

1 File Formats
This section details the various
Þle formats available in Houdini.

1 GEOMETRY FORMATS SUPPORTED BY HOUDINI

1.1 GEOMETRY FORMATS

.GEO HOUDINI ASCII GEOMETRY

This information is written out into the Þle as a series of mnemonics which can be
read as ASCII text. Refer to the .geo File Format Description p. 281 in the Formats
section for a comprehensive description of the structure of information in a .geo Þle.

Extensions Type Read Write Notes
.geo Internal

� �
Houdini ASCII Geometry
Format

.bgeo Internal
� �

Houdini Binary Geometry
Format

.poly Internal
� �

PRISMS ASCII format
 (polygons only)

.bpoly Internal
� �

PRISMS Binary Format
(polygons only)

.d Internal
� �

PRISMS Move/Draw for-
mat (polygons only)

.rib Internal � RenderMan Geometry

.dxf External
� �

Uses gdxf � polygons only,
no attributes

.obj External

� �

Uses gwavefront - polygons
only. Only texture and point
normal attribute
(groups are kept on read)

.iv External/
Internal

� �

Uses ginventor. Does not
support Bézier or Metaball
primitives. Only some
attributes.

.wrl External
�

VRML used by world wide
web. Uses ginventor.

.sdl External � Uses gsdl command.

.eps External � Uses geps command.

.med External � Uses gmed command.

.lw External � Uses glightwave command.

.ply External � � Uses gply command
253 1 Houdini 6.0 Reference | 14 - Formats

Geometr

y F

orma

ts Suppor

ted b

y Houdini

.BGEO HOUDINI BINARY GEOMETRY

This Þle type is the same as the .geo format, except that the data is written in binary
format. That is, the information is represented in a tightly-coded short-hand rather
than as ASCII characters you could read as text. This means the Þle contains the
same information as a .geo Þle, but is more compact and loads more quickly.

Refer to the .geo File Format Description p. 281 in the Formats section for a com-
prehensive description of the structure of information in a .geo Þle.

.POLY PRISMS ASCII POLYGON

This format only supports POLYgonal geometry types. It is included in the Geome-
try Editor to maintain compatibility with other, older, systems.

Tip: In a .poly Þle, the Þrst point referred to by the poly�s is point number 0.

.BPOLY PRISMS BINARY POLYGON

This format is a binary version of the .poly format.

.D (PRISMS ASCII MOVE / DRAW LINE FILE FORMAT)

The d-Þle is a seldom-used ASCII polygon Þle format which is simpler than the .poly
format as it only has only two sections. The two .poly sections are the POINTS and
POLYS sections. The .d format has only moves and draws, where a move signiÞes
the beginning of a new polygon.

The .d format is suitable for user-written programs that create polygon information
and where you do not want to use the Houdini polygon library. You have the ability
to describe 2D or 3D lines and comments.

syntax

The standard syntax for a d-Þle is given below as a set of commands. d-Þles have
one command per line, every command is a single character in the Þrst column of a
Þle, and commands are followed by white space, then by a list of arguments. The
arguments are delimited by white space. White space is any combination of tabs and
space characters.

Character Command Arguments (#, type)
comment any text (<256 ASCII)
m moveto x y [z] (ßoat)
d drawto x y [z] (ßoat)

The comment command is ignored.

The moveto and drawto commands are the basic drawing commands that specify
line endpoints in space.
254 1 Houdini 6.0 Reference

Geometr

y F

orma

ts Suppor

ted b

y Houdini

.DXF

Stands for �Data eXchange Format�. This is the format used by Autodesk® for their
AutoCAD� software. It supports only polygonal geometry types. Information on
.dxf layers are split into groups when read into the SOP Editor. Texture and colour
information is lost if a .dxf Þle is saved.

.OBJ

The �object� format used by Alias® Wavefront®. It supports polygons, texture, nor-
mals, and groups.

.IV (INVENTOR)

This is SGI�s 3D geometry format. It supports polygons, spheres, cylinders, and
NURBS-based geometry.

VRML (VIRTUAL REALITY MODELLING LANGUAGE)

This format is similar to the inventor format. There are extensions which can be
added manually. There is a converter available which comes with the WebSpace®

software provided by SGI®. The VRML format is used for 3D models on the World
Wide Web.

.SDL (ALIAS)

Houdini is able to read Alias® SDL Þles � they cannot be created. Only spline sur-
face geometry (and instances of such), and the name of each patch and shader is
imported; colors and texture coordinates are not imported.

.EPS (ADOBE)

Houdini will read Adobe® extended postscript .eps Þles from Illustrator 5.5.
Fills, patterns, and colours are not imported. Produces planar geometry.

.MED (META EDITOR)

Houdini will read Meta Editor metaball Þles, although eccentric information is lost
upon loading.
14 - Formats 1 255

Geometry Formats Supported by Houdini
.LW (NEWTEK LIGHTWAVE)

Houdini will read NewTek� LightWave object Þle. Objects from version 3.5 and ear-
lier are supported. Only the following LightWave features are handled:

� points
� polygons
� surface names (translated as primitive groups)
� surface color (translated as primitive colors)
� surface transparency (translated as primitive alpha)
� surface smoothing (currently translated as internal cusp operations)

Houdini will ignore all other features. It cannot load Þles saved with layer informa-
tion. The Þle to be loaded must contain points. However, there need not be any poly-
gons in the Þle.

Note: By default, Lightwave objects are rendered as faceted (no smoothing)
whereas in Houdini you must explicitly cusp polygons in order to achieve this. As a
result, if you load an object that has no smoothing values set (i.e. all faceted) you
will end up with all points in the resulting object being �uniqued� � giving you a
much larger dataset. In order to get around this, you must manually convert the Þle
using the glightwave utility with the -s option.

.PLY FORMAT

The .ply format is a polygonal format. It can handle very large datasets, and sup-
ports vertex normals and colours. Houdini can both read and write .ply Þles using
the gply standalone. It was designed at Stanford University and UNC Chapel Hill,
and is mostly used for academic research and with Cyberware scanners.

1.2 GEO IO TABLE

If you have a format that you would like to be able to read, you can write a converter
between your Þle format and the .geo format. Do this by adding your entry to the
GEOio table in $HFS/houdini/support . The modiÞed .geo Þle can appear anywhere
in the Houdini search path. As well, future formats will be added through this Þle.

For technical details, contact Side Effects Software Support.
256 1 Houdini 6.0 Reference

Channel File Formats
2 CHANNEL FILE FORMATS

2.1 CHOP FORMATS

DIFFERENCE BETWEEN INTERNAL/EXTERNAL FORMATS

External formats are implemented as standalone converter programs that are piped
into Houdini. Internal formats are implemented as converters that are built-into the
Houdini program itself. Both format types appear the same to Houdini users. Inter-
nal formats are slightly faster. New external formats can be interfaced to Houdini
without requiring the Houdini Developers� Kit, only the public-domain source code
as described below.

Extensions Type Read Write Notes
.chan External

� �
Houdini ASCII Channel
Format containing raw val-
ues in rows & columns.

.bchan External
� �

Houdini Binary Channel
Format, equivalent to .chan

.clip Internal

� �

Houdini ASCII Native
CHOP Format. It contains
raw values like .chan plus
more information.

.bclip Internal
� �

Houdini Binary Native
CHOP Format, equivalent to
.clip

.chn External

� �

Houdini ASCII Format for a
group of channels
expressed as keyframed
segments (e.g. bezier(),
ease(), etc.)

.bchn External
� �

Houdini Binary Format,
equivalent to .chn

.aiff Internal � � Standard Audio Format

.aifc Internal � � Compressed Audio Format

.au Internal � � NeXT Audio Format

.sf Internal � � NeXTAudio Format

.snd Internal � � Audio Format

.wav Internal � � Windows Audio Format
14 - Formats 1 257

Channel File Formats
2.2 CHANNEL FORMAT DESCRIPTIONS

.CHAN HOUDINI ASCII CHANNEL

This information is written out into the Þle as ASCII text, one row per frame of data,
and one column per channel. The Þle contains speciÞc information regarding chan-
nel names, sample rates etc. This format can be imported or exported from the
Houdini channel editor (and is even compatible with old action channel formats).

.BCHAN HOUDINI BINARY CHANNEL

This Þle type is the same as the .chan format, except that the data is written in
binary format. That is, the information is represented in a tightly-coded short-hand
rather than as ASCII characters you could read as text. It is more compact and loads
more quickly.

.clip houdini ascii chop

This is the Houdini native CHOP format. This format contains all the information
held by one CHOP. Currently this format contains named channels, each with an
array of raw sample values. The clip also contains a start and end range, a sample
rate, channel extend conditions and quaternion attributes.

.bclip houdini binary chop

This is the binary version of a clip. This format is recognized by the magic number
�bclp� in its Þrst four characters.

