

1 SHOPs
Shader OPerations

1 INTRODUCTION

Shader OPs (SHOPs) are based on a shading language similar to RenderMan�.
The SHOPs you place in the SHOP Editor provide a front-end to shader scripts writ-
ten in the VEX scripting language

CREATING YOUR OWN SHADERS

Please see the VEX Scripting p. 142 chapter for a complete tutorial on how to create
your own VEX and SHOP shaders.
137 1 Houdini 6.0 Reference | 06 - SHOPs

Select SHOP

2 SELECT SHOP

2.1 DESCRIPTION

The Select SHOP allows you to select which SHOP to use for rendering based on valid
render types and expressions.

When using multiple renderers, the Select SHOP will choose the Þrst input which has
a RenderMask which matches the target renderer. For example, if the Þrst input is a
RenderMan� shader and the second is a VEX shader, then the Þrst input will be
used when generating RIB and the second will be used for vmantra.

Also, it is possible to animate which SHOP will be applied. This is useful when ren-
dering with multiple passes. An expression can be written to switch inputs based on
the render pass being executed.

2.2 PARAMETERS

INPUT 1 - 4 /activate1 - activate4

Chooses the input (1-4) if the parameter is not 0. The Þrst non-zero input which has
a valid render mask will be selected.

2.3 SEE ALSO

� Switch SHOP

2.4 LOCAL VARIABLES

None.
138 1 Houdini 6.0 Reference

Sub-net SHOP

3 SUB-NET SHOP

3.1 DESCRIPTION

The Sub-net SHOP is essentially a way of creating a macro to represent a collection
of SHOPs as a single SHOP in the Layout Area. The Sub-net SHOP can contain an
entire SHOP Network within it, stream-lining and simplifying your SHOP network
both visually and conceptually.

Selecting Edit Sub-Network... from the SHOP�s pop-up menu presents you with a
new Layout area with four sub-network inputs. These four inputs are connected
directly to the four inputs on the Sub-net SHOP in your original network. Proceed by
attaching SHOPs as required to these four sub-network inputs. The display SHOP will
be wired back to the output connector of the Sub-net SHOP in your original SHOP

network. To get back to the original SHOP network, select Quit... from the File menu.

Please refer to the Sub-Networks p. 190 in the Interface section for a complete dis-
cussion and an example of how to use sub-networks.

Tip: Select several Operators that you want to make into a sub-network, and select
Collapse Selected from the SHOP�s pop-up menu to automatically create a sub-net-
work out of them. You will see the selected Operators replaced by a single Subnet-
work SHOP, and it will be properly rewired to contain the previously selected SHOPs.

3.2 PARAMETERS

INPUT #1 - #4 LABEL

These labels are displayed when you click with] on one of the Sub-net SHOP�s
inputs. This is useful for remembering what the inputs are used for in your Sub-net-
work.
06 - SHOPs 1 139

Switch SHOP

4 SWITCH SHOP

4.1 DESCRIPTION

The Switch SHOP can be used to switch SHOPs based on a single expression. The
input SHOPs are numbered starting at 0. This can be useful for switching SHOPs
based on render passes. For example, setting the expression to something like:

$RENDERPASS

would allow you to switch SHOPs based on the $RENDERPASS variable (which
would need to be set before rendering).

For Þner control over switching between renderers, see the Select SHOP.

4.2 PARAMETERS

CHOOSE INPUT /input

Which input SHOP to use.

4.3 LOCAL VARIABLES

None.
140 1 Houdini 6.0 Reference

Other SHOP

T

ypes

5 OTHER SHOP TYPES

5.1 DESCRIPTION

Because they do not interconnect like other types of OPs, but rather are programmed
somewhat as self-contained shaders in the VEX language, the full gamut of SHOPs
are not listed here. To understand the different SHOPs, you need to know only several
basic types, whic are provided by the Generic SHOPs.

The Generic SHOP types allow you to generically test and create SHOP materials
you�ve made using VEX Programming. You should see the next chapter VEX Script-
ing p. 142 for a tutorial.

5.2 SHOPS TO STUDY

The following generic SHOPs allow you to test your own SHOPs programmed in VEX.
You might also want to study the VEX code for the Gingham and Riverbed SHOPs.

Generic Surface Displacement SHOP
The Surface Displacement SHOP is a generic surface
shader. It provides generic input Þelds for different ren-
derers.

Generic Light SHOP This provides input Þelds for every renderer supporting
light shaders.

Gereric Shadow SHOP This provides input Þelds for every renderer supporting
shadow shaders.

Generic Fog SHOP This provides input Þelds for every renderer supporting
fog.
06 - SHOPs 1 141

2 VEX Scripting
1 WHAT IS VEX?

VEX stands for Vector EXpressions, and is a powerful yet relatively simple pro-
gramming language available to all Houdini users. VEX does not require a third
party compiler like C++, nor does it require the Houdini Developer�s Kit (HDK). It
is completely cross-platform, so a VEX operator will work without recompilation or
rewriting on Windows NT/2000/XP, IRIX, Sun Solaris and Linux.

VEX is used in many different areas in Houdini: to alter or create pixels in the Com-
positor, to alter geometry points in the SOP editor, to alter particles in the POP edi-
tor, to alter or create channels in the CHOP editor and to affect the surface
appearance at render time in Mantra 5. In fact, the latter usage in Mantra is probably
the most �traditional� use of VEX, in that VEX started life as a shading language for
use in the renderer and then quickly developed into a more general-purpose lan-
guage.

The different uses for VEX (SOPs, POPs, COPs, CHOPs and Mantra5) are called
�contexts� and each context is slightly different. For example, the SOP context deals
with points while the COP context deals with pixels. However, VEX uses the same
syntax and language structure regardless of which context is being used. In fact, in
some cases, VEX operators from different contexts can be changed from one con-
text to another simply by renaming the context in the operator.

VEX operators can be very roughly broken down into two types: VEX Shaders, and
VEX Operators. This is because VEX Shaders do their work from within Mantra5,
and VEX Operators are executed from within Houdini.

One of the other powerful features of VEX is that a parameter dialog is built auto-
matically for you, so you can concentrate on functionality Þrst, and then pretty up
the operator with correct labelling, help etc. These parameter panels look and act
exactly like �normal� Houdini operators.

1.1 WHAT IS VEX NOT?

While VEX is a very powerful alternative to C++ it is not designed to replace the
HDK in all situations. There are limitations in VEX and the user is cautioned not to
expect VEX to solve all their problems.

For example, the VEX Surface Operators currently can only modify Point attributes.
While this is a huge amount of power, it is limited in that it does not allow you to
affect Primitives.

Likewise, the VEX Particle Operators cannot be used to create particles, only mod-
ify their attributes.
142 2 Houdini 6.0 Reference | 06 - SHOPs

Basic VEX concepts
2 BASIC VEX CONCEPTS
Since all VEX operators are based on the same language and structure, there are
some important basic concepts that are common to all operators.

Note: VEX is a relatively advanced topic, and it is beyond the scope of this docu-
ment to explain many of the concepts required to use VEX. For example, a basic
knowledge of the UNIX C-shell is required, as is a good understanding of the Houd-
ini interface, creating operators, modifying parameters etc. If you are new to Houd-
ini, please go through the basic tutorials Þrst before embarking on your journey into
VEX.

2.1 REQUIRED FILES

For a VEX operator to work in Houdini, there need to be two distinct Þles: The
actual compiled VEX operator, NAME.vex and an accompanying dialog script,
NAME.ds . There will also, generally speaking, be a third Þle NAME.vß that con-
tains the source code. However, this Þle is not, strictly speaking, required, so for
example you might download a VEX operator from the Internet that does not
include the source code (the .vß Þle), but it will still function correctly in Houdini.

Any operators you write yourself will have all three Þles, since you do the actual
writing of the VEX operator in the .vß Þle. The other two Þles are generated auto-
matically from the .vß Þle as we shall see.

2.2 DIRECTORY STRUCTURE FOR VEX

The VEX operators use a directory structure to separate the different types of Þles.
This directory structure acts very similarly to the rest of Houdini�s internal work-
ings, in that if you have Þles in your home directory, this Þles will take precedence
over the standard Houdini Þles. In fact, this is the method we will look at in these
exercises.

There is one main VEX directory, which is located in the houdini5.0 directory. So,
for example, in the standard Houdini installation, it is located in $HH/vex and in
your home directory, it would be $HOME/houdini5.0/vex . Remember that $HFS is
the environment variable pointing to where your Houdini is installed. This can be
different on every installation of Houdini, so to make your life more simple, you can
use $HFS in the C-shell to Þnd the actual directory. Simply type:

cd $HFS
pwd

and you will see the actual directory that Houdini is installed in.

Within the /vex directory, there are (up to) four Index Þles that �point to� the dialog
scripts for the non-shader VEX operators. These all start with VEX plus the type of
operator. Currently, these are VEXcop VEXpop VEXchop and VEXsop. Also within
the /vex directory are subdirectories that contain the actual compiled VEX code.
Each directory is named according to what type of VEX operator/shader it contains.
06 - SHOPs 2 143

Basic VEX concepts
If you look in $HH/vex you�ll notice that there are many more directories than VEX-
sop type Þles. This is because any VEX Shaders written to be used in Mantra5 also
have another directory structure in the houdini5.0 directory, to contain the dialog
scripts for the SHOPs (Shader Operators) editor. We�ll look at SHOPs later on, as
their implementation is slightly different than all the other operator types.

Like all Þles in the $HH directory, if a Þle of the same name exists in the same place
in your $HOME/houdini5.0 directory, the Þle in your directory will �override� the
Þle in $HH. This allows you have your own, personal, VEX operators in addition to
the standard ones that are installed with Houdini. The speciÞc Þles that Houdini
looks at for this overriding feature are the VEXcop etc. Þles.

The last important directory (for now) is the $HH/vex/Dialogs directory. This direc-
tory actually has (up to) four subdirectories, corresponding to the four VEXcop
VEXchop VEXpop and VEXsop Þles. These directories are where the actual dialog
scripts go.

In fact, the .ds Þles do not need to go into their own separate directory. They can be
wherever you like, as long as the Index Þle (VEXcop etc.) points to the correct loca-
tion. For this exercise, we�ll follow the standard Houdini installation, which uses the
$HH/vex/Dialogs directory. As you become more familiar with the workings of
VEX, you may wish to re-organize the location of your Þles.

To summarize an example for your home directory:

$HOME/houdini5.0/vex/ Chop/
Cop/
Dialogs/ Sop/

Pop/
Chop/
Cop/

Displacement/
Fog/
Light/
Mat/
Pop/
Shadow/
Sop/
Surface/
VEXchop
VEXcop
VEXpop
VEXsop
144 2 Houdini 6.0 Reference

Basic VEX concepts
2.3 COMPILING AND FILE PLACEMENT

All VEX operators need to be compiled with a programme called vcc . Generally,
the sequence for creating a VEX operator is:

1. Create VEX code (from scratch or modifying other code)

2. Compile VEX code/create dialog script (.ds Þle) if dialog info has changed

3. Move .ds Þle to appropriate location if .ds Þle was created

4. Reload the .ds Þle and/or the VEX function, depending on what you changed/
added in step 2.

5. Test VEX operator.

6. Repeat.

The vcc command is a command-line operation for compiling, as is most of the
interaction when creating VEX operators. VEX requires typing! But don�t let that
scare you.

