

1 Scripting
This section covers Houdini�s
Scripting Language.

1 INTRODUCTION

Much of what you do in Houdini�s graphic interface can also be done using a text-
based scripting language. These keyboard commands can also be used in sequence
as a scripting language to create macros, or even to edit saved .hip Þles. You can
alternate between text and graphic commands. Text commands can be edited in
scripts and executed by Houdini. You can minimize typing by using abbreviations,
aliases, variables and script macros.

There are several places where the scripting language can be accessed. The Textport
in Houdini allows you to type commands directly and see the output immediately.
The Operator Macros allows pre-deÞned scripts to be executed with a graphical
interface to set their parameters. The stand-alone application hscript provides a non-
graphical version of Houdini.

Houdini uses �type-ahead� which allows you to type commands before Houdini has
Þnished executing the current text or graphic command.

The text command facilities enable you to work more efÞciently because some com-
plex operations can be achieved with a few keystrokes rather than many button
clicks and cursor movements. For example, to add 1000 objects and lay them out in
a grid can be completed with less than 10 lines of script.

For more information on the structure and uses of Houdini�s scripting language, see
the User Guide�s chapter on Scripting.

1.1 OPENING A TEXTPORT

You can open a Textport by selecting the Textport from any pane Types menu.
79 1 Houdini 6.0 Reference | 12 - Scripting

Intr

oduction

1.2 NAVIGATING WITHIN THE TEXTPORT

KEYBOARD SHORTCUTS

[Select text. Selected text becomes red. You can only
select a single line of text at a time.

] Paste text.

\ Scroll Textport. Mouse pointer changes into a hand
cursor which allows you to pan the text area in much
the same way as you can pan the Layout area.

U / V Scroll text up / down, one page at a time.

Q / Z Returns you to the beginning / end of the Textport
entries (maximum of 2000 lines).

COPYING AND PASTING

copying

Select text within the Textport by dragging across the text with the left mouse ([).
The text becomes highlighted in red and is copied to the clipboard as soon as you
release the mouse button. You can copy only one line of text at a time.

pasting

Text from the clipboard (i.e. the last text that was higlighted) can be pasted by click-
ing within the Textport with the middle mouse (]).
80 1 Houdini 6.0 Reference

The Scripting Language

2 THE SCRIPTING LANGUAGE

2.1 ORDER OF EXPANSION

Expansion of a Houdini command follows the C shell expansion standards very
closely. There are some subtle differences.

LIMITATIONS

� The maximum line length for a Houdini command is 8 Kb (expanded)
� The maximum number of arguments on a command line is 1024
� The maximum number of number of nested if statements in a single source Þle is

128
� The maximum number of source Þles is limited by the system limit on open Þles
� There is no limit for nested loops

LEXICAL STRUCTURE

Houdini splits input lines into words at space characters, except as noted below. The
characters ; < > () = form separate words and Houdini will insert spaces around
these characters except as noted below. By preceding a special character by a back-
slash (\), its special meaning can be suppressed.

evaluation of quotes

Strings enclosed in a matched pair of quotes forms a partial word. Within double
quotes (�), expansion will occur. Within single quotes (�) expansion will not be
done. Within back-quotes (`) the enclosed string will be evaluated as a Houdini
expression and the result will be considered to be a partial word. Unlike csh, inside a
matched pair of quotes, the quote character may be protected by preceding the slash
with a back-slash.

Back-quotes are evalutated with a higher priority than double quotes. This means
that if a double-quoted argument encloses a back-quoted string, the back-quoted
string may contain double quotes without terminating the initial double quote delim-
iter. For example, the string:

"foo�ch("/obj/geo1/tx")�"

will be parsed as a single argument.

Note: As a general rule, do not include spaces between your �back� quotation marks
and what lies between them. Houdini may not evaluate them if there are extra
spaces.

comments

The character # introduces a comment which continues to the end of the line. This
character can be protected by a back-slash (\) or by enclosing the character in
quotes.
12 - Scripting 1 81

The Scripting Language

COMMAND STRUCTURE

The output of a Houdini command can be redirected to a UNIX Þle by using the
meta-character >. The output can be appended to a UNIX Þle by using >>. To redi-
rect the error output and the standard output of a command to a UNIX Þle, the char-
acter sequence >& can be used.

Multiple commands can be speciÞed on the same line by separating them with semi-
colons (;).

EXPANSION

Expansion is done in the following order: History substitution, Alias expansion,
Variable & Expression expansion.

History substitution is not as sophisticated as the csh history mechanism. The sup-
ported substitutions are:

!! Repeat last command

!str Repeat last command matching str

!num Repeat command �num� from the history list

!-5 Repeat the command run Þve commands previous

With the !! substitution, characters following the !! are appended to the command.

The resulting command is displayed in the Textport before the command is run.

Alias expansion is also not as sophisticated as csh. For example, one current limita-
tion is that there is no recursive alias expansion. For example, the following
sequence of commands will not produce the expected result:

houdini -> alias opcd opcf
houdini -> alias cd opcd

The cd alias will result in an unknown command �opcd� since the alias expansion
terminates after the Þrst expansion. As well, alias expansion does not include the
history meta-character substitution that csh supports.

Variable and expression evaluation are done at the same time and have equal prece-
dence. Variables are delimited by a dollar sign ($) followed by the variable name. A
variable name must begin with letter or an underscore (_) followed by any number
of letters, numbers or underscores. As well, the variable name may be delimited by
curly braces ({}) in which case the contents of the curly braces is expanded before
the variable name is resolved. This allows for pseudo array operations on variables.
For example:

houdini -> set foo1 = bob
houdini -> set foo2 = sue
houdini -> for i = 1 to 2
> echo ${foo${i}}
> end
bob
sue
82 1 Houdini 6.0 Reference

The Scripting Language

Expression evaluation is done on the string contained within matching back-quotes
(�). Inside the back-quotes, expression expansion is performed as opposed to com-
mand line expansion. The expression is evaluated, and the resulting string is used
to replace the expression on the command line. If the expression evaluates to a type
other than a string, the result is cast to a string and this is the value used.

COMMAND EXPRESSIONS

These differ from general Houdini expressions, though Houdini expressions can be
used inside of command expressions. The command expressions are used in the
�while� and �if� commands. The order of operations in a command expression is as
follows:

() Parentheses

== != < > <= >= Equal, Not Equal, Less Than, Greater Than, Less Than
or Equal, Greater Than or Equal

&& || Logical And and Logical Or

Expressions can be enclosed in parentheses for clarity, but this is not necessary.

2.2 VARIABLES

There are two types of variables in Houdini, local variables and system or global
variables. Local variables are local to Houdini (or the script being executed). When
the script terminates, these variables will automatically be unset. Global variables
will remain in the scope of all scripts and also to any UNIX programs started by
Houdini. The �set� command will create local variables, while the setenv command
will create global variables. For example:

houdini -> setenv agent = 99
houdini -> set local_agent = 45
houdini -> echo Agent $agent, this is agent $local_agent\n
Agent 99, this is agent 45
houdini -> unix echo �Agent $agent, this is agent $local_agent�
local_agent - Undefined variable

Note, the single quotes prevent Houdini from expanding the contents of the com-
mand (see order of expansion).

