Your custom shaders should be in the list, along with any included in the
Houdini distribution.

Houdini uses a searchpath when looking for dialog scripts. This path is:

$HIP/config/Scripts/*.ds
$HOME/houdini/config/Scripts/*.ds
/usr/local/houdini/config/Scripts/*.ds
$HFS/houdini/config/Scripts/*.ds

All dialog scripts in these directories will be concatenated, or merged. That is, if
there’s a RMshader.ds in all four directories, you will see four sets of shaders when
you pop up the shader dialog. This permits you to have your own set of dialogs
without overriding the system default.

/\/

814

o Houdini 6.0 Reference

Shader Dialog Scripts J

8.4 CAVEATS

It is important not to confuse the existence of a shader in a dialog with the renderer’s
ability to find it at render-time. The renderer looks for compiled shaders according
to its own search path called the shaderpath (see Shaderpath p. 816), not the above
path. Thus, having the shader interface does not guarantee that the renderer will
actually find the shader.

When repeatedly recompiling shaders, you don’t need to re-create the dialog scripts
every time. The dialogs need to be regenerated whenever a change is made to the
parameters of the shader. However, because Houdini caches (keeps in memory) the
dialog script when it’s accessed, newly created dialog scripts won’t show up in
Houdini until you save out, exit, and restart Houdini.

/—\/

10 - Outputs © 815

Shader Options

9 SHADER OPTIONS

9.1 SHADERPATH

9.2 SHADER SPACE

A shaderpath is a text string that consists of various directories through which the
renderer can go to search for compiled shaders. Shaderpaths allow you to organize
your collections of shaders in any way you choose to best suits your needs. The
prman default shaderpath is:

.:/usr/local/prman/prman/lib/shaders:&

where °.” signifies the current directory, ‘&’ means add whatever was there before,
and °:’ is the separator for the different entries.

When you write out a RIB file with Houdini, the file will contain a shaderpath state-
ment:

Option “searchpath” “shader” \
[“.:@:/usr/local/houdini/houdini/ri shaders”]

where the ‘@’ signifies the standard shaderpath.

If you have any custom shaders, you will need to change the shaderpath. Doing so
will indicate to the renderer that you want additional locations searched for com-
piled shaders.

There is a Houdini variable called RMAN_SHADERPATH. By setting this variable,
its contents will be inserted into the RIB stream, and will tell the renderer where to
go and look.

However, setting the RMAN_SHADERPATH overrides the Houdini default. Thus,
anytime you actually set this variable, you must re-include the Houdini default, so
that the renderer finds all the appropriate lightsource shaders.

A good setting would be:

Houdini -> set RMAN SHADERPATH = \
“.:$JOB/Shaders: SHOME/Shaders: /usr/local/houdini/houdini/
ri shaders:&”

This causes RenderMan to first go look for shaders in the local directory, then in a
$JOB subdirectory called “Shaders” (the shot shaders), then it will scan your per-
sonal shader directory, then the Houdini default directory, and finally, everything
that was already there (the ‘&’). This ‘&’ will let it find basic staple shaders like
“plastic”.

Shader space is the coordinate space that is active when the shader call is made. This
sounds simple, but its true meaning might be a bit more subtle. The importance of
shader space is greatest when shading is done based on the shader global “P”.

For example, look at the original RIB file example #1RIB File Example #1 p. 806,
lines 36 - 37. The lightsource call on line 37 (remember, lights are just another type

/\/

816

o Houdini 6.0 Reference

Shader Options J

of shader) is preceeded a transform matrix. The lightsource has a “from” and “to”
that point down the negative Z axis. However, when you animate the light, it moves
correctly. Why? Because the light does its work internally in “shader” space. And
what is shader space? The coordinate system that was resident when the shader was
called. Thus, the transform matrix presents a reoriented coordinate space to the
lightsource shader, which it uses as its shader space.

For objects, we have surface, displacement, and interior shaders. For each of these
shaders, you can explicitly set the shader space. This is done via the object OP >
shading > shader_space/displace_space. They default to “this object”, but can be set
to follow any other object. For example, you could make a child object, and then
slowly move it relative to the parent, and set the parent’s shader space to the child’s.
This would give you complete control of the relative shader space.

9.3 BUILT-IN PER-POINT ATTRIBUTES

Each point or control vertex in Houdini can take on attributes in addition to position.
Additional attributes such as uv coordinates and normals are generated in SOPs
such as Point, Facet, Rest-Position, Texture, Particle, etc.

When RIB is generated from one of these SOPs, a mapping is made between the
Houdini name, e.g. “rest”, and it’s correstponding RIB name, “Pr”.