When you compile a VEX operator and create a .ds dialog script, you�ll need to
move the dialog script to the appropriate location. Also, the very Þrst time you cre-
ate a new VEX operator, you need to edit the VEXsop (or whichever is appropriate)
Þle to tell Houdini that your new operator exists.
06 - SHOPs 2 145

Creating a Simple VEX SOP Operator
3 CREATING A SIMPLE VEX SOP OPERATOR
Let�s take a look at a step-by-step example of creating a VEX operator from scratch.
This will be a very simple example, that will move points on a grid randomly based
on their point numbers. Also, except where noted, this exercise should work the
same on Windows NT, IRIX and Linux. On Windows NT we will use the Houdini
C-shell, so the GNU tools need to be installed and conÞgured properly, and a com-
mand-line editor needs to be installed. Notepad is the standard Windows NT editor.
Contact your systems administrator if your C-shell does not appear to be working.

Note that the following initial steps of creating directories and copying some Þles
only needs to happen once. Once it is set up, you can add VEX operators simply by
creating them and adding a reference to the appropriate Þle.

Note: When instructed to type a line, be sure to type the R key at the end of each
line, or the command will not be executed.

3.1 EXAMPLE

1. Open a C-shell. This shell must have access to all Houdini standalone tools. To
test this, type:

vcc -h

A long list of text should appear, which is in fact the help for the vcc program that
will be used later.

If this does not appear, contact your systems administrator, or check the Getting
Started section for correct procedures for installing and using Houdini.

2. Type:

cd $HOME

3. Ensure there is a houdini5.0 directory. Remember that ls is the Unix command to
list the contents of a directory. The $HOME/houdini5.0 directory will be created
automatically when you run Houdini, as long as you�ve run Houdini previously,
this directory should exist.

4. Type: cd houdini5.0 which will take you into that directory. Since this is the Þrst
time (presumably) that you are working with VEX, there will most likely not be a
vex directory. However, type ls to check. If you see a vex directory, someone else
may have been working in your home account, as the vex directory is not created
automatically by Houdini.

5. Type: mkdir vex assuming the vex directory does not exist.

6. Type: cd vex to enter the newly created vex directory.

7. Type: mkdir Sop to create the Sop VEX subdirectory. Note that the capital S is
important! Houdini is case sensitive and if you do not use a capital �S� and lower
case �op� Houdini will not see your operators, and you may get errors.

8. Type: cd Sop to enter into the Sop VEX subdirectory.
146 2 Houdini 6.0 Reference

Creating a Simple VEX SOP Operator
9. Type: pwd to conÞrm that you are in the correct place.

10. Type: touch RandMove.vß This creates an empty Þle called RandMove.vß
which will be the name of our new VEX SOP. The only reason to create the empty
Þle is because occasionally on Windows NT a Þle must exist before you can edit
it (depends on the editor). You can skip this step on Irix, Sun Solaris or Linux.

11. You now need to edit this Þle. Since there are a variety of text editors and oper-
ating systems, it is not possible to give examples of all the different commands
that could be used to edit this Þle. However, some common examples will be
given:

In IRIX: type: jot RandMove.vß & which brings up the Jot text editor
In Linux: type: nedit RandMove.vß & which brings up the Nedit text editor.
In Windows NT: notepad RandMove.vß & which starts the Notepad editor.

Tip: On Windows NT, an excellent (and inexpensive) text editor is Textpad. You can
Þnd it at www.textpad.com .

12. You now have an empty Þle, into which you can type your VEX code. For now,
type in the following VEX code exactly as given. We will compile it and test it
Þrst, to make sure that Houdini is able Þnd the operator. Later, we�ll go back over
the code and look at the conventions used.

This VEX operator will simply move points randomly along their normals. It will
have the visual effect of �randomizing� the surface. Enter the following code:

sop
RandMove (float height = 1;

 int myseed = 1;)
{
 vector Nf = normalize(N);
 float r = random(ptnum+random(myseed)*Npt);

 P += Nf * r * height;
}

Note: after the last } there must be a carriage return (R key).

13. After entering the code, save the Þle. You do not need to quit your text editor! In
fact, it�s good practice not to, as it will allow you to make changes very quickly
and not have to constantly be re-loading the Þle.

14. In the C-shell (which should still be using $HOME/houdini5.0/vex/Sop as the
current directory) type: vcc -u RandMove.vß and check for errors. If all goes
well you will see:

vcc -u RandMove.vfl
REMARK (3005) Outputting VEX code to ./RandMove.vex
REMARK (3006) Outputting dialog script to ./RandMove.ds

15. If you get any warnings or errors, double check that your code is exactly the
same as above. Common mistakes are: forgetting the ; (semicolon) at the end of
the lines, forgetting the { } (curly braces) and not capitalizing N Npt and P.

enter this
code
06 - SHOPs 2 147

Creating a Simple VEX SOP Operator
16. Assuming there were no errors, if you type ls in the Unix shell you should now
see two new Þles, RandMove.ds and RandMove.vex in the current directory. Any
Þle with a .ds sufÞx is a Dialog Script. Houdini uses these to build Parameter Dia-
logs. These Þles are generated only when you specify the -u option (known as a
Flag) when compiling with vcc.

17. Now that there are .vex and .ds Þles, we�re almost ready to start Houdini and
test the new operator. All we have to do now is move the .ds Þle to its correct loca-
tion, and alter a Þle to tell Houdini this new operator exists.

18. Type:

cd $HOME/houdini5.0/vex/

to change directories into the vex directory. From here, type:

mkdir -p Dialogs/Sop

This will create the Dialogs directory and a Sop directory inside it. If the Sop direc-
tory already exists, you may get a warning, but nothing bad will happen.

19. Once the directory is created, the .ds Þle can be moved into its Þnal resting
place. Type:

mv $HOME/houdini5.0/vex/Sop/RandMove.ds $HOME/houdini5.0/vex/Dia-
logs/Sop

20. Now, to create the Index Þle. Type:

touch VEXsop

This Þle called VEXsop contains the information that Houdini needs to know about
any VEX Sop operators you have made. Since you almost always want your own
operators to co-exist with the default installed VEX operators, we also need to tell
Houdini to use yours along with the defaults.

21. Edit the Þle VEXsop Þle in your preferred text editor (jot, Notepad, or nedit) as
you did with the RandMove.vß Þle above.

22. Add the following two lines:

include $HH/vex/VEXsop
v_RandMove vex/Dialogs/Sop/RandMove.ds -label "VEX Random Mover"

and save the Þle. Then quit the text editor.

23. Launch Houdini. Generally, you should just be able to type houdini in the cur-
rent C-shell to do this.

24. Edit the SOPs for the ground object, and append your VEX Random Mover to
the Grid SOP. Turn on the Display ßag, play with the Height and Seed parameters,
and enjoy. You will Þnd the VEX Random Mover operator in the Filters subfolder
when appending SOPs.

25. The last step may not work as expected. The most obvious problem will be if
the operator just doesn�t appear in the list of SOPs. If this happens, there are three
main places to check:

� Make sure that the Þle VEXsop exists in the correct location, which is:
$HOME/houdini5.0/vex/
148 2 Houdini 6.0 Reference

Creating a Simple VEX SOP Operator
� Edit the VEXsop Þle and make sure the lines from step #22 are typed in correctly.
� Make sure that the Þle RandMove.ds is in the correct place, which is: $HOME/

houdini5.0/vex/Dialogs/Sop or wherever you indicated in the VEXsop Þle.

26. If all of these are correct, and it is still not working, take a short break, have a
nice relaxing swim in the river, and then scream very loudly. This usually corrects
the problem. Seriously, the problem could be as small as a letter not capitalized,
or something spelled wrong. Thoroughly check every period, comma, and capital-
isation.

3.2 ANALYSING THE EXAMPLE CODE

The previous procedure was really only necessary once, in that for each VEX opera-
tor you need to edit the VEXsop Þle only once to tell Houdini about the .ds Þle, you
need to create the various directories only once, etc. Once this is all set up, you only
need to deal with your actual .vß Þle, and perhaps moving a new .ds Þle to its correct
place. These steps can also be automated, as we shall see.

Now that the basic procedure for creating the operator has been handled, we�ll now
take a look at the code to see what actually is happening, and make some changes to
make the operator more ßexible.

If you�ve closed the text editor, return to $HOME/houdini5.0/vex in the C-shell, and
edit the RandMove.vß Þle. If you�re starting the text editor from the command line,
make sure you use & at the end of the command (this doesn�t work for VI however).
This will allow you continue to the use the C-shell without having to quit the text
editor.

DEFINING THE CONTEXT

Take note of the basic structure of a VEX operator. It starts with:

sop

This is the Þrst line of the operator, and it deÞnes what context the operator is, which
is basically what type of operator you�re creating. There are quite a few different
contexts, which will be explored in later exercises. An operator of one context can-
not be used in a different context! So, you cannot use an operator of type sop to
modify Pops, for example. However, in some cases it is very easy to modify an
operator of one context to work in a different context.

NAMING THE OPERATOR

RandMove (float height = 1;
 int myseed = 1;)

The RandMove is the name of the operator. When you compile the operator with vcc
the resulting .vex Þle will have this name. When writing operators, the normal con-
vention is that the same name is used for the name of all the related Þles. So, in this
case, the source Þle is RandMove.vß the compiled result is RandMove.vex and Dia-
log script is RandMove.ds .
06 - SHOPs 2 149

Creating a Simple VEX SOP Operator
list of used parameters

After the name of the operator, any parameters are listed between the opening
parenthesis and the closing parenthesis. The parenthesises are very important, and
they need to be there even if there are no parameters. For example if there were no
parameters, you would use:

RandMove()

to indicate your operator name and that there are no parameters.

The parameters being used, height and myseed need to be deÞned, which means
they need to be told what type of numbers are associated with them, and they need
to be given a default value. All parameters in VEX must have default values, which
means the operator will do �something� as soon as it is used.

PARAMETER TYPES

The different types of variables will be explored as we work through the exercises.
The two types we�ve used here, ßoat and int are indicating that the height variable
can be any number or fraction of a number, such as 1, 1.5, 154.3223 etc. The int
indicates that the myseed parameter can only be an integer number, in other words it
cannot have decimals, only whole numbers such as -1, 5, 100. As we�ll see later,
there are also some other parameter types.

SEPARATING PARAMETERS

The syntax for deÞning the parameters is important too. Parameters of different
types need to be separated by a semi-colon, however all the deÞnitions don�t have to
be on the same line. So, these two lines:

RandMove (float height = 1;
 int myseed = 1;)

are the same as:

RandMove (float height = 1; int myseed = 1;)

Separating the lines like the Þrst example makes reading the code easier. Also, there
will be situations where you may have many parameters, which would create a very
long line if left on the same line. Generally, lines should only be split at a semi-
colon or comma.