All variables created by loops are considered local variables (i.e. the �for� loop will
use local variables).
12 - Scripting 1 83

The Scripting Language
2.3 PATTERN MATCHING

Many of the op and ch commands allow patterns to specify multiple objects or chan-
nels. These patterns allow wildcards which will match all or parts of strings.

* Match any sequence of characters

? Match any single character

[set] Match any characters enclosed in the square brackets.
In Houdini, the [a-g] format is not currently supported,
the characters must be listed.

@ [group name] Expands all the items in the group. Since each group
belongs to a network, you can specify a path before the
@group identiÞer.

EXAMPLES

opcf /obj ; opls -d @geo

This example lists all the objects in the group named �geo�

opcf /obj/geo1; chadd @xform_sops tx ty tz

This example adds channels (tx, ty, and tz) to all the SOPs contained in the
xform_sops group.

opcf /mat ; opls /obj/@lights

This example shows how to reference groups outside of the current folder.

See also: Expression Language > Pattern Matching p. 38.

2.4 COMMAND LOOPS

There are three different looping constructs in the Houdini scripting language:

The for loop will loop from the start, up to and including the end. foreach will cycle
through every element in the element_list assigning the variable value to be a differ-
ent element each iteration through the loop.

All variables in the for and foreach loops are local variables. To export the variable
to other scripts (or to UNIX commands), simply set a global variable using setenv
inside the loop. See for p. 112, foreach p. 112, and while p. 120.

for variable = start to end [step increment]
 ...
end

foreach variable (element_list)
 ...
end

while (expression)
 ...
end

for loop

foreach loop

while loop
84 1 Houdini 6.0 Reference

The Scripting Language
EXAMPLE

You can use a loop to perform repetitive tasks for you. For example, if you wanted
to wanted to merge 255 SOPs, it would be faster to write a short script than to do all
that wiring manually. For example, if you named your SOPs consistently, like:

model-0, model-1, model-2... model-255

then you could execute the following script in a Textport:

for i = 0 to 255
 opwire model-$i -$i merge1
end

If you haven�t been consistent with naming, you could also do it with a foreach .

2.5 CONDITIONAL STATEMENTS

The �if� command provides the ability for a script to check a condition and then
execute one set of commands if the condition is true or an alternate set of commands
if the condition is false. It should have an endif to signify the end. See if p. 114.

if (expr) [then]
 ...
else if (expr2) [then]
 ...
else
 ...

endif

2.6 ALIASES AND MULTIPLE COMMANDS

Some frequently used commands can be represented with a single word, an alias.
For example:

houdini-> alias greet echo hello world
houdini-> greet
hello world
houdini-> alias mine �opset -d off * ; opset -d on geo1�
houdini-> mine

This will execute the string attached to the alias �mine� and turn off the display of
all the objects then turn on object geo1.

The next two commands list, then undeÞne, an alias:

houdini-> alias
greet hello world
mine opset -d off * ; opset -d on geo1
houdini-> alias -u greet

Houdini accepts several commands on the same command line separated by a semi-
colon. This does not apply to semicolons embedded in quotes. Aliases can contain
commands embedded in quotes.

Note: Alias expansion is not performed if the local variable noalias is set.
12 - Scripting 1 85

The Scripting Language
2.7 USING ARGUMENTS IN SCRIPTS

The source command, when entered at the c-shell prompt, can have arguments after
the .cmd Þle name. These arguments are set to Houdini variables so that they can be
used by the script. For example:

houdini-> source repeat.cmd 1 10 2 blockhead

where repeat.cmd contains the Houdini script,

echo Hello, my name is $arg4
for i = $arg1 to $arg2 step $arg3
echo I said, my name is $arg4

end

Note that there are four variables in the script: arg1, arg2, arg3 and arg4. These are
set to the source arguments 1, 10, 2 and blockhead respectively. This mechanism
works well with the -g options of the rcwrite and opdump commands, which cause
object names to be written out generically, as $arg1, $arg2 and so on. In this way,
names of objects can be changed when reading them as scripts.

$ARG0 – NAME OF THE SCRIPT

You can get the name of the script being run from $arg0. For example:

source myscript.cmd 1 4.5 7 balloon

will come into the script with

$argc = 5
$arg0 = myscript.cmd
$arg1 = 1
$arg2 = 4.5
$arg3 = 7
$arg4 = balloon

This allows usages such as:

if $argc != 5 then
 echo USAGE: source $arg0 numclowns clownsize numtoys toytype
 exit
endif

$ARGC – NUMBER OF ARGUMENTS PASSED TO SCRIPT

The number of arguments passed to the script can be retrieved with the variable
$argc, for example, from the lookat.cmd script:

USAGE: lookat.cmd eyeobject focusobject
if $argc!= 2 then
 echo USAGE: source lookat.cmd eyeobject focusobject
 exit
endif
86 1 Houdini 6.0 Reference

The Scripting Language
SHIFT COMMAND

In addition to using arguments, scripts can do very simple parsing of the command
line using the shift command. Shift will shift the argument index one argument to
the right. For example, the script for lattices sets the number of lattices (NL) to
default to 3, however, if the Þrst argument passed to it is -n then the NL will be set to
that argument; and the arguments shifted:

lattice.cmd - builds a lattice deformation box around an object
set NL = 3
if �$arg1� == �-n� then
 shift
 set NL = $arg1
 shift
endif
...

Note that parsing occurs by shifting; this implies that the arguments must be passed
in a speciÞc order.

2.8 EXECUTING SCRIPTS

You can execute a list of commands located in a UNIX text Þle by running the source
command. The following is fetched from the standard Houdini directory containing
scripts, $HH/scripts

houdini-> source sixcreate.cmd

Normally, Houdini executes all the commands in any command Þle before redraw-
ing the screen.

2.9 EXAMPLE SCRIPT

TEXTPORT EXAMPLE – WIRING OPS

You can use a loop to perform repetitive tasks for you. For example, if you wanted
to wanted to merge 255 SOPs, it would be faster to write a short script than to do all
that wiring manually. For example, if you named your SOPs consistently, like:

model-0, model-1, model-2... model-255

then you could execute the following script in a Textport:

for i = 0 to 255
 opwire model-$i -$i merge1
end

If you haven�t been consistent with naming, you could also do it with a foreach .
12 - Scripting 1 87

The Scripting Language
GUESSING GAME

The following is a simple script which illustrates the use of loops, conditional exe-
cution, and variables. For more examples, see the Scripting section of the User
Guide.

Houdini command script for the guessing game (guess.cmd)
First, let�s get a random seed
set foo = `system(date)`
set seed = `substr($foo, 14, 2)``substr($foo, 17, 2)`

Then, pick a random number
set num = `int(rand($seed)*100)+1`
set guess = -1
echo Guess a random number between 1 and 100.
while (�$guess� != �$num�)
echo -n Enter guess (q to quit): �
read guess

if (�$guess� == q || �$guess� == ��) then
 break;
endif

Ensure they entered a number - i.e. convert to a number
set iguess = `atof($guess)`
if ($iguess < $num) then
 echo Too low
else if ($iguess > $num) then
 echo Too high
else
 echo Spot on!
endif

end

Come here if they selected �q� to quit:
echo The number to guess was $num
88 1 Houdini 6.0 Reference

3 SCRIPTING WITH HSCRIPT AND THE C-SHELL
In many cases an animator or Technical director will not want to use the full graphi-
cal version of Houdini, but simply deal with the text version - hscript and use the C
shell. The main advantage to this is the animator can write automated scripts to
render sequences of frames without the need for an attendant animator.