.chn houdini ascii spline

This format is used to describe channels which contain segments, slopes, accelera-
tions, interpolation types and other spline based attributes. It is compatible with the
internal Houdini Channel Editor.

.bchn houdini binary spline

This is the binary version of a .chn format.

2.3 LOADING / SAVING CHANNEL FORMATS

HOW TO SAVE CHANNEL FILES FROM A CHOP

You can Save channel Þles from a CHOP into a Þle by selecting Save Data Chan-
nels... from a CHOP tile�s pop-up menu. The format used is determined by the exten-
sion of the Þle name given.

HOW TO LOAD CHANNEL FILES INTO A CHOP

You can Load channel Þles into a CHOP by creating a File CHOP and specifying the
Channel File name in the File CHOP�s parameters.
258 1 Houdini 6.0 Reference

Channel File Formats
HOW TO READ .CHAN / .BCHAN FILES INTO CHOPS

1. Enter the Channel Editor, and select the channel (say geo1/ty) you want to load
the raw .chan/.bchan values into.

2. Load the .chan Þle using File > Load Active Chan/Bchan.

Enter the CHOP Editor, and place a Fetch CHOP. Select the object and channel by
specifying them in the Source page of the Fetch CHOP�s parameters.

2.4 SUPPORTED AUDIO FORMATS

These are the audio formats currently supported by the SGI version of Houdini. You
can use the claudio converter to convert from a known audio type to future audio
format as they are implemented by the SGI audio library.

The NT version of Houdini supports only the AIFF and WAV audio formats.

.AIFF Older, uncompressed Audio Interchange Format stan-
dard for audio.

.AIFC Extended AIFF-C standard format (default SGI audio
format).

.AU NeXT Format.

.SND NeXT Format.

.SF Berkeley/IRCAM/CARL Sound File Format.

.WAV Windows RIFF WAVE Format.

2.5 ADDING OTHER CHANNEL FILE FORMATS

CHOPIO TABLE

If you have a channel Þle format that you would like to be able to read with Side
Effects Software products, you can write a converter program between your Þle for-
mat and the Houdini .clip format.

The CHOPio Þle located in $HFS/houdini must be modiÞed in order to use your
new converter.

The modiÞed converter program can appear anywhere in the search path.

chopio

The CHOPio Þle contains the commands used to convert to/from any of the external
channel formats. In order for a new format to be converted transparently by Houd-
ini, you must add the commands which will convert from your new Þle format to the
Side Effects channel format; and a command which will convert from a Side Effects
channel format to your new Þle format. The commands are the name of your pro-
gram followed by suitable command-line arguments.
14 - Formats 1 259

Channel File Formats
The new line of the Þle contains the new Þlename sufÞx, the command that reads
your format, and the command that writes your format. %s represents the Þle name.

procedure

The procedure for adding a new format is:

1. Determine an unused extension (e.g. .xclip).

2. Use the source code to develop the program to convert to/from the two formats.

3. Put your new programs which read and write the format in your search path.

4. Come up with the two commands to read and write the format to Houdini on
stdin and stdout, and add these commands to the $HFS/houdini/CHOPio Þle.

Note, you do not need to write both a converter for both reading and writing from
the format if you do not need to both load and save the Þle format.

Note: Because Þles in $HFS/houdini are generally not to be modiÞed, you should
copy these Þles to a sub-directory of your home directory: $HOME/houdini, and
modify them from there.

LOCATION OF SOURCE CODE

Example source code for reading and writing Houdini clip Þles is found in:

$HFS/houdini/public/CPD.tar.Z

2.6 CHOP INTERNALS

All CHOP channels are made of arrays 32-bit ßoating point numbers, including
CHOPs containing audio samples.

A CHOP IS SAMPLED WHEN

� it is needed by a downstream CHOP
� it is accessed through the chop() function by another OP
� by displaying the channel in a graph
� by connecting the channel to an audio device (speaker)
� it is linked to an OP
� CHOPs are being output from Houdini to a Þle or the textport
� cooked by the opcook textport command

EXTEND CONDITIONS

Extend conditions: sampling CHOPs out of bounds: When using the chop() func-
tion to sample a channel, the index-value may be outside the interval of the CHOP.
But a reasonable value is returned. The user is able to control the value of the chan-
nel outside its interval: See the Extend CHOP.
260 1 Houdini 6.0 Reference

Channel File Formats
A CHOP holds it channels at a single sample rate. If other CHOPs need to get it at
different sample rates, they will make their own temporary array at their desired
sample rate.

FRAME DEPENDENCIES

CHOPs are frame-dependent only if its data channels change every frame Houdini
advances to another frame. Most CHOPs will not be frame dependent, even if they
have an animated curve in them because it will just be sampled (not cooked) each
time it is polled for values at a certain frame.

Frame-dependent CHOPs are ones whose shape changes each time it is called such
as:

� a CHOP that reads data from an external device each frame
� a CHOP that reads a SOP and converts it into a curve each frame
� a CHOP that has animated (non-constant) control channels.

CHOPs are independent of $F. Only when you use CHOPs in a display does $F
come into play to use the CHOP and its sample rate to choose the index to sample.
14 - Formats 1 261

Scene File Formats
3 SCENE FILE FORMATS

3.1 SCENE FORMATS

The following formats can only be generated � they cannot be read. They are used
for output to rendering programs.

.IFD (MANTRA)

Stands for �Instantaneous Frame Description�. It contains all information necessary
to render a 3D scene in mantra, including lights, shaders and geometry. For more
information on how to create .ifd Þles see mantra3 Output OP p. 754 of the Outputs
section.

.RIB (RENDERMAN BYTE STREAM®)

Pixar�s® RenderMan® geometry format. It contains all information necessary to
render a 3D scene in RenderMan, including lights, shaders and geometry. .rib geom-
etry can be created by Houdini, but not read.
262 1 Houdini 6.0 Reference

Image File Formats
4 IMAGE FILE FORMATS

4.1 IMAGE FORMATS

* Some vendors of other software packages use .pic to refer to SGI (.rgb / .sgi)
images � this is not the same as the Houdini .pic format. Houdini should automati-
cally load these correctly. However, should you persist in having trouble reading a
.pic Þle, you may want to rename it to have a .sgi extension so as not to confuse it
with Houdini .pic. Anywhere you see .pic in Houdini, it will refer to the Houdini
.pic format and not the SGI format.

** Some formats can be compressed using gzip by appending .gz to the Þlename.
This slightly increases the r/w times of images, but often yields smaller Þle sizes.

Extensions Type Read Write Notes
ip / iw / md External � iplay / image Window
Þp Internal � Flipped iplay Window
vf/a60 Internal � � VideoFramer/Abekas
.cin / .kdk Internal � � Kodak Cineon format
.Þt External � � FIT tiled image format
.gif External � � GIF
.gif89 External � � GIF89a (GIF w/alpha)
.jpg / .jpeg Internal

� �
JPEG (Very efÞcient for
storage; lossy)

.pic * Internal � � Houdini picture format

.pic.gz ** Internal � � gzip compressed .pic

.pic.Z Internal � � Houdini compressed

.qtl External � � Quantel YUV format

.rat Internal � � Random access texture map

.rla / rlb Internal � � Wavefront format

.rla16 Internal � � Wavefront .rla 16 bit format

.pix Internal � � Alias .pix format

.sgi / .rgb

.rgba
Internal

� �
SGI format (a.k.a. .rgb by
non-Houdini software)

.si / .pic Internal � � Soft Image format

.tif/ .tiff Internal � � TIFF format, with alpha

.tif3 Internal � � TIFF RGB, no alpha

.tif16 External � � TIFF 16 bit format

.tx External
� �

Renderman texture images
(requires RenderMan t.kit)

.tga Internal � � Targa format

.vst Internal � � Targa Vista format

.vtg Internal � � Vertigo format (see below)

.yuv Internal � � Abekas YUV format
14 - Formats 1 263

Image File Formats
BOTTOM-UP VS TOP-DOWN IMAGES

When images are stored as Þles, no assumption is made about whether images are
stored bottom-up or top-down. Images are simply a sequence of scan-lines. An
image is typically displayed using ip � the iplay program � which by default, dis-
plays the image from bottom-up.

If you need to display images as top-down, use Þp instead of ip . To set the default
behaviour as top-down, set the FLIP enviroment variable in your .login Þle:

setenv FLIP

Thereafter, these commands will display images as top-down instead of bottom-up:

icp myImage.tif ip
iplay myImage.tif

CONVERTING BETWEEN IMAGE TYPES (ICP)

You can convert between any two image types (e.g. .jpeg .pic .tif) using icp .
For example:

icp myImage.pic myImage.jpeg

converts the Þle to .jpeg format.
For more information, see StandAlone > icp � Copy / Crop Image p. 364.