BEGINNING AND ENDING OF THE BODY { }

Once the name of the operator and its parameters are deÞned, there are two curly
braces { } used to indicate that everything else that follows is the actual program that
does the work. So, in our RandMove example, there are three lines that do the actual
�work� of this operator. These three lines are contained within the curly braces. A
VEX operator must start with an open curly brace deÞning the start of the code, and
it must end with a close curly brace. If you omit either curly brace, you will get
strange error messages (often �unexpected end of source�).
150 2 Houdini 6.0 Reference

Creating a Simple VEX SOP Operator
DEFINING THE VARIABLES

vector Nf = normalize(N);

This line deÞnes a local variable, based on a global variable. The local variable, Nf,
only gets used within the VEX operator and does not show up in the VEX operator�s
parameter panel in Houdini. The global variable, N, already exists �automatically�
within the VEX operator, and cannot be renamed. Global variables will be looked at
in more detail in later exercises. The local variable can be named anything as long as
the name doesn�t clash with a global variable or another already existing variable.

Like with parameters, a local variable needs to be �deÞned� with the type and also
needs to be given a default value. In this case, we are deÞning the Nf local variable
as a type vector and assigning it the value of normalize(N).

vector variables

A variable of type vector is actually three numbers, which can represent different
things. For example, a colour can be represented as a vector since colours are
deÞned by Red, Green and Blue. Positions can also be represented by type vector
since a position is deÞned by X, Y and Z. This is the case here, since N is a global
variable that holds the value of the point�s Normal.

point normals

The Normal of a point is generally perpendicular to the surface that the point is part
of. So, in the case of our Ground object grid, the Normals point straight up in the Y
direction, since the grid lies ßat in Z and X.

The N variable actually holds the �end� point of the Normal. Since a normal is
merely a line drawn from the point to wherever the normal ends, N is relative to the
position of the point! There is also another global variable, P, which holds the
point�s position. Therefore, the normal for a point is a line drawn between P and N.

the normalize() function

The function normalize(N) takes whatever the N normal value is, and scales it so
that the length will be within the range of 0 - 1. This makes the new local variable Nf
more predictable, since we know that Nf will always be a length of within the range
of 0 - 1 no matter what direction it points.

A function is simply a command that takes arguments (generally numbers, but not
always) and �returns� a value. In the case of the normalize() function above, the
argument is N and it �returns� new numbers based on calculations it makes on the
argument, in this case a vector of length 1.

N, the point�s normal

This line represents the distance or �length�
of the normal.

P, the point�s position
06 - SHOPs 2 151

Creating a Simple VEX SOP Operator
For example, if you have a vector of 42, 6, 100 and you �normalize� that vector, you
get 0.386641, 0.0552345, 0.920575 which are three numbers that have the same
relationship to each other as 42, 6, 100 , but within a range of 0.0 - 1.0 .

It is important to note that the semi-colon ; at the end of the line is required, or an
error will occur. The semi-colon indicates the end of a command, and usually Þn-
ishes a statement.

randomization
float r = random(ptnum+random(myseed)*Npt);

This statement is deÞning another local variable, r, as a ßoat, and uses two more
global variables ptnum and Npt as well as a parameter deÞned at the beginning,
myseed. The ptnum global variable is the number of the current point being �worked
on�, which will be explained below. Npt is the total number of points being proc-
essed by the VEX operator.

The random() function returns a pseudo-random number between 0 and 1, based on
another number (the argument) inside the () known as the �seed�. Pseudo-random
means that the number appears random to humans, but in fact will always produce
the same sequence if you use the same number as a seed. Houdini always uses
pseudo-random numbers whenever a random() function is called, otherwise it
would be impossible to replicate an effect!

By using the ptnum global variable, for every point on the geometry, a different
pseudo-random number will be assigned to the r local variable.

This is because VEX operators work on a point by point (or pixel by pixel in the
compositor, or particle by particle in POPs) basis, which means that if you have 100
points coming into the RandMove VEX Sop, the three lines of code between the { }
curly braces get executed 100 times, once for each point. This means that you can
actually look at a single point, go through a VEX operator and predict the result,
although it�s hard to predict the random() function.

As an example, when point # 1 gets evaluated, the global variable ptnum will equal
1, the parameter myseed will equal whatever the user has set it to (let�s say it�s set to
its default of 1) and Npt will equal the total number of points being worked on,
which in a default grid is 100.

This line also illustrates how functions can be �nested� inside other functions. These
functions are evaluated from the inside out. In our example, this means:

random(myseed) gets evaluated Þrst and returns a number, let�s say 0.6523.
Then, this gets used in the next level of the function evaluation, like so:

float r = random(ptnum+0.6523*Npt);
float r = random(1+0.6523*100);

VEX evaluates math operations in the same order as you learned in highschool
math. In other words, any division or multiplication is handled Þrst, then addition
and subtraction, so:

float r = random(1 + 65.23);
float r = random(66.23);
r = 0.8201 (for example)
152 2 Houdini 6.0 Reference

Creating a Simple VEX SOP Operator
ACTUALLY CHANGING THE POINT POSITION

Now that you have numbers for each of your local variables Nf and r the Þnal line in
the operator does that actual change in position:

P += Nf * r * height;

Since all of the variables used here either exist (are global, like P) or have been cal-
culated (local variables, like Nf and r) or are user-deÞned parameters (like height)
this line has all the information it needs to proceed. As an aside, this is why all
parameters must have default values, so that the operator will still function even if
the user doesn�t input a parameter value. In this case, height will equal 1 if the user
does nothing.

the p global variable

The global variable P is special, because it is one of the global variables that you can
read a value from (the point�s original position) and also write a value back to (the
point�s new position). Some global variables, like ptnum and Npt cannot have a
value written back to them, in other words you can get the value but you cannot
change that value.

By changing the P global variable, you are changing where that point is in space!
This is the fundamental core of any VEX operator: Altering a global variable, which
then alters whatever it is you�re working on, in this case geometry points.

SUMMARY

There are a couple of concepts to explore here. First of all, notice that Nf is a type
vector, whereas r and height are type ßoat. How can it be possible to multiply these?
Whenever a vector is multiplied by a ßoat, the ßoat is actually �copied� and made
into a triplet like a vector. For example, if the value of Nf is 0, 0.8, 0.2 and you mul-
tiply that by r which from our above example is 66.23, the result will be (0*66.23),
(.8*66.23), (.2*66.23) or 0, 52.984, 13.246 which is a vector. This is known as �pro-
moting� the ßoat to a vector for multiplication purposes. The height gets dealt with
the same way.

The second concept is actually shorthand. The operator P += is the same as:
P = P + so once the Nf * r * height is evaluated, it is added to the value of P and
then P is set to that value.

For an example (this is only an example, the numbers used may not relate at all to
our real operator) if the result of Nf * r * height is: 0, 52.984, 13.246 then setting P
is calculated like so:

P += {0, 52.984, 13.246}

which is the same as:

P = P +{0, 52.984, 13.246}

which takes the original position of the point P, adds the newly calculated number
and then assigns that number back to the P position of the point, thereby moving it.

That�s it! Now you know the basics of VEX.
06 - SHOPs 2 153

Creating a VEX Surface Shader
4 CREATING A VEX SURFACE SHADER
The previous example modiÞed geometry within Houdini. Now, let�s look at alter-
ing the surface appearance at render time in mantra5. This type of VEX operator is
generally known as a �Shader� and only gives you a result when you render the sur-
face it�s applied to in mantra5.

Initially, we�ll create a shader that mimics the standard �Lambert� shading found in
all 3D animation packages. This lighting model does not have specular highlights,
only a surface colour. Later, we�ll modify this shader to create texture maps and add
specular highlights.

Also important in this exercise is creating and locating the Dialog scripts used in the
SHOPs (Shader Operator) editor in Houdini. The location of the SHOPs .ds Þles is
different than the other VEX operators. As before, we�ll create the shader Þrst, test it
and then explain the code.

4.1 EXAMPLE

1. Quit Houdini. Remember that any time you create a new VEX operator you will
at least need to reload (using dsreload) before you can use it.

2. Open a C-shell as you did in the previous exercise.

3. Move to the VEX directory in your home directory. Type:

cd $HOME/houdini5.0/vex

4. Like the SOP VEX Operator we created previously, this Surface Shader will have
its own directory. Type ls and check to see if a Surface directory exists. If not, cre-
ate it with mkdir Surface and as always note that the Þrst letter is capitalized. If
you attempt to create this directory and it already exists, you will get a warning
but no harm will be done.

5. Enter into the Surface sub-directory by typing: cd Surface

6. Create and edit a Þle called Lambert.vß in this directory, in the same way you did
in the previous exercise. The current directory should be $HOME/houdini5.0/vex/
Surface . You can check this by typing pwd . Note that $HOME will be replaced
by the actual path to your home directory.

7. Type the following code into a text editor:

surface
Lambert(

 vector amb=1;
 vector diff={0.545, 0.525, 0.306};
)
{

 vector nml;
 nml = frontface(normalize(N), I);
 Cf = amb * ambient() + diffuse(nml);
 Cf *= diff;
}

enter this
code
154 2 Houdini 6.0 Reference

Creating a VEX Surface Shader
Note: Don�t forget the R after the last } . This may not be absolutely be neces-
sary, however occasionally on Windows NT there are problems if you don�t include
a trailing carriage return. If you get an error �unexpected end of source� when you
compile, a missing carriage return may be the problem.

8. Save the Þle. If you started the text editor using the & symbol at the end, you
don�t need to quit the editor. The & leaves the C-shell prompt available for use.

9. Compile the shader in the same way as before:

vcc -u Lambert.vfl

and check for errors. If there were none, you should see:

vcc -u Lambert.vfl
REMARK (3005) Outputting VEX code to ./Lambert.vex
REMARK (3006) Outputting dialog script to ./Lambert.ds

10. Once again, there are now three Lambert Þles: Lambert.ds, Lambert.vex and
Lambert.vß . Once again, the .ds Þle needs to moved, and a Þle needs to be edited
to �tell� Houdini about the new shader. The concepts here are very similar to the
RandMove.ds Þle created in the previous exercise, but the location of the Þles is
different.

The SHOPs pane in Houdini provides an integrated interface to shaders of different
renderers. For example, both Renderman� shaders and VEX Shaders can be used
within the SHOPs editor. The actual shader itself, however, will be located in differ-
ent places depending on the type of shader it is. So, in our case, the VEX shader is
located in the $HOME/houdini5.0/vex/Surface directory. A Renderman� shader
would not be located there, but elsewhere in the directory structure. The .ds Þles,
however, are all located together, in a directory structure based at $HOME/
houdini5.0/shop and having a very similar structure to $HOME/houdini5.0/vex in
that there subdirectories that hold the .ds Þles for the different shader types, and cor-
responding Þles that need to be edited to �tell� Houdini about the shader. To summa-
rize:

$HOME/houdini5.0/shop /displace
/fog
/light
/shadow
/surface
SHOPdisplace
SHOPfog
SHOPlight
SHOPshadow
SHOPsurface

Since we are writing a Surface shader, it should be fairly clear where the .ds Þle
should be: $HOME/houdini5.0/shop/surface .

11. Move the Lambert.ds Þle to the appropriate location by typing:

mv Lambert.ds $HOME/houdini5.0/shop/surface

12. You now need to edit the SHOPsurface Þle to �tell� Houdini about the shader.
Change directories into the $HOME/houdini5.0/shop directory. Create a new
06 - SHOPs 2 155

Creating a VEX Surface Shader
SHOPsurface Þle if necessary (touch SHOPsurface) and edit it with your favour-
ite text editor.