The following is a list of default per-point mappings between Houdini and RIB:

Houdini Attribute RenderMan Attribute
Point “N” (normal) Per Vertex “N”
Point “Cd” (color) Per Vertex “Cs”

Point “uv” (texture coord.) Per Vertex “s” & “t”
Point “rest” (rest postion) Per Vertex “Pr”

Polygons, meshes, and NURBS patches will get up to one of each of the above
attributes for each point. Spheres and quadrics, on the other hand, get four of each,
because they technically have four corners, each of which gets one set of attributes.

Vertex attributes in the RIB file override both varying shader parameters and state
attributes such as Color. Color, which is accessed in the shader via “Cs”, is declared
in RIB with the statement “Color [.5 .5 1]”. In the shader, the color is accessed via
the “Cs” variable. However, the existence of a Houdini per-point attribute called
“Cd” will trigger the insertion of a per-point attribute “Cs” into the RIB file. Since
this per-point “Cs” overrides the state’s color, your per-point coloring will show
through in the render.

9.4 CUSTOM PER-POINT ATTRIBUTES

Before Houdini 1.1, adding custom per-point attributes was done via a hack that
involved editing the generated RIB file. With the advent of the Attribute SOP in
Houdini 1.1, per-point attributes and their RIB representations can now be manipu-
lated within Houdini.

/\/

10 - Outputs © 817

Shader Options

To successfully use per-point attributes, the shader must be able to understand the
information Houdini writes out. For example, if you wanted to access the particle
“id” in a shader (to give each particle a different but known seed for noise effect),
you would need to do the following:

1. Add a “varying float” parameter called “id” to your shader. For example:

surface mysurf(varying float id = 0;)
{
0i = Ci = noise(transform(“object”, P) * id);

}

The parameter “id” defaults to zero, but if per-point attributes called “id” exist in the
RIB file, then they will override the parameter.

2. Append an Attribute SOP to your Particle SOP. In the RenderMan section of the
Attribute SOP, create a new mapping: enter “id” (without the quotes) in both the
“Houdini” and the “RiName” fields; make the RiType “vertex float”; the “offset”
can remain zero. Now write out a RIB file. There should now be “id” attributes
to your particle spheres, as in this RIB snippet:

TransformBegin
Translate -0.5 -0.5 -0.37344
Sphere 0.05 -0.05 0.05 360

uidn [
0000 # sphere is a quadric, and hence has four
] # corners which need
values
TransformEnd

The noise applied to the spheres should now be different for each sphere. Subse-
quent birth or death of particles should have no impact on the shading of any
spheres.

9.5 SENDING CUSTOM ATTRIBUTES TO A RENDERMAN SHADER

To send arbitrary attributes to your shader as RenderMan variables, you can use the
Attribute SOP to create a mapping from the Houdini attribute to a RenderMan varia-
ble. Then, in your shader, simply declare the attribute in the shader parameters. For
example, if you wanted to have a variable specifying temperature of the surface,
generate point alpha values using the Point SOP. Then, in the Attribute SOP, define

the mapping:
Houdini RenderMan Type Offset
Alpha Temperature Vertex Float 0

Then, you can declare the Temperature variable in your shader like:

surface
heated(...some parameters...; vertex float Temperature = 0;)

/\/

818 © Houdini 6.0 Reference

10 MOTION BLUR

10.1 INTRODUCTION

Motion blur is the term used to describe what is really ‘time anti-aliasing’. Objects
that are motion blurred will streak across the screen, as if the shutter of the camera
were held open while they moved.

There are two types of motion blur: transformational and deformational. Transfor-
mational motion blur is achieved solely with time-varying transformation matrices
applied to the objects. Deformational motion blur describes changes in the shapes of
the object over time. Houdini supports both types of motion blur.

Assigning motion blur to an object is done in the object OP’s dialog > Render >
Motion blur. There are four options: none, inherit behavior, transformational blur,
and deformational blur (which includes transformational blur). If the object has no
parent, set the option to either transformational or deformational and render. Assum-
ing there’s motion in the scene, the object will blur.

As far as the RIB stream is concerned, you will find MotionBegin/MotionEnd
blocks. In between will be either transform matrices or varying geometries.

10.2 TRANSFORMATIONAL MOTION BLUR

Transformational blur is caused by having time-varying transle, rotate, or scale
channels. In the RIB stream, these three sets of channels together to make up a
Transform statement, which positions the object. Transformational motion blur is
what you get when you change this transform over time.

A motion blurred transformation looks as follows in rib:

MotionBegin 0 1

Transformation [... 16 floating point numbers ...]
Transformation [... 16 floating point numbers ...]
MotionEnd

Any and all objects can be motion blurred. The camera object should also get
motion blurred, else a fast-moving camera following a fast-moving object will show
a blurred object.