4.2 ABEKAS (YUV) FORMATS

Abekas images have Þxed resolutions of 720×486 (NTSC) or 720×576 (PAL):

a60:*.rgb Abekas RGB image on A60
a60:*.yuv Abekas YUV image on A60
*.rgb Abekas RGB image Þle
*.rgb.Z Abekas RGB image Þle compressed
*.yuv Abekas YUV image Þle
*.yuv.Z Abekas YUV image Þle compressed

vf:hh:mm:ss:ff, $F, Video framer output to video device.
hh = hours
mm = minutes
ss = seconds
ff = frames
$F = frame offset
inc = number of frames to record images to.

ip Image placed in an IRIS window with the viewing con-
trols of the iplay program.

You can record to Abekas and Accom by specifying it as a device (e.g. a60:) in the
Output Picture Þlename instead of using an actual Þlename for the rendered output.

These images can be un/compressed using non-Houdini tools. See the UNIX com-
press and uncompress programs.
264 1 Houdini 6.0 Reference

Image File Formats
ABEKAS IMAGES

Abekas images exist in two places: in UNIX disk Þles and on an Abekas A60, A65 or
A66. Abekas images are stored in two formats: RGB and YUV which Houdini can
both read and write. All programs in the Image Toolkit as well as the Houdini ren-
derers can handle all these combinations.

Currently, all Abekas images are a Þxed resolution: 720 × 486 for NTSC and 720 ×
576 for PAL. Abekas images containing the internal RGB format have a sufÞx of .rgb
and the images containing YUV format have a sufÞx of .yuv. In both cases, the Þrst
part of the Þle name is the integer frame number on the Abekas where the image is,
was, or will be located, such as: 350.yuv.

When the Image Toolkit stores/fetches images to/from the Abekas, the image on the
Abekas must be speciÞed with machine name, a60 or abekas. Examples are Þle
names such as: a60:101.rgb or abekas:123.yuv.

Images on the Abekas are transferred in about thirty seconds in RGB format, and in
six seconds in YUV format. In the former format, the images are internally con-
verted to/from YUV format to Abekas format and conversion is much slower than on
an IRIS.

.rgb and .yuv Þles can be saved at any resolution. However, the library can only read
Þles which are one of several pre-deÞned Þle sizes. These Þle sizes determine the
resolution of the image:

699840 720 × 486 (NTSC YUV Þle)
049760 720 × 486 (NTSC RGB Þle)
811008 720 × 576 (PAL YUV Þle)
1244160 720 × 576 (PAL RGB Þle)

This also means that compressed .yuv and .rgb Þles cannot be read since the Þle size
is indeterminate. They have to be Þrst uncompressed with the UNIX command,
uncompress. However, compressed .rgb and .yuv Þles can still be created.

When copying Þles to the Abekas using the Image Toolkit, resolution is not checked
and whatever you want to send is sent. How the Abekas will handle non-standard
frame resolutions is unclear.

When reading from the Abekas device, the image is assumed to be at 720 × 486 res-
olution. However, if the environment variable ABEKAS_PAL is set, it is assumed
that the images will be 720 × 576.

In addition, the environment variables:

ABEKAS_PAL_XRES
ABEKAS_PAL_YRES
ABEKAS_NTSC_XRES
ABEKAS_NTSC_YRES

can be set to override the above mentioned resolutions.
14 - Formats 1 265

Image File Formats
MODEL A60 - A65 SUPPORT

There is separate device driver support in the Image Tool Kit library for the model
65 Abekas to handle the different protocol required between it and the model 60. In
order to decide which protocol to use, the following system is used:

1. Any Abeki with names a60, a61, a62, a63, a64, abekas, or abaccus is automati-
cally assumed to have the model 60 protocol. Any with names a65, a66, a67, a68,
or a69 is automatically assumed to have the model 65 protocol. If these conven-
tions are followed, no special action is required to be able to access the Abekas
device.

2. If this fails, the hostname for the device is scanned for �a60� or �A60�. If this
substring is detected, it is assumed the device follows the model 60 protocol. If
this fails, the hostname is scanned for any occurrences of �a65� or �A65�. If this
substring occurs in the hostname, then it is assumed that the device follows model
65 protocol.

3. In extreme cases, it is possible to completely bypass the above defaults with two
environment variables, called SESI_A60_HOSTS, and SESI_A65_HOSTS. For
instance, if your model 60 abekas is named "fred" and your model 65 is named
�wilma�, then setting SESI_A60_HOSTS to fred and SESI_A65_HOSTS to wilma
will assume that fred is a model 60 Abekas and wilma is a model 65 Abekas. The
environment variables can contain multiple hostnames by delimiting them with
semicolons. For instance, setting SESI_A60_HOSTS to fred;barney;dino;pebbles
will ensure that fred, barney, dino and pebbles will be accessed as Model 60
Abeki.

Examples:

% icp a65:0 ip (# model 65, by rule 1)

% icp a63:10 ip (# model 60, by rule 1)

% icp myA60:40 ip (# model 60, by rule 2)

% setenv SESI_A65_HOSTS "fred;barney"

% icp fred:30 ip (# model 65, by rule 3)
266 1 Houdini 6.0 Reference

Image File Formats
4.3 ACCOM SUPPORT

The Accom Workstation Disk is supported via FBio. Filename extensions .acc and
.accom assume that the frame is to be read from or written to the Accom device.

The network name of the Workstation Disk is assumed to be accom. This assump-
tion may be altered by changing the scripts located in $HFS/houdini/sbin .

Use evaluative backquotes to compute the actual Accom frame number when writ-
ing and reading with the Composite Editor.

EXAMPLES

Write a .pic Þle to frame 342 on the Accom.

icp pretty1.pic 342.acc

Read an image from the Accom and display in an iris window.

icp 342.acc ip

Write a series of images from ice output cop (string speciÞcation).

�$F + 339�.accom

Where

.accom The Þle extension.

339 The frame base number (minus one) on Accom.

$F The current frame counter.

�� The evaluative backquotes.

To write to the Accom, you must make sure the resolution is 720 × 486 for NTSC,
and 720 × 576 for PAL.

4.4 ALIAS (.PIX) FORMAT FILES

An Alias format Þle should have a .pix extension for creation. If no extension exists
for an image, the Þrst format in the index Þle (typically .pic) will be used.

4.5 CINEON AND TIFF (16-BIT FILE FORMATS)

Cineon format images (*.cin *.kdk) and 16-bit TIFF images (*.tif16) are recognised
as supporting more than eight bits per channel. Also Wavefront 16 bit RLA format
(*.rla16) is supported.

When the Composite Editor reads or writes Cineon format Þles directly, no gamma
correction is performed.

Because mantra outputs .cin Cineon Þles, these images can be read into the Com-
posite Editor as 16-bit images (actually 10 bit logarithmic) without color-depth
information loss.
14 - Formats 1 267

Image File Formats
CINEON ENVIRONMENT VARIABLES

The input and output of Cineon format images perform a logarithmic to linear con-
version as described in the document: �Greyscale Transformations of Cineon Dig-
ital Film Data for Display, Conversion and Film Recording�, Cinesite Digital Film
Centre, Kodak Motion Picture & Television. This conversion process can be
adjusted using the following environment variables:

cineon_flip

When set (to any value) ßips all Cineon images in Y during input.

cineon_film_gamma

This value is used when scaling the between printing densities and �relative log
exposure� values. Default value is 0.6.

cineon_white_point

The Cineon log scale value that is considered to be full white and will be mapped on
input to the maximum channel value. Range 0 to 1023 (default 685).

cineon_black_point

The Cineon log scale value that is considered to be full black and will be mapped on
input to zero. Range 0 to 1023 (default 85).

SETTING THE CINEON VARIABLES

The CINEON environment variables should be set as follows for Þnal composites
requiring perfect conversion to/from logarithmic values:

setenv CINEON_WHITE_POINT 1023
setenv CINEON_BLACK_POINT 0
setenv CINEON_FILM_GAMMA 1.0

For previewing and test composites the default values that follow produce output
that is better for viewing on screen:

setenv CINEON_WHITE_POINT 685
setenv CINEON_BLACK_POINT 85
setenv CINEON_FILM_GAMMA 0.6

Note: As of Houdini 1.1, the environment variables: CINEON_OVER_EXPOSURE
and CINEON_WHITE_VALUE are obsolete.

Also, the lookup tables used in Houdini 2.0 can be enabled by setting the environ-
ment variable CINEON_OLD_LOOKUP if you require backwards compatibility.
268 1 Houdini 6.0 Reference

Image File Formats
SOME FIELD NOTES ON CONVERTING CINEON IMAGES

1. CGI imagery is calculated in gamma 1 linear RGB colour space. If you want to
convert your 10 bit log data to gamma 1 linear data (so that everything is the
same), the correct Þlm gamma to use for this conversion is: 0.6 .