13. If the Þle is empty (it�s a new Þle) add the following line:

include $HH/shop/SHOPsurface

As with the VEXsop Þle we created above, this line makes sure that the standard
Houdini surface shaders are �seen� by Houdini. Without this line, only your own
shaders would be recognized by Houdini.

14. Add the following line:

v_lambert shop/surface/Lambert.d -label �VEX Lambert�

Again, like the VEXsop Þle, this indicated where the .ds Þle is, what label it should
have in the SHOPs editor (VEX Lambert) and what the default name of the operator
will be (v_lambert).

15. Save the Þle and exit the text editor.

16. Start Houdini. Change to the default Shops Desk, which should have the an
Object Network Pane, a SOP network pane, a Shop network pane and an Object
Viewer.

17. Delete all objects except light1, cam1 and ambient1. Create a new geometry
object (it will be called geo1) and inside the SOPs for geo1, delete the current
SOP and insert a Sphere SOP.

18. In the SHOP editor, add your Lambert SHOP. This should be in the Generators
sub-folder.

19. In the geo1 object�s Shading page, select the Lambert shader.
156 2 Houdini 6.0 Reference

Creating a VEX Surface Shader
20. Select the vmantra renderer from the Viewport Render button.

21. Behold the wonder! Well, okay, it�s a smooth-shaded sphere, but the surface
appearance was deÞned by you in the Lambert shader. If you adjust the �diff�
parameter in the Lambert SHOP, and re-render, you can adjust the colour. You
will notice that it is not very intuitive to deal with three numbers for RGB. Fortu-
nately, there is a way to deal with this problem by �hinting� to the .ds script what
the numbers actually mean.

4.2 ADDING UI HINTS TO A VEX OPERATOR

1. Save this Þle, just in case. In Houdini 4.1 and later, there is no need to quit Houd-
ini in order to reload dialog scripts.

2. In the C-shell, change directories back to $HOME/houdini/vex/Surface and edit
the Lambert.vß Þle with a text editor.

3. At the very beginning of the Þle, before the surface statement, add these lines:

#pragma hint amb color
#pragma hint diff color

#pragma label amb "Ambient Colour"
#pragma label diff "Diffuse Colour"

4. Save the Þle and compile with:

vcc -u Lambert.vfl

5. Move the .ds Þle to the correct directory:

mv Lambert.ds $HOME/houdini/shop/surface

6. To reload the .ds Þles to see the changes, open a Houdini Textport and type:

dsreload
You may want to make a function-key alias. You can do this with the Dialogs >
Aliases/Variables menu, or by typing: alias F9 dsreload in the Textport. This will
assign (to execute �dsreload� whenever you type (. Use another key if neces-
sary.

SUMMARY

All VEX operators can use the #pragma syntax. In this case, we told the compiler
that the diff and amb parameters were actually colours, and we also gave each
06 - SHOPs 2 157

Creating a VEX Surface Shader
parameter more descriptive labels. See the reference manual for a complete list of
#pragma commands.

4.3 ANALYSING THE CODE

As you can probably see from the Þrst RandMove.vß VEX operator, the syntax and
structure of this shader are very similar to the VEX operator. Of course, since these
two operators do very different things (one moves points, one colours a surface) the
guts of the operators differ signiÞcantly, but they share common features. Ignoring
the #pragma lines for a moment, here�s a breakdown of the shader:

surface
Lambert(
vector amb=1;
vector diff={0.545, 0.525, 0.306};

)
{
 vector nml;
 nml = frontface(normalize(N), I);
 Cf = amb * ambient() + diffuse(nml);
 Cf *= diff;
}

The Þrst line of the actual shader deÞnes the context of the operator. In this case, it is
a surface operator, designed to alter the surface appearance.

The second line gives the name of the shader, in this case Lambert. Like with the
RandMove VEX Sop, this will be the name of the compiled .vex Þle and the .ds dia-
log script.

You�ll recall that after the name of the operator there needs to be an open parenthe-
sis and close parenthesis () that contain any user-modiÞable parameters. In this
shader, this is the same.

vector amb=1;
vector diff={0.545, 0.525, 0.306};

These two lines declare a parameter amb to be a type vector with a default value of 1
(actually 1,1,1) and parameter diff also to be a type vector with a default value of
0.545, 0.525, 0.306 .

In the case of the diff parameter, the { } curly braces are used to indicate that the
three numbers belong together in a group.

After the parameters are declared, the { opening curly brace indicates that the main
part of the shader is beginning.

vector nml;
nml = frontface(normalize(N), I);

These two lines declare a local variable nml of type vector and then assign a value to
it. In fact, the declaration of type can be combined with the assignment, like so:

vector nml = frontface(normalize(N), I);

Either method is correct, the former simply being somewhat easier to read.
158 2 Houdini 6.0 Reference

Creating a VEX Surface Shader
In the VEX SOP operator, the few lines of the actual operator got executed once for
each point in the geometry, in our example above that was 100 times. In our surface
shader, the four lines of code that �do the work� get executed once for each time the
geometry gets shaded. When mantra5 shades an object (i.e. when a ray hits an
object), the surface shader gets evaluated to compute what the color of the surface
is at that point. All of the global variables are initialized to the correct surface
parameters for the point being shaded (i.e. the P variable is set to the position that
the ray intersected the geometry). Search the Reference manual for more informa-
tion on Shading Quality and other topics.

The actual function frontface is a commonly-used command in a shader. Remember
that the global variable N indicates the normal, in this case of the current point being
coloured (shaded). The normal is very important in a shader, because it tells the ren-
derer which way the surface is facing. For example:

In the above diagram, the camera is looking at a curved surface. There are three
points P (out of potentially hundreds of thousands or millions) being used to repre-
sent what is happening.

Each point has a normal N which indicates which way that particular point is facing.
On a curved surface, the various points will be facing different directions depending
on which way the surface is facing.

From the camera to the point, there is a line I that is used to determine �where� the
camera is, relative to the point being shaded.

nml = frontface(normalize(N), I);

The frontface() function takes the normalized N of the point (remember that the nor-
malize() function returns a vector whose length has been set to one) and compares it
to the I vector (i.e. where the camera is). If it Þnds that the N is facing away from the
camera, it �reverses� the normal to make sure it is visible by the camera. Without
this, there might be situations where your geometry has holes in it, or the �wrong�
side gets rendered. This line assures that the camera can always see the normals for
all the points it is shading.

Cf = amb * ambient() + diffuse(nml);

This line actually alters the colour of the current point. The global variable Cf is
used in the same way that P was used in the RandMove example. In this case,
instead of moving the point, we�re colouring it with some functions.

The real work in this line is being done by the diffuse(nml) function. For each point,
it takes the normal�s direction, looks at all the lights in the scene, and shades the

N

N

N

I

I

P

P

P

Curved Surface
06 - SHOPs 2 159

Creating a VEX Surface Shader
point appropriately. It is the diffuse() function that actually creates the appearance of
three dimensions for this object!

The ambient() function, multiplied by the user-adjustable parameter amb, will col-
our the overall geometry based on the Ambient light value. If the parameter amb is
set to 0,0,0 (black) then no ambient light is used. The ambient and diffuse values are
added together for the Þnal result, and assigned to the colour of the point.

 Cf *= diff;

The Þnal line takes the user-adjustable parameter diff (which is a colour) and the Cf
calculated from the line above, multiplies them and then sets Cf to that Þnal colour.
Remember that Cf *= diff; is the same thing as: Cf = Cf * diff;

This is the Þnal result for that tiny piece of the surface! Only several hundred thou-
sand (or millions) more to go, and the object is fully rendered.

This Lambert shader can be easily modiÞed to be a Constant shader, in other words,
a shader that colours every point on the surface the same colour:

In your Lambert shader, change it to be:

#pragma hint diff color
#pragma label diff "Diffuse Colour"
surface
Constant(
vector diff={0.545, 0.525, 0.306};

)
{
 Cf = diff;
}

and make sure you save it as Constant.vß , and not Lambert.vß .

Compile it with: vcc -u Constant.vß and move the .ds Þle to the correct directory
(same as Lambert.ds). Likewise, edit the SHOPsurface Þle to refer to the new
shader.

Try out your shader on a sphere or any other object in Houdini. It will always be a
ßat colour, whatever you select in the parameters. This is in fact the simplest form of
shader. It does no calculations to determine where lights are (like the diffuse() func-
tion) but of course, it doesn�t result in the appearance of a 3D object.
160 2 Houdini 6.0 Reference

A Simple Displacement Shader
5 A SIMPLE DISPLACEMENT SHADER

5.1 INTRODUCTION

A displacement shader works very much like the Random Mover VEX SOP we cre-
ated earlier, except that instead of moving P in geometry, it moves P when you
render. Since the area being shaded at render time is very small, a very detailed dis-
placement can be accomplished.

In fact, the RandMove.vß Þle we created can very quickly and easily be made into a
Displacement shader. It won�t be pretty, and it won�t do much, but it will work.

5.2 EXAMPLE

First, you�ll need to make a new directory in $HOME/houdini5.0/vex/ called Dis-
placement. Copy the RandMove.vß Þle that you wrote earlier into $HOME/vex/Dis-
placement and then edit the new Þle:

displacement
RandMove (float height = .1;
 int seed = 1, multrand = 100;)

{

vector Nf = normalize(N);
float r = random(P*random(seed)*multrand);

P += Nf * r * height;
N = computenormal(P);

}

Once you have succesfully compiled the shader using: vcc -u , you�ll need to move
the .ds Þle to $HOME/houdini5.0/shop/displace and reference your .ds Þle in the
SHOPdisplace index Þle, like with the Surface shader we did earlier. You will need
to create the displace directory in $HOME/houdini5.0/shop that you will move the
.ds Þle to if it does not already exist. In the SHOPdisplace Þle, which should be in
$HOME/houdini5.0/shop , add these lines:

include $HH/shop/SHOPdisplace
v_randmove shop/displace/RandMove.ds -label �VEX Random Displacer�

If you look at the above shader, there are two obvious differences. First, instead of
sop as the context, we�re using displacement as the context.

Second, after P has been modiÞed, we need to recompute the normal N so that the
surface shader will render correctly. This is because the displacement part of the
render is calculated before the surface shading part. Since the P is being changed
before the surface is actually coloured, the normal N needs to be recalculated. Other
than that, it�s pretty much the same as the SOP.

One thing to be very careful of when doing displacement shading is how much you
move the P. If you move it too much, you will use a huge amount of memory. There
is an art as much as a science to doing displacement shading. A good rule of thumb
06 - SHOPs 2 161

A Simple Displacement Shader
is: Do large amounts of relatively crude displacement with geometry (mountains,
for example) and do small amounts of relatively detailed displacement in the ren-
derer, for example rocks on the side of the mountain. In the RandMove displacement
shader, a height of greater than around 0.3 will cause excessive memory usage.

There is a critical parameter in an object called Displacement Bound that must be
used when doing displacement shading or you will get cracks and holes and general
nastiness in the render. The general rule of thumb is, the Displacement Bound
should be set to slightly more than the height of your displacement. So, for example
in our RandMove.vß displacement shader, if your displacement height is .1, your
the Displacement Bound setting in the object being shaded with RandMove.vß
should be .1 or slightly higher. One of the nice things about 4.0�s new Shops editor
is that you can channel reference very easily between shaders and any other param-
eter. If you Yank the height parameter of the RandMove Shop and Put the Yanked
Reference into the object�s Displacement Bound parameter, you have now linked
the two.
162 2 Houdini 6.0 Reference

Continuing On Your Own
6 CONTINUING ON YOUR OWN
The three examples cover the fundamentals needed to create a VEX Operator that
will work successfully within Houdini, and also a VEX Shader that will work suc-
cessfully within Mantra5. The actual mathematics used, especially to create shaders,
is beyond the scope of this manual.