Houdini's hscript allows you to accomplish virtually everything that you could with
the full GUI interface, but with text-based commands. hscript also makes the transi-
tion from the GUI to the text version relatively easy with the opscript command.

This section assumes that you're relatively familiar with hscript and Houdini's text-
port commands and provides you with an explanation of how to incorporate hscript
and C shell commands. The following discussion centers around writing render
scripts, though much of this information can be used to write other kinds of scripts
(such as adding in composite operations or Þle operations).

3.1 THE BASICS OF INCORPORATING C SHELL AND HSCRIPT

If you�ve used hscript within the conÞnes of Houdini�s textport, then you�ll realize
that hscript expects keyboard input. The trick to incorporating hscript and C shell is
to redirect commands coming from the C shell so they appear to be keyboard input.
Once this is done, commands can be sent to hscript as if you were typing the com-
mands from the textport.

Following, is the basic form a script to do this takes:

#! /bin/csh -f

#add any standard C shell commands here.

hscript<<ENDCAT

#any text that follows here is redirected to hscript
#so enter hscript commands here

#stop processing hscript commands
ENDCAT

#add supplementary standard C shell commands
#end of shell script

3.2 SYMBOLS << AND >& EXPLAINED

The lines hscript<<ENDCAT and ENDCAT are signiÞcant. What does the << ENDCAT
mean? Simply put, anything between these lines is interpreted as hscript commands
and any commands placed outside these lines is interpreted as standard C shell com-
mands. Actually you don�t have to use ENDCAT � it could be any word that is not a
reserved word in C shell or hscript. However it�s better to pick a standard and stick
to what works.
89 1 Houdini 6.0 Reference | 12 - Scripting

Scripting With Hscript and the c-shell
Do not incorporate extra spaces or comments on the line that contains the ENDCAT
terminator. If you do, you'll get an unknown variable error.

Alternatively, you might see (and use) the line hscript<<ENDCAT >& renlog or
something similar. We�ve seen what << ENDCAT means � now for the >& renlog.

The >& means any error messages that normally would appear on screen are instead
written to a Þle. In this case the Þle is called renlog. You should note that renlog
can be any Þle name.

3.3 EXAMPLES – RENDERING SCRIPTS

EXAMPLE 1 – BASIC RENDER

Looking at a very simple example, the following script works with two parameters�
the .hip Þle to render and the Þle name to send the rendered image to. The script is
named simple_ren and would be invoked as follows:

basic_render test.hip /usr/tmp/test_image.pic

source
#! /bin/csh -f

#check to see if user suppled the correct number of arguments
#- exit if not

if ($#argv < 2) then
echo �USEAGE: ren_script <hip_file> <out_file>�
exit

endif

set up user supplied arguments
set HIP_FILE = $1
set OUT_FILE = $2

start up hscript and allow commands to be sent from C shell

hscript << ENDCAT >& renlog
mread $HIP_FILE
opcd \/out

set the ouput file name for the render output driver

opparm mantra1 picture ($OUT_FILE)

#start the render

render mantra1

#signal an end to commands sent to hscript

ENDCAT
90 1 Houdini 6.0 Reference

Scripting With Hscript and the c-shell
explanation
#! /bin/csh -f

This line is required to be at the beginning of each C shell script to denote that it
contains commands that can be executed as a C shell script.

if (#$argv < 2) then
echo �USEAGE: ren_script <hip_file> <out_file>�
exit

endif

These lines check to see if you entered the correct number of arguments. The varia-
ble #$argv contains the number of parameters passed to the C shell script from the
command line. For example, if you typed basic_render test.hip, the variable #$argv
would be set to 1, and an error message would be generated because you omitted a
destination image Þle as part of the command string.

set HIP_FILE = $1
set OUT_FILE = $2

These lines set the variables $HIP_FILE and $OUT_FILE to the parameters sent to
the C shell from the command line. For instance, if you typed basic_render test.hip
/usr/tmp/test.pic, $1 and $2 and, consequently, $HIP_FILE and $OUT_FILE, would
be set to test.hip and /usr/tmp/test.pic respectively.

hscript << ENDCAT >& renlog

Commands following this line will be interpreted as hscript commands up until it
encounters the word ENDCAT. Also any error messages encountered in hscript will be
sent to a Þle called renlog.

mread $HIP_FILE

Reads the .hip Þle speciÞed by this variable.

opparm mantra1 picture ($OUT_FILE)

Changes the default output paramter so the rendered image is sent to the Þle speci-
Þed by $OUT_FILE (the default setting is ip).

render mantra1

Render the image using the mantra1 output driver. Note that this case assumes that
the output driver mantra1 exists in the saved .hip Þle.

ENDCAT

This signals the C shell to stop redirecting commands to hscript. Don't insert extra
spaces or comments or you will get the following error:

ENDCAT - << terminator not found

EXAMPLE 2 – RENDERING SEQUENCES OF FRAMES

#! /bin/csh -f

#check to see if user suppled the correct number of arguments
#- exit if not
12 - Scripting 1 91

Scripting With Hscript and the c-shell
if ($#argv < 4) then
echo "USEAGE: ren_script <hip_file> <out_file> <start><end>"
exit

endif

set up user-supplied arguments

set HIP_FILE = $1
set OUT_FILE = $2
set START = $3
set END = $4

start up hscript and allow commands to be sent from C shell

hscript<<ENDCAT>&renlog
mread $HIP_FILE

opcd \/out

set the ouput file name for the render output driver

opparm mantra1 picture ("$OUT_FILE")

turn on the frame range option and give it appropriate range.

opparm mantra1 trange (on) f ($START $END 1)

#start the render

render mantra1

this signals and end to our commands to hscript

ENDCAT

EXAMPLE 3 – FOR – NEXT LOOP

#! /bin/csh -f

#check to see if user suppled the correct number of arguments
#- exit if not

if ($#argv < 4) then
echo "USEAGE: ren_script <hip_file> <out_file> <start><end>"
exit

endif

set up user supplied arguments

set HIP_FILE = $1
set OUT_FILE = $2
set START = $3
set END = $4
92 1 Houdini 6.0 Reference

Scripting With Hscript and the c-shell
start up hscript and allow commands to be sent from C shell

hscript<<ENDCAT>&renlog
mread $HIP_FILE

opcd \/out

set the ouput file name for the render output driver

opparm mantra1 picture ("$OUT_FILE")

opcook
for FRAME = $START to $END
echo "Rendering frame
fcur \$FRAME

render mantra1

end

this signals and end to our commands to hscript

ENDCAT

3.4 VARIABLE CAVEATS

Looking at the above listing, you might have noticed that some variables are pre-
pended by a "\". This is to avoid the unknown variable message that occurs in C
shell. We�ll delve into this a little more deeply here. In short, prepending a backslash
onto a variable name prevents C shell from expanding the variable before it gets to
hscript.