2. The 0 to 1 step in 10 bit log space is over three hundred thousand times smaller
than the 0 to 1023 step. To convert the entire range from 0 to 1023 to linear
gamma 1 space would require 19 bits! If you wishe to convert 10 bit log data to 16
linear data using the correct gamma of 0.6, the highest white point you can use
without posterizing the data is about 825.

3. Using conversion parameters of a white point of 1023 and a Þlm gamma of 1
does allow you to store the entire log range in 16 bits without loss. This is because
the signal path that results has a gamma of about 1/0.6, or 1.6666, rather than 1.
This essentially brightens the middle greys, allowing more of the 16 bit range to
be devoted to the dark levels. If one tries to linearize the entire 0 to 1023 range
using a Þlm gamma of 0.6, the dark values will be heavily posterized, and the 10
bit log data will be ruined. Those users that choose to convert using a Þlm gamma
of 1.0, should be aware that the signal path that results has a gamma of 1.6666,
and they may wish to render their images using that gamma as well.

4. It is also important to understand that the cinematographer has to point the cam-
era into the sun to get densities in the negative that are anywhere near 1023. The
vast majority of 10 bit log scans contain pixels with a maximum brightness in the
high 700's to low 800's. This is important, because every 90 steps of log code val-
ues translates into a doubling (1 stop) of brightness. So, if you have material that
never gets brighter than, say 843 (180 code values, or 2 stops, below 1023), when
you linearize using a white point of 1023 (and a gamma of 0.6), your linear data
will never get brighter than value 16383 (25% of 65535). The 16 bit levels from
16384 to 65535 (75% of your numerical precision) will never be used! (Using a
gamma of 1.0, your 10 bit log value of 843 will convert to about 28600 in 16 bit
space.) This is a gross waste of precision.

5. If you want to maximize your 16 bit precision, the optimal way to proceed is to
�ride the content�. That is, you check all the Þlm elements that will going into a
shot and search for the brightest pixel. Once you Þnd the brightest code value (say
it�s 765) you add a little fudge factor to give yourself some wiggle room and pick
a white point of 790 or so. You apply this one white point value consistently to
convert all the layers in your shot. In practice, it is common for a single white
point to be chosen for a sequence of shots that were all shot under the same condi-
tions.

6. To Þnd the brightest pixel, some people use a special purpose tool to scan every
pixel in every frame of all the elements, printing out the highest value found.
Alternately, you can set the white point to various values and read your images in
and look at them. If any bright areas of the images are 1, you have to set the white
point higher. You want the brightest pixels in your scans to be at about 90 percent
brightness. You must set the white point using the environment variable
CINEON_WHITE_POINT.
14 - Formats 1 269

Image File Formats
4.6 IP / IW – IPLAY / IMAGE WINDOW

The simplest and fastest way of displaying images is by specifying an Image Win-
dow (iw) as the output device. This simply displays the output image an an OpenGL
window. Using iw doesn�t provide the many controls that ip (iPlay Window) does,
but is very fast.

If you want a Flipped image window, use Þw instead of iw.

Using ip as the output device invokes the iplay program to display images. This pro-
vides extra controls such as: Zoom, Alpha (transparency) display, and Contrast -
Brightness. For information on iplay, see: StandAlone > iplay - View Images p. 382 .

You can use iw and ip anywhere you would normally specify an output device.
For example:

icp rain.pic iw
icp rain.pic ip
iplay rain.pic
icp rain.pic fiw

Note: Both iw and ip are �write-only� formats � you can not read from them.

4.7 JPEG COMPRESSED IMAGE FILES

The JPEG format (.jpeg, .jpg, .JPEG, .JPG) is a native Houdini format. JPEG is
�lossy�, meaning that information is lost. Compression is typically 10:1, meaning a
2Mb Þle will compress to about 200Kb with a relatively small loss in image quality.
For images requiring Þne areas of detail, you may want to consider using a non-
lossy format.

You should only use .jpeg images in the Þnal output stage in order to avoid genera-
tional losses due to accumulative lossy effects.

4.8 LZW AND GZIP COMPRESSED IMAGES

LZW COMPRESSED FILES

LZW compression provides much greater image compression than conventional run-
length encoding. Adding a .Z sufÞx when creating the following image formats
causes LZW compression to be performed on the image:

.pic.Z (Houdini)

.rgb.Z (Abekas RGB)

These compressed Þles can be read directly by all Image Toolkit programs. The
compression is the standard UNIX compression, so existing .pic Þles can be com-
pressed by running, for example:

csh-> compress name.pic

resulting in name.pic.Z. This can be displayed with:

csh-> iplay name.pic.Z
270 1 Houdini 6.0 Reference

Image File Formats
Compression typically takes three times longer than run-length encoding, but space
savings are 0% to 80% better than run-length encoding. Decompression slows the
reading of images by a factor of about two.

GZIP COMPRESSED FILES

As an alternative, you can also use a .gz extension for gzip compression, which is
typically faster than using the .Z compression. For example:

csh-> gzip -9 name.pic
csh-> iplay name.pic.gz

4.9 MD – MDISPLAY WINDOW

Specifying �md� as the output destination copies an image to a mdisplay window
(i.e. like mantra rendering to iplay). If an mdisplay window is already open, the
same window is used to display the image (unless the server has been disconnected).

This allows things like the COP output driver to render sequences of images to a sin-
gle iplay window. To use this, specify �md� instead of �ip� when specifying the out-
put image name.

The Standalone application: imdisplay can be used to allow other renderers (or other
applications) to take advatage of mdisplay�s capabilities.

Usage: imdisplay image_name or imdisplay width height format

4.10 RAT – RANDOM ACCESS TEXTURE FILES

Using RAT textures provides several advantages over using other image Þle formats
for texturing. Random Access Texture maps (RAT) are a format which are tuned for
texture mapping in renderings. It allows the renderer to access portions of the tex-
ture without having to load the whole image into memory at once.

The RAT Þle format also supports arbitrary channel depth, meaning that a single
channel image can be used as a texture map.

BETTER MEMORY USAGE

Using .rat Þles is faster for texture mapping, and typically consumes less memory
than other formats because the Þle format is �paged�. This means that portions of
the map are ßushed out if more data is required for rendering. Only the portions of
the map required for rendering are loaded. By default, mantra allocates a maximum
of 8 Mb of RAM for RAT Þles.

It is possible to specify the maximum amount of RAM (in Mb) used for texturing.
The environment variable SESI_RAT_USAGE can be used to set to the maximum
amount of RAM you want mantra to use. For example:

setenv SESI_RAT_USAGE 32

to allocate 32 Mb of RAM.
14 - Formats 1 271

Image File Formats
TEXTURE FILTERING

With RAT Þles, it is possible to specify an anti-aliasing Þlter which is used during
texture mapping. It is also possible to specify a Þlter size which allows blurring of
the texture map by the renderer.

Note: Large blurs should not be done in the renderer.

RAT QUALITY BETTER THAN OTHER FORMATS

We recommend using .rat Þles for texture maps before any other format because the
quality tends to be much better than using stochastic sampling. Compare:

4.11 TARGA/VISTA IMAGES

The Targa and Vista Þle formats are treated identically. Support is included for:

� Image type 10 (RGB Run Length Encoded)
� Image type 2 (RGB Raw Data Stream)
� Data Bits 15, 16, 24 and 32

And all combinations of the above (i.e. Type 10, 16 bits per pixel).

4.12 TIFF IMAGES

The TIFF (Tagged Image File Format with sufÞx .tif) is the standard used by Render-
Man and many Mac and PC applications.

When using a .tif3 Þle extension, Houdini uses TIFF version 5.0 from mid-1990.
Files saved in this format use LZW compression, RGB colour space, and use 32-bits
per pixel (i.e. four channels per pixel � RGB and alpha, at eight bits per channel).

When using a plain .tif extension, Houdini uses a new TIFF library from early-1996
that is compatible with RenderMan 3.6.

Adobe-Deßate codecs are also supported.

Without RAT (Stochastic Dithering) With RAT Textures
272 1 Houdini 6.0 Reference

Image File Formats
4.13 VERTIGO IMAGE FORMAT

The preferred extension for Vertigo Þle format is .vtg. Since Vertigo chooses to
name their images .pic by default, Þles with this extension are handled more intelli-
gently now in Houdini.

When reading .pic Þles, the magic number is used to determine the Þle format, so
Houdini .pic and Vertigo .pic Þles can co-exist.

When creating new Þles, Houdini Þles will be created by default. This can be over-
ridden by setting the environment variable VERTIGOPIC. Put the following in your
.login Þle:

setenv VERTIGOPIC

Compressed Vertigo Þles (.Z) cannot be read by the frame buffer library, nor can
they be created. Use the UNIX uncompress program before using them in Houdini.