10.3 DEFORMATIONAL MOTION BLUR

Renderman can also motion blur geometry that deforms over time. All types of
geometry supported by Houdini can be deformation motion blurred. The prerequi-
site is that the topology, i.e. point and primitive count, remain constant.

If you look at the generated RIB file, there are now additional motion blocks. Rather
than containing Transforms, they now contain geometry definitions. For example,

MotionBegin 0 1
PointsGeneralPolygons [...many floating point numbers...]

/\/

10 - Outputs © 819

Motion Blur
[tetenswr

PointsGeneralPolygons [...many floating point numbers...]
MotionEnd

or

MotionBegin 0 1
Sphere
Sphere

MotionEnd

To get motion blur of objects moving inside the SOPs, the deformational motion blur
option must be selected.

10.4 MANUAL DEFORMATIONAL BLUR

Sometimes it is desirable to blur between two “arbitrary” objects, rather than a sin-
gle object changing over time. A good example of this is when you want to motion
blur a file-interp cycle. With a file-interp cycle, you have shape information only at
the integral frame times. So, how do you motion blur this?

The answer is to let a Blend SOP do the work, as in the following SOP setup:
ﬂ % Dmm ﬁ] % Dmez
: |' : |'

o]

ﬁ] OD Isblend1

I

The Blend Function is the following:
int ($T*$FPS+.01)-floor ($T*$FPS+.01)

This function creates a sub-frame sawtooth wave. When evaluated at an integral
frame number, it returns zero. Halfway to the next frame it returns 0.5, thus nicely
blending between the two objects. The “.01” is a “slop” amount to deal with some
numerical anomalies in the underlying math computations.

10.5 SHUTTER

The shutter channel on the viewing camera determines the extent of the motion blur.
Motion picture cameras can set their shutters anywhere from 0 to 180 degrees. Usu-
ally they are set to 180, which means that the shutter is open half the time (180 out
of 360 degrees of rotation.) Thus, the Houdini shutter value should usually be set to
0.5. You can set it to less or more, which will cause interesting behaviour.

/\/

820 © Houdini 6.0 Reference

10.6 IMPLEMENTATION

To implement motion blur, you must take snapshots of the animation environment at
two different times, one of these being the “current” time. If your “current” time is
frame 50, and now you want to render with motion blur, do you use frames 50 &
5.5,0r49.5 & 50, or 49.75 and 50.25? Houdini takes the approach of “current” and
“next”. The reasoning for this is that when you animate with simulations, it is very
time consuming to go back to time 49.5, whereas going forwards by 0.5 is very easy.

Thus with Houdini motion blur — because it’s using “current” and “next” frames —
you can’t render the last frame of your animation, for there is no “next” frame.

It is interesting to note that Houdini has the ability to cook the frame at any given
time. Thus, the shutter and blur amount will always properly correlate.

/—\/

[0 - Outputs o 821

L Miscellaneous

11 MISCELLANEOUS

1.1 SHADOWS

Shadow generation is automatically done whenever you click on Auto-generate
depth map in the light object’s > Shading page (you must also provide a name for
the map in the Z-Depth Map field). The RIB output will contain a FrameBegin/
FrameEnd block for every light, plus the one for the main camera view.

Shadows cannot be motion blurred. This is because there is no way to represent
motion in a Z-depth picture.

11.2 DEPTH OF FIELD

To render with RenderMan depth-of-field, you must add the focus and fstop chan-
nels to the camera. Then, if the ‘depth-of-field’ flag is turned on in the rman output
OP dialog, the RIB stream will contain a DepthOfField statement.

11.3 MATTE OBJECTS

Objects can be placed into the scene but deemed “matte objects”. That is, they will
occlude other objects and cast shadows, but they will neither appear in the rgb chan-
nels, or leave any opacity values in the Alpha channel.

To set an object to be a “matte” object, set the object’s ‘matte’ channel to a non-zero
value. The Matte token will be inserted into the RIB stream.

11.4 TEXTURE IMAGES

Houdini can read and write Pixar style .tx texture images. It does this via the txdspy
command. In the file /usr/local/houdini/houdini/F Bio, there is a line that describes
how to go from a .tx file to a .tif file, and back.

.tx “txdspy -dspy tiff -dspyfile /tmp/$$.tif %s 2>/dev/null ; icp \
/tmp/$$.tif stdout ; exec rm -f /tmp/$$.tif”
“icp stdin /tmp/$$.tif ; txmake -mode clamp /tmp/$$.tif %s ; \
exec rm -f /tmp/$$.tif”

This allows applications like mplay to view .tx files directly.

/\/

822 © Houdini 6.0 Reference

Fine Tuning the RIB file J

12 FINE TUNING THE RIB FILE

12.1 INTRODUCTION

There are many little-known parameters that can be set in Houdini which control the

content of the RIB stream.