From Houdini's textport you may do something like the following:

set hello_var = "Hello good citizen..."
echo $hello_var

or

for frame = 1 to 100 step 1
echo "Rendering frame $frame...

end

This would work well. However, you will run into problems when you incorporate
this same set of commands using C shell and hscript. For example:

hscript << ENDCAT
for frame = 1 to 100
echo "Rendering frame $frame..."

end
ENDCAT
12 - Scripting 1 93

Scripting With Hscript and the c-shell
Running this script would give you the error: frame - Undefined variable In
order to correct this you prepend a "\" to any variables you are manipulating (all
those variable names that you would put a '$' in front of). The above example would
be corrected as follows:

hscript << ENDCAT
for frame = 1 to 100
echo "Rendering frame \$frame..."

end
ENDCAT

When the C shell encounters a $ it tries to expand that variable into a value. How-
ever, you don't want C shell to do this, you want hscript to expand it instead. The
backslash prevents the C shell from expanding the variable before it gets to hscript.

3.5 C SHELL SCRIPTING NOTES

There are several conventions to adhere to when writing shell scripts.

� make sure the Þrst line in your script starts with #! /bin/csh -f
� make sure that the script is made executable with the chmod() function. For exam-

ple chmod 555 simple_ren makes the script simple_ren readable and executable
by everyone.

� watch what you put on the line containing the terminator ENDCAT.
� Be wary of of prepending variables declared in hscript, when running hscript

from the C shell. These must be prepended by a "\" in order to work properly.

3.6 OBTAINING PARAMETERS FOR OUTPUT DRIVERS AND OTHER OPS

OPSCRIPT COMMAND

Up to this point we�ve used the opparm command to set up the parameters for our
renders. Just how and where do we get these parameters? The easiest method of
obtaining them is through the use of the opscript command.

The opscript command allows you to obtain the paramters (in text format) of any
Operator available in Houdini. This means that you can create your scene and output
drivers with Houdini�s graphical interface and then use the opscript command to
write these parameters to a Þle for use in shell scripts.

DUMPING OPSCRIPT PARAMETERS

To write an operator�s parameters from the graphical interface to a Þle for inclusion
in a script, do the following:

1. Create a new output driver with Houdini�s graphical interface (or modify an
existing one like mantra1);

2. Open the Textport (AS t);

3. Type opcd /out in the Textport. This moves you to the output directory;
94 1 Houdini 6.0 Reference

Scripting With Hscript and the c-shell
4. Type opscript <drivername> > <filename>. If the driver name is called
mantra1 and the Þlename you want to save to is called /usr/tmp/driver.cmd then
type: opscript mantra1 > /usr/tmp/friver.cmd

SAMPLE OUTPUTS FROM OPSCRIPT

The following output was generated with the opscript command:

opscript mantra1 > /usr/tmp/driver.cmd :
1: # Node mantra1
2: opadd -n mantra mantra1
3: oplocate -x 0 -y 0 mantra1
4: opparm mantra1 execute (0) trange (on) f (1 150 1) \
5: renderer (Mantra2) camera (cam1) visible (*) tscript (off) \
6: script (/usr/tmp/test.cmd) binary (off) picture (�$HIP/$F.pic�) \
7: dof (on) jitter (1) dither (0.004) gamma (1) sample (3 3) \
8: field (frame) blur (deform) tres (on) res (320 243) \
9: resmenu (�640 486 1.0�) aspect (1) command (�mantra3�)
10: opset -d off -r off -t off -l off -s off -u off -c off -C off -p off mantra1
11: opcf /out

Lines 4-9 specify parameters for the ouput driver mantra1. Normally they would
appear as one line but have been formatted on multiple lines here for the sake of leg-
iblity.

To use this information in a script, you would remove lines 3, 10, and 11, (these are
not necessary unless you are importing it into the graphical version of Houdini)
leaving you with:

1: # Node mantra1
2: opadd -n mantra mantra1
4: opparm mantra1 execute (0) trange (on) f (1 150 1) \
5: renderer (Mantra2) camera (cam1) visible (*) tscript (off) \
6: script (/usr/tmp/test.cmd) binary (off) picture (�$HIP/$F.pic�) \
7: dof (on) jitter (1) dither (0.004) gamma (1) sample (3 3) \
8: field (frame) blur (deform) tres (on) res (320 243) \
9: resmenu (�640 486 1.0�) aspect (1) command (�mantra3�)

This fragment adds an output driver called mantra1 which tells hscript to render
using mantra. It then uses the opparm parameter to set the requisite parameters.

At Þrst glance, the number of parameters used with the opparm command seems
cumbersome. In many cases, you might want to use default settings and just tweak
one or two parameters. For example, assume that the only thing you want to change
from the defaults is the size of the output image. To accomplish this, your script
fragment might look like the following:

opadd -n mantra mantra1
opparm tres (on) res (640 480)

In this case you are overriding the default resolution with tres (on) and specifying
the custom resolution with res (640 480). To use this in a Þle you could do two
things:

1. Copy these lines into your C shell script (the approach used thus far), or;

2. Reference this Þle in the C shell using the source command.
12 - Scripting 1 95

Scripting With Hscript and the c-shell
3.7 USE OF THE SOURCE COMMAND

Though it hardly seems a chore to simply copy these lines into your shell script in
these simple cases, imagine that you have many script fragments that are changed
repeatedly during a production by your Technical Director and these are stored in a
central repository. Instead of having the Technical Director or the animator make
these changes in the C shell script, all that is necessary is to change the .cmd Þle
itself and the changes are automatically reßected. The use of the source command
can make a Þle cleaner and easier to maintain, but it depends on the individual and
the overall complexity of the script.

The two examples below outline render scripts that are functionally equivalent,
except the Þrst example uses the source command to reference a Þle created by
opscript, while the second reproduces the code �inline�.

USING SOURCE

#! /bin/csh -f

set HIP_FILE = �/usr/temp/test.hip�

hscript << ENDCAT # start up hscript and allow commands to be
mread $HIP_FILE # sent from the C shell

#CREATE RENDER OUTPUT DRIVER
#source in the render.cmd file that we have previously created
 source /usr/tmp/render.cmd

#start the render
render mantra1

ENDCAT # this signals and end to our commands to hscript

WITHOUT USING SOURCE

#! /bin/csh -f

set HIP_FILE = �/usr/temp/test.hip�

hscript << ENDCAT # start up hscript and allow commands to be
mread $HIP_FILE # sent from the C shell

#CREATE RENDER OUTPUT DRIVER
Node mantra1
opadd -n mantra mantra1
opparm mantra1 execute (0) trange (on) f (1 150 1) \
renderer (Mantra2) camera (cam1) visible (*) tscript (off) \
script (/usr/tmp/test.cmd) binary (off) picture (�$HIP/$F.pic�) \
dof (on) jitter (1) dither (0.004) gamma (1) sample (3 3) \
field (frame) blur (deform) tres (on) res (320 243) \
resmenu (�640 486 1.0�) aspect (1) command (�mantra3�)

#start the render
render mantra1

ENDCAT # this signals an end to our commands to hscript
96 1 Houdini 6.0 Reference

Scripting With Hscript and the c-shell
3.8 DEFAULT PARAMETERS FOR OUTPUT DRIVERS

The following are the default parameters set for each output driver when using the
opadd command or when adding a new driver in the graphical interface.