6.1 RESOURCES

There are several good books available which cover some of the mathematics and
the concepts used in greater depth. These include:

� The Renderman Companion : A Programmer's Guide to Realistic Computer Graph-
ics � Steve Upstill.

� Advanced RenderMan : Creating CGI for Motion Pictures � Anthony A. Apodaca,
Larry Gritz.

� Texturing and Modeling, A procedural approach � David S. Ebert, F. Kenton Mus-
grave, Darwyn Peachey, Ken Perlin, Steven Worley.

� A SimpliÞed approach to Image Processing � Randy Crane.

� The Art and Science of Digital Compositing � Ron Brinkmann.

This is only a small list! There are many more books on image processing available.
Writing shaders is not the easiest thing in the world, but with some reading and per-
severance, you�ll Þnd yourself writing useful shaders in no time. Writing VEX
Operators in Houdini tends to be easier, as less esoteric math is involved.

One of the best resources for learning VEX is the library of examples that are
installed with the default Houdini 5.0 installation. These examples are constantly
being developed, so it is impossible to list them all at the time of this manual�s writ-
ing. Look in $HH/vex/etc. for examples of all the different contexts. Copy them to
your $HOME/houdini5.0/vex/etc. directory and then modify at will! When writing
VEX operators/shaders, it is generally more efÞcient to copy an existing operator/
shader and modify it. This is common practice and is perfectly acceptable. It is
polite (and often legally required) to include the �history� of the operator/shader,
including the original source of the operator/shader and its author, in a comment at
the start of the .vß Þle.
06 - SHOPs 2 163

Continuing On Your Own
6.2 REFERENCES

Don�t forget the online VEX reference documentation. Complete lists of the global
variables plus all variations in the contexts are covered. This can be found in:

$HH/vex/html/index.html

CONTEXTS

A list of the different contexts:

sop Used in the SOP Editor to modify geometry in Hou-
dini.

cop Used in the Composite Editor to create or modify
images in Houdini.

pop Used in the Particle Editor to modify particles in Hou-
dini.

chop Used in the Channel Editor to modify or create chan-
nels in Houdini.

surface Used in Mantra5 to modify the appearance of a surface
at render time.

displace Used in Mantra5 to modify points on a surface at ren-
der time.

fog Used in Mantra5 to create fog-like effects at render
time.

light Used in Mantra5 to create lights or lighting effects at
render time.

shadow Used in Mantra5 to create shadows and shadow effects
at render time.
164 2 Houdini 6.0 Reference

More Operator Examples – COPs
7 MORE OPERATOR EXAMPLES – COPS

7.1 INTRODUCTION

Now that we have covered the details of placing the .ds .vex and .vß Þles, let�s look
at some simpler examples of different operators. From here on, the assumption will
be made that you understand the directory structure for different operators, and the
relevant Þles that need to be edited.

7.2 EXERCISE

Let�s create a VEX COP, that will very simply �fold� an image in half, like so:

We�ll call the Þle ßipper.vß and in this case, create it in $HOME/houdini5.0/vex/Cop
.

You will start with the context:

cop

and give it a name: ßipper()

Open the actual execution lines with the curly brace. Tip: Enter both the open and
close curly braces now, and then you won�t forget the close brace later! Of course,
you shouldn�t forget to insert the actual execution lines before the close curly brace.

{
}

Now, the actual lines that do the ßipping:

vector4 c1;
if(Y >= .5)
 c1 = cinput(X,1-Y);
 else
 c1 = cinput(X,Y);

R = c1.r;
G = c1.g;
B = c1.b;
A = c1.a;
06 - SHOPs 2 165

More Operator Examples – COPs
So far, your result should look like:

cop
flipper()
{
vector4 c1;
if(Y >= 0.5)
 c1 = cinput(X,1-Y);
 else
 c1 = cinput(X,Y);
R = c1.r;
G = c1.g;
B = c1.b;
A = c1.a;
}

Go ahead and compile the VEX COP at this point with vcc -u . Don�t forget to move
the .ds Þle to $HOME/houdini5.0/vex/Dialogs/Cop and also don�t forget to edit the
Þle $HOME/houdini5.0/vex/VEXcop to point to the new .ds Þle.

Start up Houdini and try it out. Feed in some different images. It should be pretty
obvious what it�s doing.

This COP introduces a couple new concepts. Obviously, it deals with pixels instead
of points or surfaces. The global variables that deal with pixels in the COP context
are R G B and optionally A. These need to be set to something at the end of the
operator, otherwise no colour changes will happen.

Two other global variables are used in this operator. X and Y correspond to the cur-
rent pixel�s position relative to the whole image. These are always values of 0-1 so
for example the pixel in the middle of the image would be represented by 0.5 in
either X or Y.

There are also global variables available so that you can deal with pixels explicitly
based on the resolution of the image. See the online VEX reference for details on all
the COP context global variables.

In this example, the cinput() function simply access the pixel located at whatever
XY coordinates you give it. So, the little function that �mirrors� the pixels says �If Y
is greater than or equal to 0.5, make the variable c1 equal the �mirror� pixel, other-
wise just make it equal the current pixel�. So, as Y moves across the image, it
increases from 0 to 1, but when it hits 0.5, the pixels being used start decreasing
from 0.5 back to 0. To illustrate:

0 .1 .2 .3 .4 .5 (1-.6) (1-.7) (1-.8) (1-.9) (1-1) which is equal to
0 .1 .2 .3 .4 .5 .4 .3 .2 .1 0

This means that cinput() takes the Þrst half up to 0.5 normally, and then the last half
descending from 0.5 back to 0.
166 2 Houdini 6.0 Reference

VEX Hints and Tips
8 VEX HINTS AND TIPS
VEX is a reasonably straight-forward language, but there are situations that can trip
up someone writing VEX code. Here are some common problems, and their solu-
tions. Also look at Type Casting in the online VEX reference for additional informa-
tion.

Some of these hints and tips assume a good working knowledge of VEX and also
may be fairly job-speciÞc. Look them over, but once you�ve had a chance to learn
VEX, return and you may Þnd something you didn�t understand the Þrst time
through has become clear.

8.1 ASSIGNING DIFFERENT TEXTURE COORDINATES
FOR SURFACE AND DISPLACEMENT SHADERS

There may be situations where you want a Surface shader to use different texture
coordinates than a displacement shader on the same geometry. This is easy to
accomplish because VEX will allow any shader to take in any attributes. For exam-
ple, you could modify the standard VEX v_dmap shader found in $HH/vex/Displace
to use a new attribute called uv_disp instead of the standard uv:

displacement
va_dmap(string map="";
 float amp=0.1;
 int forpoly=1;
 vector uv_disp=0)

Basically, all you need to do is rename the "uv" attribute to "uv_disp" using the
Attribute SOP. You also have to change the isbound() function call.

Then in the SOP chain:

<source_stuff>
 |
<texture_displacement> # Apply texture coords for displacement
 |
<attribute SOP> # Rename the uv attribute to be uv_disp
 |
<texture_surface> # Texture coordinates for surface shader

This way, you have two sets of texture coordinates. One for surface and the other for
displacement. Each one has it's own name, and the shader uses the one that's named
for it.

8.2 DISPLACING POINTS IN GEOMETRY BASED ON A TEXTURE MAP

Displacing points on geometry based on a texture map is quite easy. There is one
potential hang-up. People familiar with writing shaders may expect the texture()
function to work, which will not. In fact, you need to use the colormap() function,
like so:
06 - SHOPs 2 167

VEX Hints and Tips
sop
 dmap(string map=""; float scale=0.1; vector uv=0)
 {
 vector amount;
 amount = colormap(map, uv);
 P += normalize(N)*scale * luminance(amount);
 }

This VEX SOP assumes that UV coordinates have been applied, typically with a
Texture SOP. Look in the $HH/vex/Sop directory, there may be an example there.

8.3 DETECTING IF UV COORDS ALREADY EXIST

Many SOP operators, Surface shaders, Displacement shaders, POP operators etc use
uv coordinates to access positions on surfaces, or in space or whathaveyou. If uv
coordinates haven�t been applied, the VEX operator/shader often fails completely
unless a test is made. The following code fragment (shown in bold) uses the
isbound() to �detect� if an attribute exists. This attribute does not need to be UV, it
could be any attribute.

This sets the local variable to be equal to UV if UV exists, and if it does not exist, it
sets coord to be the point�s position within the bounding box of the object being
shaded.

sop
 dmap(string map=""; vector uv=0; ...)
 {
 vector coord;
 if (isbound("uv"))
 coord = uv;
 else coord = relbbox(P);
 ...
 }

This will set up coord to be $BBX, $BBY, $BBZ if there is no UV attribute.

8.4 GETTING VALUES TO AND FROM VECTORS

Many things in VEX deal with vectors. RGB, uvw, xyz etc. are very commonly
used. Often, you need to extract a single value, for example just the U or just the V
values from the texture coordinates. There are two ways to accomplish this, and also
to set a vector to a group of values:

Based on the assumption of a vector UV that holds the texture coordinates. The slow
way to extract is:

 u = uv.x;
 v = uv.y;
 w = uv.z;
168 2 Houdini 6.0 Reference

VEX Hints and Tips
The slow way to set:

 uv.x = u;
 uv.y = v;
 uv.z = w;

The fast way (~ 4 - 5 times faster in most cases):

assign(u, v, w, uv); // Assign the three floats from the vector
set(uv, u, v, w); // Set the components of the vector.

Whenever possible, use the set() and assign() functions for maximum speed.

8.5 CREATING NEW ATTRIBUTES IN VEX

VEX can be used to create any attribute names you like. For example, to create the
�rest� attribute in VEX:

 sop
 restpos(export vector rest=0)
 {
 rest = P;
 }

The export keyword will cause an attribute to be created with the variable name rest.
However, if the rest attribute already exists, in this case it will be set to P .

8.6 USING THE REST ATTRIBUTE IN A SHADER

When you write a shader based on P for example a noise shader, if the object
deforms you may Þnd that your texture �swims� across the surface and doesn�t
appear to really be on the surface. This can easily be corrected by using the �rest�
attribute created in the Rest SOP. To do this, take a shader written as:

surface
testrest(float freq = 1;)
{
 vector PP;
 PP = wt_space(P)*freq;
 Cf = noise(PP);
 }

and change it to:

surface
testrest(vector rest=0; float freq = 1;)
{
 vector PP;
 PP = wt_space(rest)*freq;
 Cf = noise(PP);
 }

Naturally, the �rest� attribute needs to exist or this will not work. Again, you can use
the isbound() function to check for this and perhaps use P as in the Þrst example if
the rest attribute does not exist. For example:
06 - SHOPs 2 169

VEX Hints and Tips
surface
testrest(float freq = 1; vector rest =0;)
{
vector PP;
 if(isbound(�rest�))
 PP = wt_space(rest)*freq;
else
 PP = wt_space(P)*freq;
 Cf = noise(PP);
 }

This would use the rest attribute if it exists, and use P if not.