12.2 VARIABLES

There are RIB elements that are controlled via Houdini variables. They are the shad-
erpath, the texturepath, the output file format and the eyesplits option.

HOUDINI VARIABLE USE
RMAN_SHADERPATH
RMAN_TEXTUREPATH

RMAN_FORMAT

RMAN_EYESPLITS

12.3 CAMERA SPECIFIC CHANNELS

controls where the renderer searches for shaders
where the renderer looks for textures

determines rendered image file format. Used in the
absence of an output driver. Use “sgif” for .rgb format
files; “tiff” is the default. Others are also available.

sets the “eyesplits” option for PRMan

Camera objects can have some channels that play an important role in generating

useful RIB files.
shutter

resx, resy

samplex, sampley

shaderate

determines exposure, should be 0.5 .

determine the output frame resolution, unless overrid-
den in the output OP.

sets the samples per pixel horizontally and vertically.

sets the default shading rate. For quality, 1 to .25, 2-100
for speed.

/\//

[0 - Qutputs

813

Fine Tuning the RIB file

12.4 PER-OBJECT CHANNELS

Each object can also have some RenderMan specific channels.

OBJECT CHANNEL USE

displace bounds sets the displacement bound attribute, which tells the
renderer the maximum amount of displacement an
object is likely to use

shaderate each object can have its own shading rate. Thus, distant
objects can maintain a higher rate.

12.5 INCLUDE FILES

Every object in Houdini can also have an arbitrary file. The camera’s include-file
field is probably the most useful of these. You could, for example, create a file
3JOB/Rib/camera_include.rib, into which you can put actual RIB snippets, such as a
Quantize statement.

/—\/

824 o Houdini 6.0 Reference

Supported Functions J

13 SUPPORTED FUNCTIONS

13.1

DEFINITION

These are the functions that are supported by Houdini. By supported, we mean that
if they have parameters, then those parameters can be controlled in Houdini.

To determine the corresponding RIB statement, remove the ‘Ri’ and the ‘() ‘.

13.2 LIST OF SUPPORTED FUNCTIONS

[0 - Qutputs

RiAtmosphere()
RiAtttribute()
RiAttributeBegin()

RiAttributeEnd()

RiClipping()

RiColor()

RiCoordinateSystem()

RiCropWindow()

RiDeclare()

RiDepthOfField()

RiDisk()

RiDisplacement()

RiDisplay()

RiExposure()

Set via the atmosphere objects
object/dispbound channel sets “bound” attribute
Begins an attribute block. Brackets action objects.

Restores attributes present before previous Attribute-
Begin.

Sets clipping planes, from camera/near,far, and light/
near,far for z-depth bounds.

Surface color, is average of object/amb? and object/
diff?

The “worldspace” coordinate system is defined for you
just before the lights are instanced.

For rendering a sub-window, from camera/crop? chan-
nels.

Per-vertex attributes are now explicitly declared as
floats, points, or colors.

Causes depth-of-field information to be inserted into
RIB file. Presence determined by RenderMan output
OP’s “depth of field” flag, and values controlled with
camera’s focus, fstop, aperture, and focal channels.

Disk primitives, and endcaps from tubes.

Displacement shader, in objects dialog for geometric
objects

Sets the name and type of rendered picture. Contents

are controlled by RenderMan output OP’s “output pic-
ture” and “image device” inputs.

Controlled with “gamma” channel in RenderMan out-
put OP.

/\/

© 825

Supported Functions

RiFormat() The resolution of the rendered image, from camera/
res? and camera/aspect

RiFrameBegin() For multi-frame rib files, and separates multiple ren-
derings, e.g. shadows from main view.

RiFrameEnd() Ends frame block.

RiHyperboloid() Tube primitives are created with these.

Rildentity() Inserted after all lights are defined to set clean state.

Rilnterior() Interior shader, in object OP -> shading

RiLightSource() A light shader. One for each light, plus one for ambient
light.

RiMatte() Makes matte objects, which have no alpha and aren’t
visible, but occlude other objects. From non-zero
object/matte channel.

RiMotionBegin() Begins a motion block, in which are either two Trans-
forms or two geometric definitions at two different
time values. Existence depends on motion-blur setting
in the object OPs.

RiMotionEnd() Ends a motion block. One for every MotionBegin.

RiNuPatch() NURBS patches. Note that RMan NURBS patches are
all “open”

RiObjectBegin() Starts the definition of a new object, for potential mul-
tiple instancing. Number is same as object number.

RiObjectEnd() Ends definition of object.

RiObjectInstance() Recalls object defined with ObjectBegin/ObjectEnd.

RiOpacity() The initial opacity of an object. Hardwired to [1 1 1]

RiPatchMesh() Patch mesh geometry. Output from “mesh” objects.