4.14 VIDEO FRAMER – VF

Houdini can be used with the SGI Video Framer to record animation and rendered
images, and to scan external video images to and from sources such as Beta/SP
YUV, RGB, digitally encoded/decoded NTSC, PAL, D1, D2, and S-Video.

All image tools and renderers can write to the Video Framer and read from the
Video Framer directly. The device name is vf. This can be given as the output device
of the renderers in place of the default ip (interactive window) device.

You can use vf in the image tools to copy from the Video framer to an IRIS window
by typing:

icp vf ip

You can write images to the Video Framer, as in the following example which loads
SMPTE color bars:

icp $HFS/houdini/pic/SMPTE.pic vf

The input images are always scaled to Þll the full resolution of the Video Framer:
720×486 (NTSC) or 720×576 (PAL). This is the same as the Abekas device. Images
are always fetched such that they all have square pixels (like the IRIS) and have full
scan lines (640 NTSC and 576 PAL scan lines).

It takes about six seconds to read a YUV-encoded image from the Video Framer, and
about three seconds to write an image to the Video Framer. Images are automatically
ßipped so they are top-to-bottom in the Video Framer, as they are in the Abekas
A60.

By default, the Video Framer is set to read and write video in NTSC YUV format. To
set it in the format you need, you require an environment variable, VFMODE. For
example, put the following in your .login:

setenv VFMODE vfr_r_y_525

All the legal modes are listed in the Video Framer manual.
14 - Formats 1 273

Image File Formats
If you read from the Video Framer in a video mode that is different from the mode in
which you will write to it, you need two environment variables, VFREADMODE and
VFWRITEMODE. For example, put the following in your .login:

setenv VFREADMODE vfr_rgb_525
setenv VFWRITEMODE vfr_r_y_525

 Refer to the notes located in $HFS/houdini/support/videoframer.

VIDEO FRAMER AND VLAN CONTROL

At the same time that you load an image into the Video Framer you can trigger a
video device on the VLAN (Video Local Area Network) to record the image.

It is possible for the VLAN device to be a tape device like Abekas A62, A66 and
other video devices that have VLAN interfaces (call Video Media at: 408-227-9977,
Fax: 408-227-6707).

You can specify which video frame by using the following syntax:

vf:hh:mm:ss:ff[,framenum][,nframes]

Where hh is the hours, mm is the minutes, ss is the seconds, and ff is the frames.
This is the video time code where the Þrst frame (or the only) frame is placed.

The following are examples of the syntax you may use when recording images:

vf:11:22:33:24
vf:11:22:33:24,61
vf:11:22:33:24,61,4
vf:11:22:33:24,,4
vf:11:22:33:24,\$F,2

The Þrst records the image for 1 frame at time code 11 hours, 22 minutes, 33 sec-
onds and 24 frames. The second example records the same image with an offset
frame number of 61. Frame number 1 implies no offset (as Houdini frame 1 is the
Þrst frame), so this example will record at time code (assuming NTSC 30 frames per
second) of 11:22:35:24, and is equivalent to:

vf:11:22:35:24

The next example records the same image at the same starting frame, but records
four frames. This is useful when you are recording with a frame increment of two or
more.

The fourth example is the same as the Þrst but will record four frames.

The Þnal example details the syntax that you use in shell scripts or in Houdini to use
the current frame number $F as the offset on the tape. This is suitable for passing to
the renderer. You will see that this is a choice in the Output Editor�s Render Com-
mand dialog.

The following is an example which writes 150 consecutive frames of the animation
in the Object Editor viewport to 150 frames of video tape:

picwrite -f 1 150 vf:01:00:00:00,\$F

This will record 150 frames starting at timecode 01:00:00:00.
274 1 Houdini 6.0 Reference

Image File Formats
If you have rendered on Þelds, then Houdini frame 1 is video frame 1, Houdini
frame 3 is video frame 2, Houdini frame 5 is video frame 3, and so on. In order to
record in this manner, put a "." between the time code values instead of ":". For
example,

vf:11.22.33.24,\$F

If you want to record an image through a video framer on another IRIS, you can pre-
Þx it withthe IRIS name. For example,

irisB:vf:11:22:33:24

MULTI-ACCESS TO VIDEO FRAMER AND VLAN

Several processes on several machines can access the Video Framer to record
images �simultaneously�. Because of a locking mechanism in the Video Framer
device control, you can run several renders or composites on several machines, all
referring to one video framer and even the same part of a video tape. Each attempted
record will check the lock and will try for three minutes to gain access to record the
image. Once the record is done, the device is freed for the next process that needs it.
In this way, rendering, compositing, and recording can happen more asynchro-
nously. Example:

machine irisA rendering 1 to 100 step 3
machine irisB rendering 2 to 100 step 3
machine irisC rendering 3 to 100 step 3

If they record to irisB�s Video Framer, they all need the same speciÞcation in the
render dialog box:

irisB:vf:00:10:20:00,$F,1

The three minute timeout period is overridden with the VFRTIMEOUT variable, and
the twenty minute period before an idle lock is broken with VFRFAILTIME,
expressed in seconds.

4.15 WAVEFRONT IMAGES

Wavefront pictures are treated like other image Þle formats but have one additional
feature. The gamma value placed in Wavefront .rla Þles defaults to 2.2, but can be
overridden by setting the environment variable WFGAMMA to the desired value. Do
this in a c-shell or in your .login script: setenv WFGAMMA 2.2.
14 - Formats 1 275

Adding Other Image File Formats
5 ADDING OTHER IMAGE FILE FORMATS

5.1 FBIO TABLE

You can easily add additional Þle formats to be recognised by Side Effects pro-
grams. Two Þles located in: $HFS/houdini must be modiÞed in order to do this:

FBFILES

Contains a list of valid image Þle format extensions that Houdini will recognise. In
order for a new format to be recognised, it must be added to the bottom of the list in
the Þle: FBÞles.

FBIO

Contains the commands used to convert to/from any of the image formats. In order
for a new format to be converted transparently by Houdini, you must add the com-
mands which will convert from the new Þle format to a Side Effects image format;
and a command which will convert from a Side Effects image format to the new Þle
format here. This is done in the Þle: FBio.

PROCEDURE

The procedure for adding a new format is:

1. Determine an unused extension (e.g. .xwd).

2. Put the programs to read and write the image format in your search path.

3. Add the new format�s extension to: $HFS/houdini/FBÞles .

4. Come up with a set of commands to read and write the image format to Houdini
on stdin and stdout, and add these commands to the $HFS/houdini/FBio table.

Note: Because Þles in $HFS/houdini are generally not to be modiÞed, you should
copy these Þles to a sub-directory of your home directory: $HOME/houdini , and
modify them from there.
276 1 Houdini 6.0 Reference

Adding Other Image File Formats
EXAMPLE

The Þle format .xwd is used by Adobe�s FrameMaker for X-windows images. Adobe
provides a program to convert this Þle format into SGI format with the command
fromxwd, and the program tiff2frame to convert from a .tif format to a .xwd format.
To add support for the .xwd format to Houdini, we do these steps:

1. We make a copy of $HFS/houdini/FBÞles and $HFS/houdini/FBio into our home
directory: $HOME/houdini/FBÞles and $HOME/houdini/FBio.

2. If necessary, we add the location of the fromxwd and tiff2frame programs to our
search path by updating our .login or .local Þles appropriately.

3. We add the following line to the end of FBÞles with an editor like vi or jot:

xwd

4. Then we add the following (single) line to the end of the FBio Þle. The Þrst part
of it declares the entry in the FBio table (.xwd); the second part contains the com-
mands neccesary to read .xwd Þles enclosed in quotes; and the third part contains
the commands necessary to write .xwd Þles � also enclosed in quotes:
.xwd
"fromxwd %s /tmp/x.sgi ; icp /tmp/x.sgi stdout ; rm /tmp/x.sgi"
"icp stdin /tmp/x.tif3 ; tiff2frame /tmp/x.tif3 %s ; rm /tmp/x.tif3"

After this, any Houdini program or standalone program (such as icp) can be used to
create .xwd Þles simply by using the .xwd extension in the output Þle name. The Þrst
set of commands in quotes converts from the format; the second set converts to it.

In a similar manner, Side Effects programs are able to automatically get an image in
any given format by simply adding the necessary commands to these Þles.
14 - Formats 1 277

Format of Houdini Images
6 FORMAT OF HOUDINI IMAGES

6.1 GENERAL DESCRIPTION

Houdini image Þles are run-length encoded disk Þles with the sufÞx .pic. The Þles
contain color and color map information as well as the size of the picture. The pic-
ture Þles can be saved and restored using the image copy command icp.