It is not necessary to include all parameters available when executing an opscript
command�just the ones you want changed from the defaults. Also note that some
parameters remain consistent for each driver and should not be changed. These
include:

� execute (0)
� renderer (Mantra2)
� resmenu (�640 486 1.0�)

PARAMETER MEANINGS

trange (on/off) when rendering, this parameter determines whether or
not to use the frame range speciÞed by f (). When off,
only the current frame will be rendered.

f (start end inc) speciÞes the frame range that is rendered.

camera (cam) speciÞes which camera is used for the render.

visible (scope) speciÞes which objects are rendered. The wildcard *
means all objects are made visible in the render.

tscript (on/off) speciÞes whether or not to generate the .ifd (instanta-
neous frame description for mantra) or a .rib (Render-
Man interface bytestream for Renderman) instead of a
rendered picture. This option will override that set with
the picture () parameter.

script (script_name) speciÞes the name of the script generated when the
tscript () option is on.

binary (on/off) speciÞes whether the output Þle will be saved in ASCII

or binary format.

picture (Þle_name) the name of the output Þle when generating images.

dof (on/off) speciÞes whether to use depth of Þeld.

jitter (value) speciÞes the jitter value used in conjuction with anti-
aliasing techniques.

dither (value) sets the dither level.

gamma (value) sets the gamma value for the frame.

sample (xval yval) sets the number of supersamples in the horizontal and
vertcal directions on a per pixel basis.
12 - Scripting 1 97

Scripting With Hscript and the c-shell
Þeld (frame/even/odd) allows you to specify full frame, even Þeld or odd Þeld
dominance.

blur (off/deformation/transformation)
speciÞes what type of motion blur to use for Mantra
and Renderman.

tres (on/off) speciÞes whether to override the default camera resolu-
tion.

res (x y) speciÞes resolution of frame in pixels when tres() is on.

aspect (value) speciÞes the aspect ratio.

3.9 OUTPUT DRIVER SAMPLES

MANTRA

opparm mantra1 execute (0) trange (off) f (1 150 1)
renderer (Mantra2) camera (cam1) visible (*) tscript (off)
script (��) binary (on) picture (ip) dof (off) jitter (1)
dither (0.004) gamma (1) sample (3 3) field (frame)
blur (none) tres (off) res (320 243) resmenu (�640 486 1.0�)
aspect (1) command (�mantra3 -v 0.015�)

RENDERMAN

opparm rman1 execute (0) trange (off) f (1 150 1)
renderer (Mantra2) camera (cam1) visible (*) tscript (off)
script (��) binary (on) picture (ip) dof (off) jitter (1)
dither (0.004) gamma (1) sample (3 3) field (frame)
blur (none) tres (off) res (320 243) resmenu (�640 486 1.0�)
aspect (1) command (render) device (framebuffer)

COP

opparm cop1 execute (0) trange (off) f (1 150 1)
icenetname (��) copname (��) copoutput (ip) tres (off)
res (320 243) fraction (1)

GEOMETRY

opparm geometry1 execute (0) trange (off) f (1 150 1)
objectname (geo1) sopname (font1) sopoutput (�$HIP/$F.bgeo�)

SCENE

opparm scene1 execute (0) trange (off) f (1 150 1)
renderer (Mantra2) camera (cam1) visible (*) tscript (off)
script (��) binary (on) picture (ip) dof (off) jitter (1)
dither (0.004) gamma (1) sample (3 3) field (frame)
blur (none) tres (off) res (320 243) resmenu (�640 486 1.0�)
aspect (1) command (mantra)
98 1 Houdini 6.0 Reference

Scripting With Hscript and the c-shell
3.10 A FINAL EXAMPLE (RENDERING AND COMPOSITING)

This example is slightly contrived, but it is a good example of things you can do
with scripting. Let�s say you have two animators who are working on the same
scene and at the end of the day, you want to render their contributions and make a
side by side comparison to see which one is better.

We�ll assume that we have two different .hip Þles � one from each animator. We
then want to render a sequence of frames from each .hip Þle and then use the com-
positor in Houdini to place them side by side and then write the resulting �compari-
sion frames� out to disk. You want to be able to do this automatically at night and
then come in the next morning to see the results.

This involves two steps:

� Render the two sequences of frames, using a variation of the Þrst render script
example.

� Compositing the images together, and then writing them out to disk.

We'll build our COP network interactively in Houdini and save it out as a .hip Þle.
We'll then change the parameters of the composite from the C shell based on the
render parameters we give it. This makes life much easier while still giving you all
the ßexibility you need. You could build the entire compositing section with hscript.
This is included as listing 5 for comparision purposes.

BUILDING THE COP NETWORK

The idea will be to take a neutral background colour (like black) which is double the
size of the two input images, then use the Over COP to position and overlay the
images correctly over the background.

1. Start Houdini and create a new COP network. Call it compare.

2. In the compositor place down a constant COP. Set alpha to zero, so it is com-
pletely transparent and make sure its name is "color1".

3. Place two File COPs making sure their names are Þle1 and Þle2.

4. Append an Over COP to each of the Þle COPs and in the Spatial Shift tab select
the no scale checkbox, making sure they are named over1 and over2.

5. Attach the output from the Constant COP (color1) into the second inputs of each
of the Over COPs.

6. Put down another Over COP and run the outputs from the Þrst two Over COPs
into the inputs of the third Over.

7. Go to the Output Editor, and place a Composite output driver, making sure it is
called cop1.

8. Save this Þle and call it compare.hip. (Don�t worry about other parameters, such
as the resolution of the images, since we�ll be setting those in the C shell.)
12 - Scripting 1 99

Scripting With Hscript and the c-shell
WRITING THE RENDER SCRIPT

Create a render script called compare and save it in the same directory as com-
pare.hip. The full script is below and makes several assumptions. First, the .hip Þles
that are the animator-supplied .hip Þles, must both have an output driver called
mantra1. Second, the render script is called compare and is located in the same
directory as the compare.hip Þle.

usage
compare <hipfile1> <hipfile2> <from> <to> <xres> <yres>

example
compare animator1.hip animator2.hip 1 50 640 480

This will render out frames 1 to 1 50 from each of the Þles called animator1.hip and
animator2.hip at 640 × 480 resolution and the composite the images together using
the compare.hip Þle created above.

CODE FOR COMPARE RENDER SCRIPT

#! /bin/csh -f

#check to see if the user supplied the correct number of arguments
#- exit if not
if ($#argv < 6) then

echo "USEAGE: ren_script <hipfile1> <hipfile2> <from> <to> <xres> <yres>"
exit

endif

set HIP_FILE1 = $1 # set up user supplied arguments
set HIP_FILE2 = $2
set START = $3
set END = $4
set XRES = $5
set YRES = $6
set OUT_FILE1 = sequence1_\$F.pic
set OUT_FILE2 = sequence2_\$F.pic
set COMP_OUTPUT = comp_\$F.pic