RiPixelSamples() Supersampling of pixels, used for anti-aliasing. Set by

RiPointsGeneralPolygons()

camera/samplex,sampley channels, or in output OP
Pixar page.

Polygonal geometry.

RiProjection() Takes care of perspective/ortho and field of view.
Determined by perspective/ortho setting in ostring,
plus camera focal and aperture channels.

RiScreenWindow() Added as part of the frame header.

RiShadinglInterpolation() = How polygon normals are interpolated. Controlled by
each object’s Shading > Smooth_shading flag.

/\/

826 ©

Houdini 6.0 Reference

Supported Functions J

RiShadingRate() The ratio of the micropolygon to the pixel size. Set by
camera/shaderate, or individually on object by object/
shaderate.

RiShutter() The shutter times. Only takes two values are used, 0O
and 1. Thus, actual start and end positions are precalcu-
lated.

RiSphere() A sphere quadric. From sphere primitives.

RiSurface() A surface shader. “plastic” the default.

RiTransform() Places an object. Determined by the translation, rota-

tion and scale channels of cameras, lights, and objects.

RiTrimCurve() Appended to NuPatch calls if a trimming profile curve
is present.

RiWorldBegin() Begins the world. All renderable things must follow.

RiWorldEnd() Ends the world. Much like the first four seconds.

/—\/

10 - Outputs © 821

Unsupported Functions

14 UNSUPPORTED FUNCTIONS

14.1 INTRODUCTION

Houdini does not conform to the complete RenderMan specification. Many things
have been left out. Some aren’t needed, or are supplanted by more powerful stat-
ments, e.g. PointsGeneralPolygons vs. Polygon.

14.2 UNSUPPORTED FUNCTIONS LIST

RiAreaLightSource() Not implemented in PRMan.

RiBasis() The basis matrix for PatchMeshes, determined by
choice of patch mesh type in poly-detail.

RiBegin() No rib equivalent.

RiBound() Not really necessary, as RenderMan will compute it on
the fly.

RiColorSamples() Not implemented by PRMan.

RiConcatTransform() All transforms are absolute.

RiCone() Can be included in Object OP’S File Includes.

RiCylinder() Can be included in Object OP’S File Includes.

RiDeformation() Not implemented in PRMan.

RiDetail() Not implemented in PRMan.

RiDetailRange() Not implemented in PRMan.

RiEnd() No rib equivalent.

RiErrorHandler() Not supported.

RiExterior() Not implemented in PRMan.

RiFrameAspectRatio() Taken care of by Format.

RiGeneralPolygon() Not needed, as polygons get defined with PointsGener-

alPolygons.

RiGeometricApproximation()

RiHider()

Rillluminate()

Not implemented in PRMan.
Can be included in camera include file.

Turn lights on and off. All Houdini lights are on.
objects.

/\/

828 ©

Houdini 6.0 Reference

Unsupported Functions J

Rilmager() Not implemented in PRMan.

RiMakeBump() Not supported.

RiMakeCubeFaceEnvironment()
Not supported.

RiMakeLatLongEnvironment()

Not supported.
RiMakeShadow() Not supported.
RiMakeTexture() Not supported.
RiOption() Can be included in camera include file.
RiOrientation() Can be included in camera include file.
RiParaboloid() Can be included in Object includes.
RiPatch() Not needed, as PatchMesh is used.
RiPerspective() Taken care of by Projection.
RiPixelFilter() Can be included in camera include file.
RiPixel Variance() Can be included in camera include file.
RiPointsPolygons() Not needed. Polygons output with PointsGeneralPoly-
gons.
RiPolygon() Not needed. Polygons output with PointsGeneralPoly-
gons.
RiProcedural() Not implemented in PRMan.
RiQuantize() Can be included in camera include file.
RiRelativeDetail() Not implemented in PRMan.
RiReverseOrientation() Can be included in camera include file.
RiRotate() Not used. Transformations take care of most cases.
RiSides() Can be included in camera include file.
RiSolidBegin() Not supported.
RiSolidEnd() Not supported.

RiTextureCoordinates() Not supported.

RiTorus() Can be included in object OP includes.
RiTransformPoints() Not needed.
RiTranslate() Transforms are used to position mblurring objects.

/\/

10 - Outputs © 829

— timiatons

I5 LIMITATIONS

15.1

THE “SPEC”

The Houdini RenderMan output does not completely conform to the RenderMan
specification. The following details these.

PATCH MESHES

Current limitations of patch rendering are that the same basis applies to both U and
V directions. It is not possible to use a custom basis; the step may not be changed
from the default.

MULTI-FRAME RIB FILES

It is not possible to generate RIB files with multiple renderable frames in them,
excepting shadow renderings used for the main camera view.