SHARING VEX ATTRIBUTES

Any parameter to a shader may be overridden by Any point, vertex, primitive or
even a detail attribute. You just have to name your attribute to be the same name as
the parameter in the VEX function.

Thus, to get a constant shader which uses point colors, you only need to use the
Attribute SOP to rename the "Cd" attribute to be the "clr" attribute.

The technique of naming attributes can be used to modulate displacement amounts
over surfaces (create a single ßoat attribute and call it "amp" then apply the fractal
dent displacement shader) � watch those displacement bounds though.

The technique can also be used to change any color in any shader. Try creating a
point color attribute called "spec" and apply the brushed aluminum shader.

It can also be used in SOPs or POPs. Create a scalar (single ßoat) attribute called
"height" and run your geometry through a VEX Mountain SOP.

So, although not all VEX shaders support the "Cd" attribute, there's a fair amount of
control.

8.7 DEBUGGING YOUR CODE

There may be times when your VEX code compiles without errors, but doesn�t per-
form as expected. This is where the printf() function comes in handy. You can insert
a printf() in your code and when the code is actually executed by Houdini, it will
display the numbers being generated within the VEX operator/shader. Be warned
that this can signiÞcantly slow down the execution of the operator/shader.

For example, if you wanted to see the numbers being generated by the noise() func-
tion in the above example, insert a printf() like so:

surface
testrest(float freq = 1; vector rest =0;)
{
vector PP;
 if(isbound(�rest�))
 PP = wt_space(rest)*freq;
else
 PP = wt_space(P)*freq;
printf(�The noise is %g\n�,noise(PP));
170 2 Houdini 6.0 Reference

VEX Hints and Tips
 Cf = noise(PP);
 }

See the online HTML reference for the complete syntax of the printf() function.
Inside a shader like this, you�ll also need to make sure that the Verbose option is
enabled in Mantra5. If you�re using Windows NT, you will also need to specify the
Output to File option in the Render Command for Mantra5. Generally on NT, use
the �consolewait� option to get immediate feedback from your verbose output. See
the Output section for Mantra5 options.

8.8 CREATING GROUPS IN SOPS AND POPS AND ADDING TO THEM

A common use of VEX is to group points or particles. This is done identically in
particles and in SOPs:

sop
testgroups(string groupname = �buddy�;)
 newgroup(groupname);
 if (ptnum <= 5)
 addgroup(groupname, ptnum);

This very simple VEX SOP will create a new group called �buddy� and add all
points numbered Þve or less to the group.

8.9 BUMP MAPPING IN VEX

There are three ways to implement a bump map in VEX:

1. Use the bump() functions:

 surface
 bumpy(float amount=.05)
 {
 float du, dv;
 float tanu, tanv;
 vector Nf;

 tanu = normalize(dPds);
 tanv = normalize(dPdt);
 bumpmap("mapname", du, dv, s, t);

 Nf = normalize(frontface(N, I));
 Nf += du*tanu + dv*tanv;
 Nf = normalize(Nf);

 Cf = diffuse(Nf);
 ...
 }

2. Simulate moving P and recompute the normals after the fact.

 surface
 bumpy(float amount=0.1)
 {
06 - SHOPs 2 171

VEX Hints and Tips
 vector Nf;
 vector PP;
 vector mapclr;

 mapclr = texture("mapname", s, t);
 Nf = normalize(N) * amount;
 PP = P + luminance(mapclr) * Nf;
 Nf = computenormal(PP);
 Nf = normalize(frontface(Nf));

 Cf = diffuse(Nf);
 ...
 }

3. Use a combination of the two.

 surface
 bumpy(float amount=.1)
 {
 float du, dv, lum;
 vector mapclr;

 mapclr = texture("mapname", s, t);
 lum = luminance(mapclr);
 du = Du(lum) * amount;
 dv = Dv(lum) * amount;
 Nf = normalize(N) + du * normalize(dPds)
 + dv * normalize(dPdt);
 Nf = normalize(frontface(N, I));
 }

The second or third method will probably give you better anti-aliasing since the tex-
ture() function has built-in Þltering of the texture map, while the bump() functions
only do point sampling.

8.10 ALL VEX FUNCTIONS IN RADIANS

All VEX functions are calculated in Radians, so, for example, when using the sin()
expression, you need to use Radians in the arguments. Use the radians() function to
convert from degrees to radians, and the degrees() function to convert from radians
to degrees.

8.11 USER-DEFINED FUNCTIONS

When creating user deÞned functions, one must be careful about which variables get
modiÞed. If the compiler gives an error about trying to modify a �non-lvalue� then
most likely you are attempting to modify a value that cannot be changed. An
�lvalue� is shorthand for Left Hand Value, which is a value that _can_ be modiÞed.

For example, notice this code snippet from a VEX Cop. It does not work:

vector4
fwrapinput(float fx, fy)
172 2 Houdini 6.0 Reference

VEX Hints and Tips
{
 fx = fx % 1; if (fx < 0) fx += 1;
 fy = fy % 1; if (fy < 0) fy += 1;
 return finput(fx, fy);
 }
...
assign(r1,g1,b1,a1,fwrapinput(X-2,Y-2));

In this case, the fwrapinput() function is being declared as a user-function, and then
gets used using X and Y as arguments. This does not work because all variables are
passed by reference to a function, meaning that you can change their values (which
you are doing).

The difÞculty is that the value you're trying to modify is (X-2) which is an expres-
sion, not a value, thus you get an error.

The solution is to not modify the parameters passed in:

 vector4
 fwrapinput(float fx, fy)
 {
 float tx, ty;
 tx = fx % 1; if (tx < 0) tx += 1;
 ty = fy % 1; if (ty < 0) ty += 1;
 return finput(tx, ty);
}

8.12 TRANSFORMING PIXELS WITHOUT STREAKING IN COPS

When transforming pixels in a VEX COP, if you attempt to access a pixel that
doesn�t exist (i.e. one that is �off the edge� of the image) VEX returns the value of
the pixel at the edge of the image. This results in streaking along the edge of images
that are being transformed. The following user-deÞned function will alleviate this
problem by wrapping the input or clamping the input.

vector4
fwrapinput(float fx, fy)
{
 float tx, ty;
 tx = fx % 1; if (tx < 0) tx += 1;
 ty = fy % 1; if (ty < 0) ty += 1;
 return finput(tx, ty);
 }

vector4
clampinput(float fx, float fy)
{
 vector clr;
 if (fx < 0 || fx > 1 || fy < 0 || fy > 1)
 clr = 0;
 else clr = finput(fx, fy);
 return clr;
}

06 - SHOPs 2 173

VEX Hints and Tips
8.13 TIPS FOR FIXING ERRORS

Reasonably often, when you compile a VEX shader/operator, a huge list of errors
will be displayed. This can be intimidating, but don�t let it stop you. In fact, one
small mistake in the source code often results in many errors being displayed. The
trick is to Þnd the �earliest� error and Þx that. Then, when you recompile the code,
you may Þnd that all the errors have gone away. When an error message is dis-
played, it will generally indicate what line number the error is on. Find the Þrst
error, and Þx it; then save and recompile. Often, the other errors will then go away.
If they don�t, Þnd the next error, Þx it, and repeat the process.

If you try to Þx too many errors at once, you may Þnd that what you�re trying to Þx
is not an error at all.

8.14 SEARCH PATH FOR VEX OPERATORS/SHADERS

When loading VEX shaders and OPs, Houdini will search the Houdini path for the
shader/operator (i.e. the .vex Þle). It searches $HFS/houdini5.0, $HOME/
houdini5.0, etc. as is usual in Houdini. What this means, is that the Index Þles
(VEXcop, SHOPsurface etc) only need to point to the dialog scripts. The actual .vex
Þle can be anywhere in the search path and will be found.

8.15 VEX FILE LOCATIONS AND OVERRIDES

The VEX Þles that override $HH Þles (and those referenced inside these Þles) can be
anywhere, as long as the .ds Þle is within the HOUDINI_PATH . The default path is:

$HOME/houdini5.0
$HFS/houdini5.0

With a statement like:

setenv HOUDINI_PATH "/houdini5.0:$HOME/houdini5.0:$HFS/
houdini5.0"

the Þrst place we would look would be:

/houdini5.0/vex/VEXcop
$HOME/houdini5.0/vex/VEXcop
$HFS/houdini5.0/vex/VEXcop

Then the actual .vex Þle could live in:

/houdini5.0/vex/Cop/*.vex
$HOME/houdini5.0/vex/Cop/*.vex
$HFS/houdini5.0/vex/Cop/*.vex
174 2 Houdini 6.0 Reference

3 VEX Language
Reference

1 BASIC LANGUAGE INFORMATION

Note: See: $HH/vex/html/index.html for a complete set of all VEX functions.

The VEX compiler (vcc) compiles VEX code into an �executable� form. VEX is
loosly based on the C language but takes pieces from C++ as well as the Render-
Man� shading language.

Unlike C or C++, VEX has different contexts for compiling. These contexts deÞne
how the function is to be used. For example, one context is the COP context. Func-
tions written in this context can only be used to do image compositing. The POP
context is a different context where functions are used to deÞne the motion or
attributes of particle systems. While a COP function processes pixel color informa-
tion, a POP function deals with particle velocities and positions. Therefore, the
information and functions required for each context have to be slightly different.

Each VEX context has different global variables as well as a special set of runtime
functions suited to the context.

It is also possible to deÞne user functions which return one of the standard VEX
types (or void). These functions must be declared before they are referenced. The
functions are in-lined automatically by the compiler, meaning that recursion is not
possible.

Like with the RenderMan� shading language, parameters to user functions are
always passed by reference. This means that modiÞcations in a user function affect
the variable the function was called with.

The RenderMan� shading language has certain restrictions on user functions
which do not exist in VEX. It is possible to have multiple return points from within
user functions. It is also possible to reference global variables from within user
functions without requiring �extern� declarations. Although it is possible to refer-
ence global variables, this practice is discouraged since this limits the function to be
used solely within the context containing the global variables referenced. Since
parameters are passed by reference, it is probably better coding practice to pass ref-
erences global variables to be modiÞed within a user function.

The compiler expects that each source Þle contains one (and only one) context func-
tion deÞnition. Any number of user functions can be deÞned.

Parameters to context functions are dealt with in a special way with VEX. It is pos-
sible to override a parameter's value using a geometry attribute with the same name
as the variable. Aside from this special case, parameters should be considered
�const� within the scope of the shader. This means that it is illegal to modify a
parameter value. The compiler will generate errors if this occurs.
175 3 Houdini 6.0 Reference | 06 - SHOPs

Basic Language Information
The RenderMan� style of parameter declaration is used by VEX. This is similar to
the ANSI C/C++ style of parameter declarations with some minor differences for
context functions.