#Render out the first sequence of images
#
hscript <<ENDCAT>&renlog # start up hscript
mread $HIP_FILE1 # read in the first .hip file

set the ouput file name for the render output driver
opcd \/out
opparm trange (on) f ($START $END 1)
opparm tres (on) res ($XRES $YRES)
opparm mantra1 picture ('$OUT_FILE1')

render mantra1

#this signals an end to C shell to stop sendng commands to hscript
ENDCAT
#Render out the second sequence of images
#
hscript <<ENDCAT>&renlog
mread $HIP_FILE2 #read in the second .hip file

opcd \/out
opparm mantra1 trange (on) f ($START $END 1)
opparm mantra1 tres (on) res ($XRES $YRES)
opparm mantra1 picture ('$OUT_FILE2')

render mantra1

#stop sending commands to hscript (effectively quitting hscript)
ENDCAT

#Do the composite, putting both images side by side
#
hscript<<ENDCAT>&renlog # start up hscript
mread "compare.hip" # read in the compositing .hip file
100 1 Houdini 6.0 Reference

Scripting With Hscript and the c-shell
opcd \/comp\/compare
opparm file1 source ('$OUT_FILE1')
opparm file2 source ('$OUT_FILE2')
opparm color1 size (\`$XRES*2\` $YRES)
opparm over2 offoffpixel ($XRES 0)

opcd \/out
opparm cop1 icenetname (compare) copname (over3)
opparm cop1 trange (on) f ($START $END 1)
opparm cop1 copoutput ('$COMP_OUTPUT')
render cop1

ENDCAT

NOTES ON THE RENDER SCRIPT

The Þrst half of the script is nothing new. It merely sets up our user-supplied param-
eters, and then renders a sequence of images from the two .hip Þles supplied as com-
mand line paramters. The third section which does the actual composite is a little
different, but if you understand the rendering sections, you should have little trouble
understanÞng how the compositing section works.

The trickiest part in this whole script is the line:

opparm color1 size (\`$XRES*2\` $YRES)

Note the backslashes here. These are necessary because we are dealing with the C
shell. In hscript we could just type in something like echo `1+1` and get 2. If we
try this through the C shell we get an error. So the general rule is if you're trying to
do arithmetic in hscript via the C shell, put a \ in front of the backquote `.

The compositing section works by setting up all of the compositing parameters on
the ßy. It Þrst tells the File COPs where to Þnd the Þles. It then tells the Color COP to
resize itself so it is double the X reolution of the two rendered images (so we can
place them side by side). Finally it tells the two Over COPs where to put the two ren-
dered images in relation to the background (in this case image one is shifted up to
the halfway mark and image two is shifted over to the right and up half way).

The Þnal step is to tell the composite output driver the frame range and Þle names
for output.

THINGS TO WATCH OUT FOR

This is a small list of things to watch out for when using hscript within the C shell.
Readng this will probably save you a lot of aggravation and time if you Þnd your
scripts don't work as they should. Many errors can be attributed to the C shell
expanding strings and variables when in fact, you don't want them to.

One other thing to keep in mind is that hscript and C shell are not syntactically the
same�though it may appear to be at Þrst glance. Entries that you make in Houdini's
textport may need some editing when you use them as input from the C shell.

Read the compare script above to see some of following items put into practice.

� Passing in strings to hscript
Passing variable strings to hscript should be encapsulated by single forward
quotes. So if you set a variable string such as set OUT = image_$F.pic then make
sure when you use it with hscript you type in '$OUT'.
If you want to pass in a string with spaces in it (like "hello there"), make sure to
put it in double quotes.
12 - Scripting 1 101

Scripting With Hscript and the c-shell
� Variables passed in as numerics
 Any variable passed into hscript as a numeric can be left as is (unless you are per-
forming arithmetic with it).

� Specifying Directories and using '/'
If you change directories in hscript (e.g. opcd /out) then make sure that any for-
ward slashes are protected by a backslash (opcd \/out).

� Arithmetic
If you want to do some arithmetic via hscript from within C shell, make sure that
any arithmetic is surrounded by a \` to prevent C shell from doing any expansion
with the backquote. For instance in hscript you might type: echo `1+2`. If you are
doing this within C shell you would use: echo \`1+2\`.

� Watch the ENDCAT
When you have the hscript<<ENDCAT ... ENDCAT sequence, take care not to
put any trailing spaces or comments after the ENDCAT. C shell is very literal
when looking for the terminating token. Look at the example scripts to see how
they are laid out.

� Make sure your C shell script starts with the line : #! /bin/csh -f
This tells UNIX that it is dealing with a C shell script. Also make sure that this
entry is on a line by itself.

� Make sure scripts are executable
Your C shell scripts have to be executable or you won't be able to run them.

To make this a little clearer, let�s look at a script segment that works when type man-
ually into Houdini�s textport, and then compare that with a version that must be
modiÞed to work with C shell. The differences are set in bold type.

segment 1 (as it would appear manually typed into houdini's textport)
set OUT_FILE1 = source1_\$F.pic
set OUT_FILE2 = source2_\$F.pic
set COMP_OUTPUT = comp_\$F.pic
set XRES = 256
set YRES = 256

opcd /comp/compare
opparm file1 source ($OUT_FILE1)
opparm file2 source ($OUT_FILE2)
opparm color1 size (`$XRES*2` $YRES)
opparm over2 offoffpixel ($XRES 0)

segment 2 (modified for use with c shell)
set OUT_FILE1 = source1_\$F.pic
set OUT_FILE2 = source2_\$F.pic
set COMP_OUTPUT = comp_\$F.pic
set XRES = 256
set YRES = 256

opcd \/comp\/compare #directory operation
opparm file1 source ('$OUT_FILE1') #using a string variable
opparm file2 source ('$OUT_FILE2') #directory operation
opparm color1 size (\`$XRES*2\` $YRES) #doing arithmetic
opparm over2 offoffpixel ($XRES 0)
102 1 Houdini 6.0 Reference

Scripting With Hscript and the c-shell
3.11 BUILDING COMPLEX FILENAMES

There are many times when you want to build complex Þlenames, based on frame
numbers or based on a Þlename referenced by the user. For example, passing in a
.hip Þle to your script, then converting this Þlename to a .pic Þle (i.e. convert
�input.hip� to �output.pic�). Below are C shell example fragments.

EXTRACTING THE BASE FILENAME, PATH AND EXTENSION

set HIP_FILE = \/usr\/tmp\/myfile.hip
set HIP_PATH = $HIP_FILE:h #keep the path/drop filename
set FILE_NAME = $HIP_FILE:t #keep the filename/drop path
set BASE = $FILE_NAME:r #drop the extension
set EXT = $FILE_NAME:e #just keep the extension

The variables would have the following values:

$HIP_FILE = /usr/tmp/myfile.hip
$HIP_PATH = /usr/tmp
$FILE_NAME = myfile.hip
$BASE = myfile
$EXT = hip

BUILDING A FILE NAME WITH A NEW EXTENSION

Continuing from above we will build a new Þlename with a new extension. We have
all of the individual components and now we want to put them back together again.

set NEW_EXT = .pic
set NEW_FILE = $HIP_PATH\/$BASE${NEW_EXT}

Notice the braces. This allows you to put togther two variables as one string. Note
that you could say $BASE$NEW_EXT, but it�s good to get in the habit of using the
braces, as it might save you trouble later on. Also notice that we put in a \/. If you
look closely at the results of $HIP_PATH, it doesn�t include the trailing forward
slash, so we have to include it ourselves.