BINARY RIB

RIB files go out from Houdini in ascii format rather than binary. This is because
some calls in the supplied rib library caused core dumps when executed.

LIGHTING MODEL

The lighting coefficients Ka, Kd, — are approximated from the Houdini diffuse,
specular, ambient, emission and transparency colors. The latter is more flexible.
Channels for Ka and Kd are allocated in Houdini but not yet used.

/—\/

830

o Houdini 6.0 Reference

	1 Render Outputs
	1 Common Output OP Parameters
	1.1 Parameters
	Render Button
	Camera (Not Applicable For All Outputs)
	Visible Objects (Not Applicable For All Outputs)
	Output Picture
	Filename
	mplay window
	Sequence of Images
	Padded File Names
	Abekas Start at 30

	Image Format (Not Applicable to All Outputs)
	Frame Range
	Start / End / Inc(rement)
	Squash and Stretch an Animation

	Initialize Simulation SOPs (Not Applicable For All Outputs)
	Generate Script File (Not Applicable For All Outputs)
	Binary Script

	Script File (Not Applicable For All Outputs)
	Render in Background (Not Applicable For All Outputs)
	Override Defualt Res / Resolution
	Pixel Aspect
	Pre & Post Frame Render Scripts

	2 3D Texture Generator Output OP
	2.1 Description
	2.2 Parameters
	Render
	Frame Range
	Start/End/Inc
	Output Image
	Resolution
	SHOP
	Verbose
	Render As
	Initialize Sim
	Object/SOP
	Particle Scale

	Displace Bound
	Min/Max Bounds
	Oversampling
	Variance

	2.3 Local Variables

	3 Alfred Output OP
	3.1 Introduction
	3.2 Parameters
	Render
	Frame Range
	Output Driver
	Remote Shell
	Remote HFS
	Init. commands
	Alfred Script
	Alfred Command
	Temp. Directory

	3.3 Configuring Alfred for Use with Mantra
	3.4 How Alfred Works
	In Detail
	Notes

	3.5 Sample Initialization Commands

	4 Amazon Output OP
	4.1 Description
	4.2 Parameters
	Execute
	Frame
	Object
	SOP
	Use Multiple Resolutions
	New Resolution
	Work Directory
	TCL Script
	Connect to Existing Amazon
	Amazon Command
	Port
	Host
	Update Houdini

	5 Channel Output OP
	5.1 Description
	5.2 Parameters
	CHOP Network / Name

	6 Composite Output OP
	6.1 Description
	6.2 Parameters
	COP Network / Name
	Override Default Res / Resolution
	Output Picture
	Color / Alpha Plane
	Plane Scope
	LUT File
	Output Gamma

	6.3 Local Variables
	Examples
	Frame Range: 1 to 5 by 2
	Frame Range: 1 to 3 by 0.5

	7 Composite Output OP (OLD)
	7.1 Description
	7.2 Parameters
	COP Network
	COP Name
	Output Picture
	Override Default Res / Resolution
	Image Fraction
	Cineon LUT File
	Cineon White Point / Film Gamma

	Pre-Render / Frame Script
	Post-Render / Frame Script

	8 Geometry Output OP
	8.1 Description
	8.2 Parameters
	Output File
	Object / SOP Name
	Initialize Simulation SOPs
	Pre-Render Script
	Pre-Frame Script
	Post-Frame Script
	Post-Render Script

	8.3 Local Variables

	9 Houdini Movie (HMV) Output OP
	9.1 Description
	HMV Playback Speeds

	9.2 Parameters
	COP Network / COP Name
	Output Picture
	Override Default Res / Resolution
	Update Image File
	Image Format

	9.3 See Also

	10 Mantra Output OP
	10.1 Description
	10.2 Parameters - Standard Page
	Render Command
	REMOTE RENDERING

	Super Sample
	Decouple Ray Sample
	Fields
	Full Frame
	Even Field Dominance
	Odd Field Dominance

	Motion Blur
	Depth of Field
	Jitter
	Pixel Subdivision with Jitter

	Dither
	Gamma
	Typical Gamma Settings

	10.3 Parameters - Specific Page
	White Point
	Filter
	Shadow Maps
	Reflect Maps
	Inline Converted materials
	Opacity Limit
	Poly Optimize
	Null Surface
	Transforms
	VEX Profiling
	Meanings of VEX Profile Code

	10.4 Parameters - Deep Raster Page
	Auxiliary Profiles
	VEX Variable / Auxiliary File
	Auxilliary Channel Output in Mantra