1. Parameters to a context function must be declared with default values. This does
not apply to user functions.

2. Parameters of the same type are declared in a comma separated list without need-
ing to re-declare the type.

3. Different type declarations must be separated by a semi-colon. For example:

 void
 user_function1(float a, float b, vector c) {...}

 cop
 cop_function(float a=0, b=0; vector c=1) {...}

 pop
 pop_function(string a="string1", b="string2";
 float c = 1, d = 1.3;
 vector e={1,2,3}, f={-1,0,.1}) {...}

1.1 LANGUAGE STRUCTURE

The structure of VEX is similar to the structure of a C program. A function is
declared and consists of statements which operate on variables. Expressions are
deÞned using the standard C operators which have the precedence as follows:

Operator Associativity Function

() left to right
Function call or expression grouping,

Structure member

! ~ + - ++
-- (type)

left to right
Logical negation, ones complement, unary
plus, unary minus, increment, decrement,

explicit type cast
* / % left to right Multiplication, Division, Modulus
+ - left to right Addition, Subtraction

< > <= >= left to right
Less than, Greater than, Less or equal,

Greater or equal
== != left to right Equal, Not equal

& left to right Bitwise and
^ left to right Bitwise exclusive or
| left to right Bitwise or

&& left to right Logical and
|| left to right Logical or

? : left to right Conditional
= += -=

*= /= %=
 &= ^= |=

right to left Assignment (or short-hand assignment)

, left to right Comma
176 3 Houdini 6.0 Reference

Basic Language Information
1.2 STATEMENTS

The basic control statements in VEX are:

{ } Multiple statements may be grouped together to form
one statement by enclosing the statements in-side of
curly braces.

if-else One of two statements will be executed.

if (boolean expression) statement [else statement]

where statement is either a single statement or a series
of statements enclosed by curly braces ({ }). The else
clause is optional.

while A statement can be executed repeatedly with the while
construct. The statement is repeated as long as the
boolean expression is true.

while (boolean expression) statement

for Like the while statement, the for statement can execute
a statement repeatedly.

for (expr; boolean_expression; expr) statement

The Þrst expression is executed once before the loop is
entered. The boolean expression is evaluated before the
execution of the statement. The statement is evaluated
only if the boolean expression is true. The second
expression is evaluated after the statement.

break A for or while loop can be terminated by using the
break statement. Unlike the C language, there is cur-
rently no continue statement.

return A user function (not a context function) can terminate
execution at any time by using the return statement. If
the function is non-void (i.e. returns a value), then the
value must be speciÞed.

return expr

NOTE

Some contexts have additional statements (i.e. the surface context adds an illumi-
nance statement to the language). Please see the context speciÞc information for fur-
ther details.
06 - SHOPs 3 177

Compiler Pre-Processor
2 COMPILER PRE-PROCESSOR

2.1 DIRECTIVES

The compiler has a pre-processor which is responsible for macro expansion as well
as stripping out comments. Comments can be in either the C form (/* */) or the C++
form (//). The pre-processor is also responsible for handling encryption of source
code. The pre-processor supports many of the standard C Pre-Processor directives:

#define name token-string
Replace subsequent instances of name with token-
string.

#define name(arg,...,arg) token-string
Replace subsequent instances of name with token-
string. Each argument to name() is replaced in the
token-string during expansion.

#undef name Un-deÞne the name macro.

#include "filename"

#include <filename
Include the contents of the Þlename speciÞed at this
point in the compilation. When the quoted notation is
used, the "current" directory is searched before the
standard locations (include path). The "current" direc-
tory is the location of the current Þle being processed.

#ifdef name The lines following will be compiled if and only if
name is a deÞned macro.

#ifndef name The lines following will be compiled if and only if
name is not a deÞned macro.

#if constant-expr The lines following will be compiled if and only if the
constant-expr evaluates to non-zero. The expression
may contain the operators:
� Logical And/Or/Not (&&, ||, !)
� Equality Operators (==, !=, <=, >=, <, >)
� Bitwise And/Or/Exclusive Or/Not (&, |, ^, ~)
� Arithmetic Operators (+, -, *, /, %)
� Parentheses.
Expressions are evaluated from left to right (unlike the
ANSI C standard of right to left). As with the ANSI
pre-procssor, all numbers must be integers.
178 3 Houdini 6.0 Reference

Compiler Pre-Processor
Note: There is also a special function deÞned(name) which will return 1 if the name
is a deÞned macro or 0 if it is not. For example, to test whether symbols foo and fum
are deÞned:

#if defined(foo) && defined(fum)

#else The lines following will be compiled if and only if the
preceding test directive evaluated to zero.

#endif Ends a conditional secion of code begun by a test
directive (#if, #ifdef, #ifndef). Every test directive must
have a matching #endif

#pragma crypt The following lines should be encrypted.

#pragma endcrypt End of an encryption block.

2.2 SYMBOLS

Symbols can be deÞned using the -D option of vcc.

The compiler (vcc) has several pre-deÞned macros which can be used for compiling.

__vex This symbol is always deÞned so that you know the
source is being compiled by vcc.

__vex_major The major version number of the compiler being used
to compile.

__vex_minor The minor version number of the compiler being used
to compile.

__LINE__ The current line of the source code being compiled.

__FILE__ The current Þle being compiled.

__DATE__ The current date (as a quoted string).
Example: "Dec 31 1999"

__TIME__ The current time (as a quoted string).
Example: "23:59:59"
06 - SHOPs 3 179

Compiler Options
3 COMPILER OPTIONS
The VEX compiler (vcc) is capable of compiling VEX code, generating dialog
scripts for VEX functions and also giving quick help by listing the global variables
and functions available in any given context.

-?, -H, -h Show help message for the compiler

-X context_name Rather than compiling code, this option will display the
list of global variables, VEX constructs and all func-
tions available for the context speciÞed.

-D name=def, -D name DeÞne a name for the pre-processor. If no value is
given with the name, the name is deÞned with a value
of 1.

-I path Add the path speciÞed to the include path for the pre-
processor. By default, the standard Houdini path is
searched for include Þles (under vex/include).

-o file By default, the compiler will generate the compiled
.vex code in the current directory. This option allows
you to specify an alternate location and name for the
output.

It is possible to specify "stdout" as a Þlename. In this
case, output will be generated to the stdout Þle descrip-
tor rather than a disk Þle.

-c Generate a binary/crypted version of the function. This
means that the generated .vex Þle will not be readable
by a human. However, it can still be used by Houdini.
See also #pragma crypt.

-e file Send error messages to this Þle rather than stderr.

-w wlist The -w will supress the printing of the speciÞed warn-
ings. The wlist should be a comma separated list of
warning numbers to suppress.

-q, -Q The -q will cause the compiler to omit printing of mes-
sages. The -Q option will supress both messages and
warnings. Errors will still be printed out with either
option.

-i Make the generated .vex code more readable by indent-
ing the output based on nesting.
180 3 Houdini 6.0 Reference

Compiler Options
-u, -U Generate a corresponding dialog script for the VEX
function. This dialog script will be usable by Houdini
to let the user modify parameters interactively (rather
than editing a string). If the -U option is speciÞed, only
the dialog script Þle will be generated, compilation of
the code will be bypassed.

-g nparms When generating dialog scripts (with the -u or -U
option), it is possible to "auto-group" parameters in to
groups of N parameters. If no groups are speciÞed
using the #pragma group directive, then this option will
force groups to be created with a maximum of nparms
per folder tab.

-v If you only have compiled VEX code, this option can
be used to extract the parameter information and build
a dialog script for the compiled code. Warning: All
pragma information is lost in the compiled code so it is
much better to generate dialog scripts from the source
code where possible.
06 - SHOPs 3 181

Encryption
4 ENCRYPTION
In some cases, VEX code may contain proprietary algorithms which the author
doesn't wish to become public knowledge. The compiler has a special set of direc-
tives to turn on/off crypting (#pragma crypt, and #pragma endcrypt). For example:

 float
 wavenoise(float height, float distance)
 {
 #pragma crypt
 return sin(distance)*height;
 #pragma endcrypt
 }

When this code is compiled, the output of the compiler will be encrypted so that the
code is reasonably secure. However, since VEX does not support dynamic linking
(i.e. linking of pre-compiled code), there is a utility vcrypt which will encrypt the
speciÞc portions of the source Þles. The compiler can still read these encrypted Þles,
however, the code contained will be secure.

If the compiler detects encrypted source in its input stream, then the Þnal output will
be encrypted. This guarantees the integrity of the encryption (meaning it's not possi-
ble to reverse engineer an encrypted function by compiling it and decoding the
assembler output). To generate encrypted object code, use the -c option on vcc.

The usage of the vcrypt program is:

vcrypt [source [destination]]

If no source and destination Þles are speciÞed, then input is read from stdin and out-
put to stdout. If no destination Þle is speciÞed, the crypted code is output to stdout.

The #pragma crypt does not require a closing #pragma endcrypt. The two directives
can be thought of as turning encryption on and off.

It is also possible to generate encrypted compiled code by using the -c option on the
vcc command line.
182 3 Houdini 6.0 Reference

Data Types
5 DATA TYPES
VEX supports a Þxed set of data types and does not allow user data types to be
deÞned. As well, arrays are not currently supported within VEX. The data types sup-
ported by VEX are:

The standard C operations are deÞned (with the standard precedence order). There
are several special exceptions to the C standard.

� Multiplication is deÞned between two vectors or points. The multiplication per-
forms an element by element multiplication (rather than a dot or cross product).

� The dot operator (.) is deÞned only for vector and vector4. The structure names have
been arbitrarily chosen to be:

� .x or .r to reference the Þrst data element.
� .y or .g to reference the second data element.
� .z or .b to reference the third data element.
� .w or .a to reference the fouth data element (for vector4 types only).

� Many operators are deÞned for non-scalar data types (i.e. a vector multiplied by a
matrix will transform the vector by the matrix).

Type Name DeÞnition Example
int Integer values 21, -3, 0x31

ßoat
Floating point scalar

values
21.3, -3.2, 1.0

vector

Three ßoating point
values. These values

can be used to
represent positions,

directions, normals or
colors (RGB or HSV)

{0,0,0}, {0.3,0.5,-0.5}

vector4

Four ßoating point
values. These values

can be used to
represent positions in

homogeneous
coordinates, colors

(RGBA)

{0,0,0,1},
{0.3,0.5,-0.5,0.2}

matrix3

Nine ßoating point
values representing a

3D rotation matrix or a
2D transformation

matrix.

matrix

Sixteen ßoating point
values representing a

3D transformation
matrix.

string A string of characters.
"hello world",
"Mandril.pic"
06 - SHOPs 3 183

Data Types
� Constants are declared in a similar fashion to C:

Note: Please refer to the Functions Guide, located online at:

$HH/vex/html/functions.html

for a complete guide to operators and functions.

1, 392, -43 integer constants
1.0, 3.14, -1e3 ßoat constants

{1,2,3}, {0,1,0} vector constants
{1,2,3,4}, {0,1,0,1} vector4 constants

{ {1,0,0}, {0,1,0}, {0,0,1} } matrix3 constant
{ {1,0,0,0}, {0,1,0,0},
{0,0,1,0}, {0,0,0,1} }

matrix constant
184 3 Houdini 6.0 Reference

Type Casting
6 TYPE CASTING
There are two separate ways to cast a variable or return type in VEX. VEX is a pol-
ymorphic language, meaning that the same function can have different signatures to
specify different calling syntaxes. For example, the noise() function can take differ-
ent arguments to generate 1D, 2D, 3D, or 4D noise (noise(ßoat), noise(ßoat, ßoat),
noise(vector), noise(vector4)). However, unlike similar languages (i.e. C++), the
return code is also considered in constructing the signature of the function. This is
an open ended problem, so in many cases, it is possible to give the compiler a "hint"
as to which version of the function should be used.