Now we end up with the following results:

$HIP_FILE = /usr/tmp/myfile.hip
$HIP_PATH = /usr/tmp
$FILE_NAME = myfile.hip
$BASE = myfile
$EXT = .hip
$NEW_EXT = .pic
$NEW_FILE = /usr/tmp/myfile.pic

We could have accomplished the same thing much more quickly. All we really
wanted to do was change the extension. The following would be equivalent:

set $HIP_FILE = \/usr\/tmp\/myfile.hip
set FILE_NAME = $HIP_FILE:r #keep all but extension
set NEW_EXT = .pic
set $NEW_FILE = $FILE_NAME${NEW_EXT}

The reason for breaking up the full path into its individual components is so that you
can change the individual components and put them back together again.
12 - Scripting 1 103

Scripting With Hscript and the c-shell
MEANING OF :H, :R, :E, :T

More information on the following, can be found by doing a man csh and searching
for History Substitution.

:h Remove a trailing pathname component, leaving the head.
:r Remove a trailing suffix of the form `.xxx', leaving the
 basename.
:e Remove all but the suffix.
:t Remove all leading pathname components, leaving the tail.
104 1 Houdini 6.0 Reference

Scripting Tricks
4 SCRIPTING TRICKS

4.1 GROUP NAMES IN SCRIPTING COMMANDS

You specify a group within scripting commands by using the @ character before the
group name. For exampe, if you wanted to turn on/off the display of all objects in a
group, you would use the opset command (e.g. opset -d on/off geo*). In the com-
mand, we can specify an OP name (e.g. geo1), a pattern for an OP name (e.g. geo*),
or OP Groups (e.g. @myGroup).

To test this, use the Object Editor�s Edit > Edit OP Groups... menu command to cre-
ate an object group called �myGroup�. It should contain geo1, geo2, and ambient1.
You can list the objects included in myGroup with the opgls command:

/obj -> opset -d on @myGroup

Turns on the display ßags for all the objects listed in myGroup .

Using the @ character to expand a group name can also be applied to any other
Houdini scripting command that normally accepts only object names.

Tip: Try assigning this to a Function Key using the Edit > Edit Aliases... dialog.

4.2 EMBEDDING COMMANDS

Without the Group expransion using the @ character, we would have to turn on/off
display of all the objects in a group by using the opgls command delimited with sin-
gle quotes. For example, if you didn�t have the @ character, you would need to use
something like:

-> opcf /obj

/obj -> opgls -l myGroup
myGroup
 geo1
 geo2
 ambient1

/obj -> opset -d on `run("opgls -l myGroup")`

This works, because where it expects an object name (or pattern), you�re telling it to
evaluate what is within the single quotes as the name(s). The opgls command simply
lists all the objects contained in the speciÞed group. So, in effect, what you�re doing
is listing the names of all the objects within your group by having the opgls com-
mand list them out for you. You�ll get a single error (this doesn�t affect correct oper-
ation however), because the actual group name (i.e. �myGroup�) is listed along with
all the object names in that group, and hscript won�t Þnd it as a valid object.
12 - Scripting 1 105

Scripting Tricks
4.3 SETTING ACCORDING TO THE DISPLAY FLAG

If you want to set all the objects within a group (say �bugs�) but only if their Dis-
play ßag is set (Object Editor), you can use a foreach loop to check and set the status
of objects in the group which have their Display ßag on. For example:

opcf /obj

#Loop through all the objects in the group
foreach obj (�run("opglob @bugs")�)
 opset -l on $obj/�opflag($obj, "d")�

4.4 TRAVERSING AN OBJECT HIERARCHY

The following script can be used to traverse an object hierarchy. This script simply
prints out the hierarchy (with appropriate indenting), however, it can easily be mod-
iÞed to do other things.

hscript command file to traverse a hierarchy of nodes
if ($argc != 2 && $argc != 3) then
echo "Invalid usage: $arg0 opname [prefix]
exit

endif

if ($argc == 2) then
set indent = ""
set level = 1

else
set indent = ""
for i = 0 to $arg2
 set indent = "$indent "
end
set level = �$arg2 + 2�

endif
echo "$indent"$arg1

set nout = �opnoutputs($arg1)-1�
if ($nout != -1) then
for i = 0 to $nout step 1
source $arg0 �opoutput($arg1, $i)� $level
end

endif
106 1 Houdini 6.0 Reference

Intrinsic Commands
2 Scripting
Commands

Following, is a list of scripting commands available in the Houdini scripting lan-
guage. Commands can be broken up into different logical groups.

For C-shell scripting commands, consult a text on UNIX.

1 INTRINSIC COMMANDS

This set of commands provide an intrinsic level of control for scripting. These com-
mands are most like their csh equivalents.

1.1 ALIAS

SYNTAX

alias [name [value]]
alias -s
alias -u name [name2...]

EXPLANATION

Creates an alias for a command or sequence of commands. Aliases may contain
semi-colon separated statements.

-s Display a list of current aliases in �source-able� format
so they can be sourced into other HIP Þles.

-u Will undeÞne the aliases listed.

EXAMPLE

alias ls opls

This alias command changes the opls (operator list) command to the abbreviated
character string ls.
12 - Scripting 2 107

Intrinsic Commands
TEMPORARILY DISABLING ALIASING

In the Houdini shell, if the local variable noalias is set, then alias expansion is not
done on commands in the script. This variable can be used to force scripts to use the
original commands instead of user aliases. Since local variables are local per script,
once the script exits, alias expansion will continue as before. However, if the varia-
ble is set, all subsequent (nested) scripts will have alias expansion turned off. Exam-
ple:

alias echo "This is a bad alias"
set noalias = 1
echo "foo bar"
set -u noalias

In this script, even though the alias is set, the echo statement will work (since the
noalias variable is set).

1.2 BREAK

SYNTAX

break [n]

EXPLANATION

Breaks out of a loop without executing any of the remaining statements. The loop
will be terminated without completing its iterations. The integer speciÞed by n
determines how many loops to break out of. By default, n == 1.

EXAMPLE

break 3

This command string would break you out of three levels.

1.3 CMDREAD

SYNTAX

cmdread [-q] filename

EXPLANATION

Cmdread runs the commands in the Þlename speciÞed. If the -q option is speciÞed,
no warnings about missing Þlenames will be displayed. See also: source.
108 2 Houdini 6.0 Reference

Intrinsic Commands
1.4 CONTINUE

SYNTAX

continue [n]

EXPLANATION

Continue a loop without executing the statements following the continue statement.
The loop will continue iterating. The integer speciÞed by n determines how many
loops to affect.

EXAMPLE

continue 3

This command executes the script, omitting the next three loops.

1.5 ECHO

SYNTAX

echo [-n] list

EXPLANATION

The words in list are displayed. The -n option will prevent a trailing line feed from
being displayed.

EXAMPLE

echo bafflegab

This command would produce the text bafßegab below the command line.

echo `npoints(�/objects/object_name/sop_name�)`
echo `npoints(�/objects/gg/s�)`

If object is gg and the SOP is s then following expression will display the number of
points in the SOP s.

1.6 EXCAT

SYNTAX

excat [pattern]
12 - Scripting 2 109

Intrinsic Commands
EXPLANATION

This command displays the source for all expression functions in the current .hip
Þle. If a pattern is speciÞed, only those expression functions matching the pattern
are displayed.

EXAMPLE

excat fps

This will display all expressions in the .hip Þle that contain fps.