	10.5 Parameters - Scripts Page
	Pre-Render Script
	Pre-Frame Script
	Post-Frame Script
	Post-Render Script

	10.6 Special Notes
	Curve Primitives

	11 Mantra Render Command Dialog
	11.1 Parameters - Standard Page
	Remote Hosts (-H)
	Turn off Micro-Polygon Rendering (-r)
	Bucket Size (-B)
	Ray Tracing Level of Detail (-L)
	Variance (-v)
	Quantization (-b)
	Z-Depth Image (-z)
	Patch Cracks (-c)
	Render Quality (-q)
	Render Quality (fine Control -Q)

	11.2 Paramaters - Micropolygon Page
	Shading Quality (-s)
	Note - On Level of Detail vs Shading Quality
	Range of Values for Shading Quality

	Micro Polygon Cache Size (-G)
	Micro Polygon Splits (-S)

	11.3 Parameters - Output Page
	Verbose
	Output / Append to File

	11.4 Mantra Command Line Options

	12 mantra3 Output OP
	12.1 Description
	12.2 Parameters
	Render Command
	Production Tip - Compressing the Output
	Reading an IFD You’ve Output to a Standalone mantra

	Super Sample
	Pixel Aspect
	Fields
	Full Frame
	Even Field Dominance
	Odd Field Dominance

	Motion Blur
	Depth of Field
	Jitter
	Dither
	Gamma
	Typical Gamma Settings

	12.3 Parameters - Specific Page
	White Point (ray_whitepoint)
	Filter (ray_filter)

	12.4 Parameters - Scripts Page
	Pre-Render / Frame Script
	Post-Render / Frame Script

	13 Mantra3 Render Command Dialog
	The Three Types of mantra3 Rendering
	Micro-polygon Rendering (-a)
	13.1 Mantra3 - Standard Options Page
	Number of Processes (-n)
	Text Command Alternative
	Flushing Left-over mantra Processes

	Bucket Size (-b)
	Level of Detail (-L)
	Variance Anti-Alias (-v)
	When to Use the -v Option
	When Not to use the -v Option

	Tiny Detail Checking
	Verbose
	Z-Depth Image

	13.2 Mantra3 - Micro Polygon Page
	Shading Quality
	Micro Polygon Cache Size
	Micro Polygon Splits (-S)

	13.3 mantra3 Command Line Options

	14 Mental Ray Output OP
	14.1 Description
	What is Mental Ray?
	Houdini and .mi scene files
	Implementation
	Generating .mi files from Houdini

	14.2 Parameters - Standard Page
	Camera
	Visible Objects
	Output Picture
	Output Image Type
	Output Filre Format
	Other Parameters

	14.3 Parameters - Specific Page
	Samples
	Contrast
	Time Contrast
	Trace Depth
	Filter
	Include
	Link With
	Level of Detail
	BSP Size
	BSP Tree Depth
	Surface Derivatives
	Surface Approximation
	Shadows
	Shadow Maps
	Rebuild Shadow Maps
	Shadow Map Motion
	Refelction Maps
	SHOP Lens
	SHOP Output
	Output Shader Type
	SHOP Environment
	SHOP Cont Store
	SHOP Cont Contrast
	Caustics
	Global Illumination
	Caustic Accuracy
	Caustics Filter
	Photon Trace Depth
	Photon Map File
	Photon Map Rebuild
	Global Illum Accuracy
	Photon Volume
	Final Gathering
	Final Gather

	14.4 Parameters - Scripts Page
	Pre-Render Script
	Pre-Frame Script
	Post-Frame Script
	Post-Render Script

	14.5 Geometry and .mi Files
	Supported Primitives
	Tessalation Controls for Bezier/NURBS Surfaces
	Attribute Support

	14.6 Applying Shaders
	14.7 Making SHOPs for Mental Ray
	14.8 Tips and Tricks
	Area Lights
	Setting Defaults

	15 Object Scene Output OP
	15.1 Description
	15.2 Parameters
	Renderer
	GL-Hidden Line
	GL-Shaded
	GL-Wireframe
	Inventor
	VRML

	Use Display Instead of Render SOP

	16 OpenGL Output OP
	16.1 Description
	16.2 Parameters
	Renderer
	Use Display Instead of Render SOP
	Line Width
	Variable/Constant Sensitivity

	17 RenderMan Output OP
	17.1 Description
	17.2 Parameters - Standard Page
	PRMan Version
	Image Device
	Render Command
	Pixel Aspect
	Motion Blur
	Depth of Field
	Jitter
	Gamma

	17.3 Parameters - Specific Page
	Initialize
	Transforms
	Instance
	Null Surface
	Dice Stitch
	Rendering Usage / Progress / Debug
	Other Parameters on This Page...