6.2 LOCATION OF SOURCE CODE

The source for reading and writing Houdini image Þles is in:

$HFS/houdini/public/sidefx.Pic.tar.Z
278 1 Houdini 6.0 Reference

Format of Houdini Movie (.hmv) Files
7 FORMAT OF HOUDINI MOVIE (.HMV) FILES

7.1 HOUDINI MOVIE FILE FORMAT (VERSION 1)

HEADER

All non-ASCII fields (i.e. integer or floating point) are interpreted relative to the in-
dicated byte order (i.e. either MIPS or Intel).

� 4 bytes The ASCII bytes �.hmv�.

� 4 bytes Integer 0x0000 for MIPS byte ordering 0xFFFF for Intel byte ordering (cur-
rently not implemented).

� 4 bytes Integer version number of HMV format. Current version is 0x0001 (version
1)

� 4 bytes Integer blocking factor. Only 4096 supported for version 1.

� 4 bytes Integer X resolution.
4 bytes Integer Y resolution.

� 4 bytes Integer frame number of Þrst frame.
4 bytes Integer frame increment.
4 bytes Integer frame number of last frame.

� 32 bytes Image format. 32 bytes, null terminated ASCII string:

� �R8G8B8A8� RGBA 8 bit format. The order of image bytes on disk is: alpha,
blue, green and red.

� �R8G8B8� RGB 8 bit format. The order of image bytes on disk is: blue, green
and red.

� �B8G8R8� RGB 8 bit format. The order of image bytes on disk is: red, green and
blue.

� �Y8U8V8� YUV format. Every two image pixels are represented by: U, Y1, V
and Y2 (i.e. two image pixels require four bytes of disk space). The image width
must therefore be an even number of pixels.

� 4 bytes Field format. Integer 0x0000 for full frame images and 0x0001 for inter-
laced (i.e. 2 Þelds per image). 0x0001 is currently not implemented.

� 4 bytes 32 bit IEEE ßoating point pixel aspect ratio. A value of 0 is taken to mean
1.0. Pixel aspect ratio is determined as the horizontal to vertical ratio (H/V). (Cur-
rently not implemented).

� 4 bytes 32 bit IEEE ßoating point frames-per-second display rate. 0 is taken to mean
30 FPS. (Currently not implemented).
14 - Formats 1 279

Format of Houdini Movie (.hmv) Files
FRAMES

� Each image is stored on the next available �block size� boundary. For a blocking
factor of 4096, the Þrst image will therefore start on byte number 4097, assuming
that bytes are numbered from 1.

� The Þle must be padded out to Þll any remaining unused space at the end of the last
block.

7.2 SEE ALSO

� Outputs > Houdini Movie (HMV) Output OP p. 738
� StandAlone > hmvplay � Play Houdini Movies p. 403
280 1 Houdini 6.0 Reference

2 .geo File Format
Description

1 FILE FORMAT

The .geo Þle format, which is an ASCII Þle, and the binary version of the .geo format
(.bgeo) are the standard formats used to store Houdini geometry. The .geo format
stores all the information contained in the Houdini geo-detail. This format is publi-
cally available to read and write Houdini geometry Þles.

1.1 HEADER SECTION

Magic Number: PGEOMETRY
Point/Prim Counts: NPoints # NPrims #
Group Counts: NPointGroups # NPrimGroups #
Attribute Counts: NPointAttrib # NVertexAttrib #

NPrimAttrib # NAttrib #

In each of these cases, the # represents the number of the element described. Groups
are named and may be deÞned to contain either points or primitives. Each point or
primitive can be a member of any number of groups, thus membership is not exclu-
sive to one group.

Attributes in GPD have been generalized. Attributes can be assigned per point, per
vertex, per primitive or on the detail. Therefore, the number of attributes is declared
at the top of the Þle. Later, each of these attributes will be deÞned in full.

1.2 ATTRIBUTE DEFINITIONS

Internally, there are �dictionaries� to deÞne the attributes associated with each ele-
ment. These dictionaries deÞne the name of the attribute, the type of the attribute
and the size of the attribute. Also, the default value of the attribute is stored in the
dictionary.

When the dictionary is saved, each attribute (in a speciÞc order) is deÞned. The def-
inition is basically as follows:

Name Size Type Default

For example, the attribute name for normals is �N�, so the attribute deÞnition would
look like:

N 3 float 0 0 0
281 2 Houdini 6.0 Reference | 14 - Formats

File Format
Specifying the attribute name �N�, that there are three elements in this attribute and
the type is ßoat. The default value would be (0, 0, 0)

Following the element deÞnition is the attribute data associated with the element.
There are braces delineating the attribute data. The attribute data appears in the
order that the dictionary for the element was deÞned.

For example, a dictionary might look like:

PointAttrib
Cd 3 float 0 0 0 # Color attrib., 3 floats, default 0 0 0
Alpha 1 float 1 # Alpha attribute, 1 float, default 1
N 3 float 0 0 0 # Normal attribute
uv 2 float 0 0 # Texture coordinate

The data for the point might look like:

0 0 0 1 (1 0 0 1 0 0 1 .5 .5)
^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^
Position Attributes

The point would have:

Cd = (1, 0, 0)
Alpha = 1
N = (0 0 1)
uv = (.5, .5)

The types of attribute data supported are: integer, ßoat, string and index. The
�string� type is stored as a 32 character string since each attribute must have a Þxed
length. The integer and ßoat types are pretty self-explanatory. The index attribute
type is used for specifying things like material. It contains a list of strings which are
indexed by integer values. Thus the storage for an index attribute is an integer. In the
deÞnition of the index attribute, the attribute values are deÞned as well.

mat 1 index 3 marble gold crystal_glass3

The default value for all index attributes is -1 indicating that the attribute has not
been assigned.

1.3 POINT DEFINITIONS

If there are point attributes, the attribute dictionary is saved before the deÞnition of
the points.

Dictionary Name: PointAttrib
Dictionary Data: -- Attribute Definition --

Following the attribute dictionary, is the point data for the points. Each point is
stored with four components (x, y, z & w). The positions are not true homogeneous
coordinates. To get the homogeneous coordinate, simply multiply each x, y and z by
w.

If (and only if) there is attribute data, the attribute data is deÞned following the point
position. The attribute data is enclosed in parenthesis �()�.
282 2 Houdini 6.0 Reference

File Format
1.4 PRIMITIVE / VERTEX DEFINITIONS

If (and only if) there are vertex attributes, the attribute dictionary is found here.

Following the vertex attribute dictionary is the primitive attribute dictionary (iff
there are attributes for primitives).

Since every primitive may have local information which needs to be saved, the for-
mat of every primitive is different. In general, the format is:

PrimKey <local_information> [attributes]

Here, the local_information is primitive speciÞc.

As part of the local information, a vertex or multiple vertices are speciÞed. Each
vertex is saved in the same format, which is:

point_number attribute_data

The point numbers start at 0 and go through NPoints - 1. If there is vertex attribute
data, the data is delimited by parenthesis �()�. If there is primitive attribute data, it is
delimited by brackets �[]�.

Each primitive has a unique identiÞer. The current primitives and their identiÞers
are:

Polygon: �Poly�
NURBS Curve: �NURBCurve�
Rational Bezier Curve: �BezierCurve�
Linear Patch: �Mesh�
NURBS Surface �NURBMesh�
Rational Bezier Patch: �BezierMesh�
Ellipse/Circle: �Circle�
Ellipsoid/Sphere: �Sphere�
Tube/Cone: �Tube�
Metaball �MetaBall�
Meta Super-Quadric �MetaSQuad�
Particle System: �Part�
Paste Hierarchy �PasteSurf�

The primitive keys are case sensitive. For example:

VertexAttrib
uv 3 float 0 0 0
PrimitiveAttrib
Cd 3 float 0 0 0
Poly 3 < 0 (1 0.5 0) 1 (0 0 0) 2 (0 1 0) [1 1 0 .5]

Would specify a closed polygon (see below) which has three vertices referencing
points 0, 1 & 2. Each vertex has 3D texture coordinates speciÞed in (), the polygon
has Color and Alpha speciÞed in []. The color is yellow, with 50% alpha coverage.

When there are two or more consecutive primitives of the same type, this is speci-
Þed as a run of primitives. In this case, the following should appear in the Þle:

Run # PrimKey

Where # is the number of primitives in the run. In this case, the following primitives
are not saved with the PrimKey identiÞer since it is implicit in the run.
14 - Formats 2 283

Local Primitive Information
2 LOCAL PRIMITIVE INFORMATION

2.1 POLYGON LOCAL INFORMATION FORMAT

#Vtx OpenClose Vertex_List

#Vtx Number of vertices in the polygon

OpenClose A single character ßag:
� < � = Closed face
� : � = Open face

2.2 NURBS / BEZIER CURVE LOCAL INFORMATION FORMAT

#Vtx OpenClose Basis Vertex_List

The basis deÞnition for both NURBS and Bezier primitives starts with:

Keyword Order

Where:

Keyword �Basis�

Order The order of the basis (degree + 1)

THE NURBS BASIS

The NURBS basis requires an end condition ßag and a list of knots sorted in
increasing order. The complete deÞnition of the NURBS basis is:

Keyword Order EndCondition Knots

Where:

EndCondition �end� to touch the end CVs, �noend� otherwise.