This is done by function casting which simply gives the compiler a hint as to which
version of the function to use. For example:

float n;
n = noise(noise(P));

As stated above, the noise function can take different sets of parameters. However,
there are also versions of the noise() function which return different types. In partic-
ular, the noise() function can return either a ßoat or a vector.

When generating code for the above fragment, the compiler has a choice for the
nested noise function. It can choose from:

 1.ßoat noise(vector)
 2.vector noise(vector)

Both of these forms of the noise() function are valid, so the compiler has to guess
which version to use. When it makes a guess, it will print out a warning:

WARNING (2005) Implicit casting failed for noise - guessing
 noise@VF - please try to use an explicit cast

To eliminate this warning, we can use an explicit function cast which takes the form:

n = noise(vector(noise(P)));

This form of cast generates no additional code, it just tells the compiler which ver-
sion of the function to use.

The other form of casting involves additional code generation and therefore is less
desirable than the previous function casting. The second form is the form which is
used in C and C++.

n = noise((vector) noise(P));

This form will cause the compiler to guess the return code and then take the returned
value and cast it to the type speciÞed. The compiler has some heuristics to attempt to
minimize the cost of functions, so in the above case, the nested noise() function will
return a ßoat, which is then cast to a vector. This is most likely not the desired
behaviour, and is also more expensive.

However, the second form of casting is occasionally necessary. Consider the follow-
ing example:

int a, b;
float c;

c = a / b;
06 - SHOPs 3 185

Type Casting
In this case, the compiler will generate the instruction for integer division. If the
ßoating point result is desired, then, it is important to cast the integers to ßoats. This
is done using the second form.

c = (float)a / (float)b;

This, however, will generate additional instructions to perform the cast of the varia-
bles.

The general rule of thumb is to try to perform function type casting as much as you
want. There is no run-time cost to this casting and it ensures correct code genera-
tion. However, it is also a good rule of thumb to avoid variable casting since this can
incur a run-time cost.
186 3 Houdini 6.0 Reference

VEX Compiler Pragmas
7 VEX COMPILER PRAGMAS
The VEX compiler (vcc) supports pragmas for automatically building UI dialog
scripts. These pragmas are typically ignored unless the -u option is speciÞed on the
vcc command line. The pragma�s allow speciÞcation of help, hints for how to repre-
sent the parameter, improving readability etc.

The pragmas supported are:

 #pragma callback
 #pragma crypt
 #pragma help
 #pragma info
 #pragma name
 #pragma label
 #pragma hint
 #pragma range
 #pragma choice
 #pragma group
 #pragma rendermask

7.1 PRAGMAS

#pragma callback

Generates the callback keyword in the dialog script Þle when UI is generated by
vcc. See: Ref > Scripting > Dialog Scripts > Syntax of a Dialog Script > callback .

#pragma crypt

If this pragma is found in the source, the generated VEX bytecode will be
encrypted. This prevents users of the source from reverse engineering the object
code.

#pragma help "text"

The help pragma will add the text argument to the help in the dialog script. This can
be used to give hints to users of the VEX code as to what parameters mean, what the
code is useful for, etc.

Example:

#pragma help "This is help for the VEX function."
#pragma help It gets added automatically to the help text

#pragma info "text"

Like the help pragma, this information is displayed in the help for the dialog script.
However, the info text shows up in a separate section of the help at the very begin-
ning of the help display. This is intended to be used to specify any copyrights, ver-
sion information, etc.

Example:

#pragma info "Created by Bob Loblaws - (c)2002"

Caveats: In Houdini 4.0, only SHOPs display the info text.
06 - SHOPs 3 187

VEX Compiler Pragmas
#pragma name "text"

This deÞnes the label which appears in the UI. This pragma is typically not required
since the label is now usually deÞned in the operator table deÞnition.

Example:

#pragma name "Shiny Marble"

#pragma label parameter_name "text"

This allows the deÞnition of a more descriptive label for a parameter.

Example:

// The "amp" parameter represents noise amplitude
#prgma label amp "Noise Amplitude"
displacement bumpy(float amp=0) {...}

#pragma hint parameter_name hint_type

This pragma gives more information about what a parameter is meant to represent.
For example, in VEX, a vector may represent a point in space, a color or a direction.
This hint allows precise deÞnition of what a parameter is intended to be used for.
The UI generated for the parameter will then reßect this hint.

Hint Type Meaning

none No hint is available.

toggle The integer (or ßoat) parameter represents a toggle but-
ton. The UI will generate a toggle button for this
parameter and generate values 0 for off and 1 for on.

color The parameter represents a color. The UI will generate
color sliders for this parameter.

direction The parameter represents a direction vector. The UI
will generate a direction gadget for this parameter.

position The parameter represents a position in space. There is
currently no special UI for this hint.

angle The parameter represents a direction vector. The UI
will generate an angle gadget for this parameter.

Þle The parameter represents a disk Þle. A Þle dialog will
be available for this parameter.

image The parameter represents an image on disk. A Þle dia-
log will be available for this parameter. Only recog-
nized image Þles will be displayed.

geometry The parameter represents an image on disk. A Þle
prompter will be available for this parameter. Only rec-
ognized geometry Þles will be displayed in the Þle
prompter.
188 3 Houdini 6.0 Reference

VEX Compiler Pragmas
hidden There will be no UI generated for this parameter. This
is quite useful when a parameter is intended to be over-
ridden by a geometry attribute.

Example:

#pragma hint __nondiffuse toggle // Define as a toggle button
#pragma hint specularcolor color // This represents a color
#pragma hint rest hidden // Don't show rest parameter in UI
#pragma hint mapname image // This represents an image file

#pragma range parameter_name min_value max_value

This pragma deÞnes an ideal range for a parameter. The slider generated for the ßoat
value will have the range speciÞed by the minimum and maximum values speciÞed.
This works for both integers and ßoating point parameters.

Example:

#pragma range seed 0 10
#pragma range roughness 0.001 1

#pragma choice parameter_name "value" "label"

When a choice pragma is deÞned for a parameter, the parameter is then represented
as a menu of all the choice pragmas deÞned for that parameter. This is an exclusive
list and there is no easy way for a user to set the parameter to something other than a
choice in the list.

This can also be used to deÞne integer values. However, the integer values ignore
the labels and instead number the choices in order from 0 to N (where N is the
number of entries in the menu). Example:

 #pragma choice operation "over" "Composite A Over B"
 #pragma choice operation "under" "Composite A Under B"
 #pragma choice operation "add" "Add A and B"
 #pragma choice operation "sub" "Subtract A from B"

 cop texture(string operation="over")
 {
 if (operation == "over") ... // texture coordinates
 if (operation == "under") ... // parametric coordinates
 if (operation == "add") ... // orthographic
 if (operation == "sub") ... // polar
 }

This would deÞne a menu for the parameter "operation". The menu would consist of
4 entries. The values for the string parameter would be one of "over", "under", "add"
or "sub". However, the user would be presented with more meaningful labels for the
operation types.

 #pragma choice operation "0" "Use texture coordinates"
 #pragma choice operation "1" "Use parametric coordinates"
 #pragma choice operation "2" "Orthographic Projection"
 #pragma choice operation "3" "Polar Projection"

 sop texture(int operation=0)
 {
 if (operation == 0) ... // texture coordinates
 if (operation == 1) ... // parametric coordinates
 if (operation == 2) ... // orthographic
 if (operation == 3) ... // polar
 }
06 - SHOPs 3 189

VEX Compiler Pragmas
#pragma group group_name parameter_name1 parameter_name2 ...

This pragma allows you to group like parameters into a single folder in the dialog
box. There can be multiple pragmas for each group.

Example:

 // Group Ka, Kd, Ks, roughness into a folder called BRDF
 #pragma group BRDF Ka Kd Ks
 #pragma group BRDF roughness

#pragma rendermask

This pragma is only useful for SHOP dialog generation. Each SHOP has a mask
deÞning which renderers can use the SHOP. It is possible to have a similar shader
written in the RenderMan shading language and also in VEX (or another shading
language). In this case, the rendermask can be speciÞed to include more than just
VMantra.

The rendermask parameter is closely bound the the code which generates scene
descriptions for a renderer. Thus, the renderer names are quite speciÞc. At the time
that this document was written, the different renderers which support SHOPs are:

� RIB - RIB generation for RenderMan compliant renderers.
� vMantra - The version of mantra which uses VEX for shading.
� OGL - OpenGL(tm) rendering. This is a special renderer which automatically

adds itself to most render masks. There is currently no way to prevent this.
190 3 Houdini 6.0 Reference

	1 SHOPs Shader OPerations
	1 Introduction
	Creating Your Own Shaders

	2 Select SHOP
	2.1 Description
	2.2 Parameters
	Input 1 - 4 /activate1 - activate4

	2.3 See Also
	2.4 Local Variables

	3 Sub-net SHOP
	3.1 Description
	3.2 Parameters
	Input #1 - #4 Label

	4 Switch SHOP
	4.1 Description
	4.2 Parameters
	Choose Input /input

	4.3 Local Variables

	5 Other SHOP Types
	5.1 Description
	5.2 SHOPs to Study

	2 VEX Scripting
	1 What is VEX?
	1.1 What is VEX not?

	2 Basic VEX concepts
	2.1 required Files
	2.2 Directory Structure for VEX
	2.3 compiling and file placement

	3 Creating a Simple VEX SOP Operator
	3.1 Example
	3.2 analysing the Example code
	Defining the Context
	Naming the Operator
	List of Used Parameters

	Parameter Types
	Separating Parameters
	Beginning and Ending of the Body { }
	Defining the Variables
	Vector Variables
	Point Normals
	The Normalize() Function
	Randomization

	Actually Changing the Point Position
	The P Global Variable

	Summary

	4 Creating a VEX Surface Shader
	4.1 Example
	4.2 adding ui hints to a vex operator
	Summary

	4.3 analysing the code

	5 A Simple Displacement Shader
	5.1 Introduction
	5.2 Example

	6 Continuing On Your Own
	6.1 Resources
	6.2 References
	Contexts

	7 More Operator Examples - COPs
	7.1 Introduction
	7.2 Exercise

	8 VEX Hints and Tips
	8.1 Assigning Different Texture Coordinates for Surface and Displacement Shaders
	8.2 Displacing Points in Geometry Based on a Texture Map
	8.3 Detecting if UV Coords already Exist
	8.4 Getting Values To and From Vectors
	8.5 Creating New Attributes in VEX
	8.6 Using the Rest Attribute in a Shader
	Sharing VEX Attributes

	8.7 Debugging your Code
	8.8 Creating Groups in SOPs and POPs and Adding to Them
	8.9 Bump Mapping in VEX
	8.10 All VEX Functions in Radians
	8.11 User-defined Functions
	8.12 Transforming Pixels without Streaking in COPs
	8.13 TIPS for Fixing Errors
	8.14 Search Path for VEX Operators/Shaders
	8.15 Vex File Locations and Overrides

	3 VEX Language Reference
	1 Basic Language Information
	1.1 Language Structure
	1.2 Statements
	Note

	2 Compiler Pre-Processor
	2.1 Directives
	2.2 Symbols

	3 Compiler Options
	4 Encryption
	5 Data Types
	6 Type Casting
	7 VEX Compiler Pragmas
	7.1 Pragmas