	17.4 Parameters - Aux Files Page
	Filename / Device / Variable
	Quantization / Dither

	17.5 Parameters - Scripts Page
	Pre-Render Script
	Pre-Frame Script
	Post-Frame Script
	Post-Render Script

	17.6 Local Variables

	18 Wren Output OP
	18.1 Description
	18.2 Parameters
	Render Command
	Usage
	Options

	18.3 Example
	Shading Mode *

	2 Useful Rendering Info
	1 MicroPolygon Rendering
	1.1 Introduction
	1.2 Tips & Tricks for Micro Polygon Rendering
	Dealing with Memory

	1.3 Speed vs Quality
	1.4 Tips
	Shading artifacts
	Variance Shadows/Reflections
	Motion Blur
	Level Of Detail

	2 Rendering Scripts
	2.1 Introduction
	2.2 C-Shell Script for Rendering
	Sample Output

	3 Rendering Attributes
	3.1 Mantra
	3.2 mantra3 (Old Mantra)
	3.3 Wren
	3.4 Meaning of Attributes

	3 RenderMan Rendering
	1 Overview
	1.1 What is RenderMan?
	1.2 Quick Start
	1.3 Further Reference
	Pixar
	The RenderMan Specification
	RenderMan Repository on the Web
	Blue Moon Rendering Tools
	RenderDotC

	2 RenderMan Setup
	2.1 RenderMan Set-Up
	2.2 Environment Variables
	HOUDINI_RI_SHADERPATH
	HOUDINI_RI_TEXTUREPATH
	HOUDINI_PATH
	Notes About Setting Variables Variables
	More Variables

	2.3 RenderMan and Houdini Variables Quick Reference
	2.4 Recommend Project Directory Path SetUp
	Creating a Compiled Shader from your .sl Shader
	Creating RenderMan Dialogs for Houdini

	2.5 Setting Your Shader Editor Application
	2.6 Getting prman to Render to MPlay
	2.7 Installation for Entropy
	Reference

	2.8 Blue Moon Rendering Tools Setup
	Setting up BMRT
	Compiling BMRT Shaders
	Known Problems

	2.9 Example .login Setup

	3 the RenderMan Scene description language
	3.1 Implementation
	3.2 RIB is a known format
	3.3 Accessible “manywhere”
	3.4 Differences from PRISMS’ Action Implementation

	4 Getting RIB out of Houdini
	4.1 RIB Streams
	4.2 Saving RIB from SOPs
	4.3 The RenderMan Output OP
	Camera
	Visible Objects
	Output Picture
	Image Device
	Frame Range
	Generate Script File
	Render Command
	Super Sample
	Override Default Resolution
	Motion Blur
	Depth of Field
	Jitter
	Gamma

	4.4 Keyboard commands - ‘render’ and Opsave’

	5 Structure of a Houdini RIB file
	5.1 RIB File Example #1
	5.2 Analysis of RIB FIle
	Object Definitions (lines 7 - 17)
	Frame Header Information (lines 19 - 23)
	Camera Position (lines 24 - 25)
	Lights (lines 31 - 39)
	Objects and Attributes (lines 41 - 52)
	End of the World (lines 53 - 54)

	6 Geometry and RIB files
	6.1 Geometry Types
	Primitives
	Polygons
	Patch Meshes
	NURBS
	Bezier Patches
	Particles

	6.2 Geometry File Inclusion
	6.3 RIB File Example #2

	7 Using Shaders Directly
	7.1 Selecting Shaders
	7.2 Semi-Automatic Selection
	7.3 Surface Shader Autoparameters
	Valid Ranges

	7.4 LightSource Shader Autoparameters
	7.5 Other Shader Autoparameters

	8 Shader Dialog Scripts
	8.1 Shader Dialog Scripts
	8.2 The ‘rmands’ Command
	8.3 Searchpath
	8.4 Caveats

	9 Shader Options
	9.1 Shaderpath
	9.2 Shader Space
	9.3 Built-in per-Point Attributes
	9.4 Custom per-Point Attributes
	9.5 Sending Custom Attributes to a RenderMan Shader

	10 Motion Blur
	10.1 Introduction
	10.2 Transformational Motion Blur
	10.3 Deformational Motion Blur
	10.4 Manual Deformational Blur
	10.5 Shutter
	10.6 Implementation

	11 Miscellaneous
	11.1 Shadows
	11.2 Depth of field
	11.3 Matte Objects
	11.4 Texture images

	12 Fine Tuning the RIB file
	12.1 Introduction
	12.2 Variables
	Houdini Variable Use

	12.3 Camera specific channels
	12.4 Per-object Channels
	Object channel Use

	12.5 Include files

	13 Supported Functions
	13.1 Definition
	13.2 List of Supported Functions

	14 Unsupported Functions
	14.1 Introduction
	14.2 Unsupported functions list

	15 Limitations
	15.1 The “spec”
	Patch Meshes
	Multi-frame RIB files
	Binary RIB
	Lighting Model