Knots Floating point numbers in increasing order.

The number of knots in the list is determined by the order of the basis, its end condi-
tions, the number of CVs in the Vertex_List, and the OpenClose ßag.

Let #K be the number of expected knots, and #Vtx the number of CVs. Then, if the
EndCondition is false (i.e. �noend�).

#K = #Vtx + Order - 2

The two missing end knots (and the periodicity knots if closed) are generated inter-
nally. If theEndCondition is true (i.e. �end), then:

if the curve is open #K = #Vtx - Order + 2
if the curve is closed #K = #Vtx - Order + 3
284 2 Houdini 6.0 Reference

Local Primitive Information
THE BEZIER BASIS

The Bezier basis does not require a list of knots if the knots start at 0 and grow with
unit increments (e.g. 0 1 2 3 ...) The complete deÞnition of the Bezier basis is:

Keyword Order Knots

The number of knots in the list is determined by the order of the basis, the number
of CVs in the Vertex_List, and the OpenClose ßag.

Let #K be the number of expected knots, #Vtx the number of CVs. Then:

if the curve is open #K = (#Vtx-1) / (Order-1) + 1
if the curve is closed #K = (#Vtx) / (Order-1)

If the curve is closed, the periodicity knot is generated internally.

2.3 MESH LOCAL INFORMATION FORMAT

#Cols #Rows UWrap VWrap connectivity

UWrap / VWrap �open� or �wrap� columns or rows respectively

connectivity �rows� � Rows only
�cols� � Columns only
�rowcol� � Rows & Columns
�quad� � Quads
�tri� � Triangulated quads
�atri� � Alternate triangulated

The connectivity is ignored in many cases, but is critical for operations like sweep-
ing or conversion to polygons.

Triangulated and Alternate meshes are structured like:

2.4 NURBS / BEZIER SURFACE LOCAL INFORMATION FORMAT

#Cols #Rows UWrap VWrap connectivity UBasis VBasis
Vertex_List Profiles

#Cols, #Rows, UWrap, VWrap, connectivity, Vertex_List
are the same as for Mesh.

UBasis / VBasis are the same as for NURBS / Bezier Curve.

Triangulated (tri)
Mesh (default)

Alternate (atri)
Mesh
14 - Formats 2 285

Local Primitive Information
Profiles is an optional list of proÞle curves (curves on surfaces).
The structure of the proÞles section is very similar to
that of the main geometry, including a header section,
points, primitives, point and primitive groups. The dif-
ferences are that this section doesn�t contain any
attributes and has only four primitive types: polygon,
NURBS curve, Bezier curve, and Trim Sequence.

The proÞle header is �ProÞles:�. It is followed by
�none� if there are no proÞles. If there are proÞles, the
proÞle section has the following structure:

Point/Prim Counts NPoints # NPrims #

Group Counts NPointGroups # NPrimGroups #

TrimLevel # # is a number representing the sea-level for nested
trimmed loops, and can be either positive or negative.
Usually it is 0.

Point list u v w triplets

Primitive list polygons, NURBS/Bezier curves, trim sequences

Point groups Point group deÞnitions

Prim. groups Primitive group deÞnitions

HEADER SECTION

Point/Prim Counts: NPoints # NPrims # NLoops #

Group Counts: NPointGroups # NPrimGroups #

In each of these cases, the # represents the number of the element described.

Nested trim level: TrimLevel #

In this case, # represents the sea-level for nested trimmed loops, and can be either
positive or negative. Usually it is 0.

A primitive is a 2D proÞle: a polygon, a Bezier curve, or a NURBS curve living
within the domain of the spline surface. The points are 2D locations (i.e. UV pairs
with a third, W (weight) component) in the surface domain.

The loops are trimming loops, also know as �trim regions�, deÞned by the primitive
proÞles mentioned above. It is possible to have several proÞles on a surface and yet
no trim loops.

Groups are named and may be deÞned to contain either points or proÞles. Each
point or primitive can be a member of any number of groups, thus membership is
not exclusive to one group.
286 2 Houdini 6.0 Reference

Local Primitive Information
POINT SECTION

Each point is stored with 3 components (x, y, w). The positions are not true homoge-
neous coordinates. To get the homogeneous coordinates, simply multiply each x, y
by w.

PRIMITIVE SECTION

Since every proÞle may have local information which needs to be saved, the format
of every primitive is different. In general, the format is:

ProfileKey <local_information>

Here, the local_information is proÞle speciÞc.

As part of the local information, a vertex or multiple vertices are speciÞed. Each
vertex is saved in the same format, which is:

point_number

The point numbers start at 0 and go through NPoints - 1.

Each proÞle has a unique identiÞer. The current proÞles and their identiÞers are
identical to their 3D counterparts:

Polygon: "Poly"
NURBS Curve: "NURBCurve"
Rational Bezier Curve:"BezierCurve"

The proÞle keys are case sensitive.
For example:

Poly 3 < 0 1 2

SpeciÞes a closed polygon (see below) which has 3 vertices referencing 2D points 0,
1 & 2.

When there are two or more consecutive proÞles of the same type, this is speciÞed
as a run of proÞles. In this case, the following should appear in the Þle:

Run # ProfileKey

Where # is the number of proÞles in the run. In this case, the following proÞles are
not saved with the ProÞleKey identiÞer since it is implicit in the run.

The format of the three proÞle types - polygon, NURBS curve, and Bezier curve � is
identical to that of the 3D primitives and won�t be listed again here.

TRIMMING SECTION

If NLoops is not zero, the surface will contain one or more trim regions. Each region
can contain one or more proÞles.

Typically, the proÞles should intersect to form a closed loop. Sometimes, though, as
in the case of a loop that intersects the domain boundaries, the loop is partially
deÞned by the domain boundaries and need not be explicitly closed.

Single proÞle loops that are open and do not intersect the domain boundaries will be
closed straight by Houdini.
14 - Formats 2 287

Local Primitive Information
The trimming section contains one or more lines like the one below, one line per
trim region:

TrimRegion [natural] #Profiles <profile_number ustart uend>...

If �natural� is speciÞed, open proÞles are treated casually, i.e. their parametric direc-
tion is not checked and will not be reversed.

profile_number is the index of each proÞle in the current trim region.

ustart and uend are the parametric values deÞning the beginning and
end of the proÞle. It is thus possible to use only a sec-
tion of a proÞle for trimming.

To reverse the direction of the trim curve without reversing the vertices of the proÞle
itself, specify a ustart greater than ustop. A proÞle can therefore be used in more
than one trim region, and can have different orientations and lengths in each region.

When punching holes in a surface, an outer proÞle is needed to specify the area of
the surface to be kept. Usually, the outer proÞle is a closed polygon that envelops the
perimeter of the domain.

Example:

TrimRegion 2 0 1 0 5 -3.5 8

The trim region has two proÞles: 0 and 5. ProÞle 0 is reversed by evaluating
between 1 and 0. ProÞle 5 is used between -3.5 and 8.

GROUPS SECTION

The point groups are saved Þrst, followed by the proÞle groups. There is no identi-
Þer indicating the groups. The format for a group depends on whether it is ordered
or unordered:

GroupName Type NElements BitMask ElementList

GroupName is the name of the group.

Type is "unordered" or "ordered".

NElements SpeciÞes the total number of bits in the BitMask. This
is equivalent to NPrims in the proÞle header.

BitMask A string of 0�s and 1�s, where 1 indicates inclusion in
the group.

ElementList If the groups is ordered, the element list contains the
index of each selected point or proÞle in selection
order. The Þrst element of the list is the number of
ordered elements in the list.
288 2 Houdini 6.0 Reference

Local Primitive Information
2.5 PASTE HIERARCHY LOCAL INFORMATION FORMAT

#Features followed by as many lines as feature surfaces, in the
order in which the surfaces are pasted. Each feature
line has the format:

Feature prim_number height up_or_down <domain_xform>

prim_number is the index of the spline surface in the list of primi-
tives. height is the elevation of the pasted surface from
its base.

up_or_down is 1 is pasted upward, 0 if downward.

The domain transformation is either linear or bilinear.

LINEAR TRANSFORMATION FORMAT

Linear tx ty
UT_Matrix2 m00 m01 m10 m11

The translation in the domain is given by (tx,ty). The rotation and scaling compo-
nents are captured in the 2×2 matrix.

BILINEAR TRANSFORMATION FORMAT

Bilinear origUL origUR origLR origLL
warpUL warpUR warpLR warpLL

L,U,L,R stand for Lower, Upper, Left and Right respectively.
Each of the eight locations is a (u,v) pair in the surface
domain.

Example of a paste hierarchy with three surfaces:

 PasteSurf 3
 Feature 0 0 1
 Linear 0 0
 UT_Matrix2 1 0 0 1
 Feature 2 0.02 1
 Bilinear
 0 0.6
 0.6 0.6
 0.6 0
 0 0
 100.1 -22
 100.4 -22
 100.4 -28
 100.1 -28
14 - Formats 2 289

Local Primitive Information
 Feature 3 0.07 0
 Bilinear
 0 1
 1 1
 1 0
 0 0
 100.2 -21
 100.45 -21
 100.45 -26
 100.2 -26

2.6 CIRCLE LOCAL INFORMATION FORMAT

Vertex_Info Matrix33

There is always only one vertex for a Circle. The 3×3 matrix contains scaling and
rotation transformations about the center of the circle. Sheared circles are thus
allowed.

2.7 SPHERE LOCAL INFORMATION FORMAT

Vertex_Info Matrix33

There is always only one vertex for a Sphere. The 3×3 matrix contains scaling and
rotation transformations about the center of the sphere. Sheared spheres are thus
allowed.

2.8 TUBE / CONE LOCAL INFORMATION FORMAT

Vertex_Info Taper Closure Matrix33

There is always only one vertex for a Tube/Cone. The vertex lies in the center of the
tube (along the axis connecting the centers of the top and bottom circles/ellipses).
The taper value affects the radius of the top circle. A regular tube has a taper value
of 1. A cone�s taper is 0. The closure - �closed� or �open� � indicates whether the
tube is end-capped. The 3×3 matrix contains scaling and rotation transformations
about the center of the tube. Sheared tubes are thus allowed.

2.9 METABALL LOCAL INFORMATION FORMAT

Vertex_Info Kernel_Function Weight Matrix33

There is always only one vertex for a metaball. The kernel function is one of:
�wyvill�, �quartic�, �blinn� or �links�. The 3×3 matrix contains scaling and rotation
transformations about the center of the metaball. Sheared metaballs are thus
allowed.
290 2 Houdini 6.0 Reference

Local Primitive Information
2.10 META SUPER-QUADRIC LOCAL INFORMATION FORMAT

Vertex_Info XY_Exponent Z_Exponent Kernel_Function
Weight Matrix33

There is always only one vertex for a meta super-quadric. The exponents are ßoat
values. The kernel function is one of: �wyvill�, �quartic�, �blinn� or �links�. The
3×3 matrix contains scaling and rotation transformations about the center of the
metaball. Sheared metaballs are thus allowed.

2.11 PARTICLE SYSTEM LOCAL INFORMATION FORMAT

Part_Count Vertex_List

Where Part_Count is the number of particles in the system.
14 - Formats 2 291

Detail & Point/Prim Definitions
3 DETAIL & POINT/PRIM DEFINITIONS

3.1 DETAIL ATTRIBUTES

The Detail Attribute Dictionary is saved after the Primitives and before the group
information.

3.2 POINT / PRIMITIVE GROUP DEFINITIONS

The Point groups are saved Þrst, followed by the primitive groups. There is no iden-
tiÞer indicating the groups. The format for a group depends on whether it is ordered
or unordered:

GroupName Type NElements BitMask ElementList

GroupName is the name of the group.

Type is �unordered� or �ordered�.

NElements SpeciÞes the total number of bits in the BitMask. This
is equivalent to the number of elements in the detail.

BitMask In the ASCII format, this is a string of 0�s and 1�s,
where 1 indicates membership in the group.

ElementList If the groups is ordered, the element list contains the
index of each selected point or primitive in selection
order. The Þrst element of the list is the number of
ordered elements in the list. In the case of primitive
lists a second proÞle element may be described by
appending a period and a secondary index number to
each element.

For example, 5 speciÞes the Þfth primitive while 5.12
speciÞes the twelth proÞle curve of the Þfth primitive.
The list must be empty if the group is unordered.

3.3 OTHER INFORMATION

This is meant for saving information such as metaball expressions and surface hier-
archies. Currently this section contains only the delimiting tokens, one per line:

beginExtra
endExtra

For now the Extra body is empty because all the metaballs are merged (�add�-ed
implicitly) and there is no support for surface hierarchies.
292 2 Houdini 6.0 Reference

	1 File Formats
	1 Geometry Formats Supported by Houdini
	1.1 Geometry Formats
	.geo Houdini Ascii Geometry
	.bgeo Houdini Binary Geometry
	.poly Prisms Ascii Polygon
	.bpoly Prisms Binary Polygon
	.d (Prisms Ascii Move / Draw Line File Format)
	Syntax

	.dxf
	.obj
	.iv (inventor)
	VRML (Virtual Reality Modelling Language)
	.SDL (Alias)
	.EPS (Adobe)
	.med (Meta Editor)
	.LW (Newtek Lightwave)
	.ply Format

	1.2 GEO io Table

	2 Channel File Formats
	2.1 CHOP Formats
	Difference Between Internal/External Formats

	2.2 Channel Format Descriptions
	.chan Houdini Ascii Channel
	.bchan Houdini Binary Channel
	.cLIP Houdini ASCII CHOP
	.BcLIP Houdini BINARY CHOP
	.cHN Houdini ASCII Spline
	.BcHN Houdini Binary Spline

	2.3 Loading / Saving Channel Formats
	How to Save Channel Files from a CHOP
	How to Load Channel Files into a CHOP
	How to Read .chan / .bchan files into CHOPs

	2.4 SUpported Audio Formats
	2.5 Adding Other Channel File Formats
	CHOPio Table
	CHOPio
	Procedure

	Location of Source Code

	2.6 CHOP Internals
	A CHOP is Sampled when
	Extend Conditions
	Frame Dependencies

	3 Scene File Formats
	3.1 Scene Formats
	.ifd (mantra)
	.rib (Renderman Byte Stream®)

	4 Image File Formats
	4.1 Image Formats
	Bottom-Up vs Top-Down Images
	Converting Between Image Types (ICP)

	4.2 Abekas (YUV) Formats
	Abekas Images
	Model A60 - A65 Support

	4.3 Accom Support
	Examples

	4.4 Alias (.pix) Format Files
	4.5 Cineon and TIFF (16-bit File Formats)
	Cineon Environment Variables
	CINEON_FLIP
	CINEON_FILM_GAMMA
	CINEON_WHITE_POINT
	CINEON_BLACK_POINT

	Setting the Cineon Variables
	Some Field Notes on Converting Cineon Images

	4.6 ip / iw - iplay / Image Window
	4.7 JPEG Compressed Image Files
	4.8 LZW and GZIP Compressed Images
	LZW Compressed Files
	GZIP Compressed Files

	4.9 md - mdisplay Window
	4.10 RAT - Random Access Texture Files
	Better Memory Usage
	Texture Filtering
	RAT Quality Better than Other Formats

	4.11 Targa/Vista Images
	4.12 TIFF Images
	4.13 Vertigo Image Format
	4.14 Video Framer - vf
	Video Framer and VLAN Control
	Multi-Access to Video Framer and VLAN

	4.15 Wavefront Images

	5 Adding Other Image File Formats
	5.1 FBIO Table
	FBfiles
	FBio
	Procedure
	Example

	6 Format of Houdini Images
	6.1 General Description
	6.2 Location of Source Code

	7 Format of Houdini Movie (.hmv) Files
	7.1 Houdini Movie File Format (Version 1)
	Header
	Frames

	7.2 See Also

	2 .geo File Format Description
	1 File Format
	1.1 Header Section
	1.2 Attribute Definitions
	1.3 Point Definitions
	1.4 Primitive / Vertex Definitions

	2 Local Primitive Information
	2.1 POLYGON Local Information Format
	2.2 NURBS / BEZIER CURVE Local Information Format
	The NURBS Basis
	The Bezier Basis

	2.3 MESH Local Information Format
	2.4 NURBS / Bezier SURFACE Local Information Format
	Header Section
	Point Section
	Primitive Section
	Trimming Section
	Groups Section

	2.5 PASTE HIERARCHY Local Information Format
	Linear Transformation Format
	Bilinear Transformation Format

	2.6 Circle Local Information Format
	2.7 Sphere Local Information Format
	2.8 Tube / Cone Local Information Format
	2.9 METABALL Local Information Format
	2.10 Meta Super-Quadric Local Information Format
	2.11 PARTICLE SYSTEM Local Information Format

	3 Detail & Point/Prim Definitions
	3.1 Detail Attributes
	3.2 Point / Primitive Group Definitions
	3.3 Other Information