1.7 EXEDIT

SYNTAX

exedit [pattern]

EXPLANATION

This command allows you to edit expression functions. If no pattern is speciÞed,
you can add new functions to the current list. If a pattern is speciÞed, the functions
which match the pattern will be edited.

Warning: If a function is renamed or removed from the edit session, this does not
mean that the old function will be removed from the current function list. This must
be done through the exrm command.

EXAMPLE

exedit $F

Allows you to edit the expression functions containing $F.

Tip: You can also edit expression functions using the dialog displayed from the Edit
> Edit Aliases/Variables... menu command.

1.8 EXHELP

SYNTAX

exhelp [pattern]

EXPLANATION

Displays help text for all expression functions matching the pattern speciÞed. If no
pattern is speciÞed help for all the expressions is shown.

EXAMPLE

exhelp sin
110 2 Houdini 6.0 Reference

Intrinsic Commands
Displays the online help for the command chadd.

1.9 EXLS

SYNTAX

exls

EXPLANATION

List all the current expression functions.

1.10 EXREAD

SYNTAX

exread diskfile [diskfile2...]

EXPLANATION

This command reads external Þles of expression functions.

EXAMPLE

exread /n/usr/staff/betty/[filename]

This command reads the expression functions in the path and Þle(s) speciÞed.

1.11 EXRM

SYNTAX

exrm [pattern]

EXPLANATION

All expression functions matching the pattern will be removed.

1.12 EXIT

SYNTAX

exit
12 - Scripting 2 111

Intrinsic Commands
EXPLANATION

Terminates a source Þle. This will terminate all �if� statements and �for� loops cor-
rectly. It is not possible to specify an exit status, except that the setenv command can
be used to return a status in a global variable.

1.13 FOR

SYNTAX

for VARIABLE = START to END [step INC]

EXPLANATION

The �for� loop construct. The loop will set the value of var to start. On each itera-
tion of the loop, the value of var will have inc added to its value. The loop will ter-
minate after the end is passed. If the end value is achieved exactly, the loop will
iterate for this value. By default, the step size is 1. The end of the �for� loop is
ßagged by the end command. For example:

houdini -> for i = 1 to 3
> echo -n $i,
> end
1, 2, 3,

The variable you specify loops from the beginning to the end according to the incre-
ment you set.

EXAMPLE

for i = 1 to 3
for i = 1 to 100 step 3

In the examples above, the variable i will loop, in the Þrst instance, from one to
three. In the second instance, the variable will loop from one to one hundred in
increments of three.

1.14 FOREACH

SYNTAX

foreach VAR (list)

EXPLANATION

The foreach loop construct. The loop will set the value of VAR to a different word in
the list for each iteration of the loop. The list is processed in the order speciÞed. The
end of a foreach loop is always signiÞed by the end command. For example:

> foreach obj (`execute(�opls�)`)
> echo -n $obj,
112 2 Houdini 6.0 Reference

Intrinsic Commands
> end
cam1, geo1, geo2, light1, light2,

1.15 HELP

SYNTAX

help [command_pattern] [-k expression]

EXPLANATION

If no command is speciÞed, a list of available commands is displayed.

If a command is speciÞed, help for that command will be displayed.

The -k option allows you to search for keywords. All commands which contain the
keyword will be displayed.

EXAMPLE

help echo

Displays the help available for the echo command.

help -k expression
chkey excat exedit exhelp exls exread exrm opcopy opfind

Each of these commands has the word �expression� somewhere in the help for the
command.

1.16 HISTORY

SYNTAX

history [-c]

EXPLANATION

Displays the command history. If you employ the -c option, the command history is
cleared.
12 - Scripting 2 113

Intrinsic Commands
1.17 IF

SYNTAX

if (expr) [then]
 ...
else if (expr2) [then]
 ...
else
 ...

endif

EXPLANATION

If expr is true, the commands up to the Þrst else are executed. If expr is false and
expr2 is true, then the commands between the two else statements are executed. If
expr2 is false, the commands between the else and the endif are executed. It is not
necessary to specify the two else statements.

It is not possible to specify commands following the if statement. Any arguments
(except the trailing then) are considered to be parts of the condition.

A matching endif statement should always be used after an if statement if the if
statement is more than one line.

1.18 JOB

SYNTAX

job [unix_path]

EXPLANATION

Sets the job variable to the path you specify.

EXAMPLE

job /n/usr/caesar

This command line changes the job directory.

1.19 MEMORY

SYNTAX

memory

EXPLANATION

Displays the current memory usage of the application that is running.
114 2 Houdini 6.0 Reference

Intrinsic Commands
1.20 PROMPT

SYNTAX

prompt [new_prompt]

EXPLANATION

Change the current prompt. Before the prompt is displayed, the value of the prompt
is expanded. Therefore, it is possible to set the prompt to something very meaning-
ful.

EXAMPLE

houdini -> prompt �$HIPNAME Frame $y -> �
untitled1.hip Frame 1 ->

1.21 PRINT

SYNTAX

print label expression

EXPLANATION

Displays the value of the expression to stdout and returns the same expression value.
This can be used to diagnose parameters in OPs or channels.

Note: �print� in shell-speak doesn�t actually print to the printer, but displays the
result in the shell in which the command is executed.

EXAMPLE

print("wheel:", sin($T))

1.22 QUIT

SYNTAX

quit

EXPLANATION

Terminates the application. Some applications will not warn of quitting without sav-
ing (i.e. hscript), while others will (i.e. Houdini).
12 - Scripting 2 115

Intrinsic Commands
1.23 READ

SYNTAX

read [-g] variable_name [variablename2...]

EXPLANATION

Will read the following line into the variable names speciÞed. The Þrst argument
will be put into the Þrst variable. The last variable speciÞed will contain the remain-
ing arguments of the input line. If the -g option is speciÞed, the variables will be set
as global variables instead of local variables. The -g option makes the variables glo-
bal (see set p. 117).

1.24 RKILL

SYNTAX

rkill [process]

EXPLANATION

Any background render which has a process ID matching the process pattern speci-
Þed on the command line will be terminated. Since the process argument speciÞed
can be a pattern, it is possible to kill multiple renders at once.

EXAMPLE

rkill 9382
rkill *

The Þrst example stops the speciÞc background rendering process, while the second
stops all background rendering in progress.

1.25 RPS

SYNTAX

rps

EXPLANATION

This command lists active background render processes. The command lists the
process identiÞcation number, the host on which the command is running, and the
name of the command being run.
116 2 Houdini 6.0 Reference

Intrinsic Commands
1.26 SET

SYNTAX

set [-g] varname = value
set -p name = value
set -u name
set [-s]

EXPLANATION

The set command is used to assign local variables to the value given (use the setenv
command to set global variables). With no arguments, it will list all current variables
and their current values.

The -g (global) option on the set command makes it work like setenv, otherwise the
variable will be Local to the script Þle where the command is executed.

If no name is speciÞed and the -s option is given, it will output the list of variables in
a form which is useful for sourcing into another .hip Þle. This makes it easier to
move variables from one .hip Þle to another.

The -p option will set the variable in the caller (or parent) script. If the currently run-
ning script is at the topmost level, then this option has no effect. This option lets you
return values from within sourced scripts. For example, to set a return value into the
variable name passed into our script as the Þrst parameter, you would do something
like:

set -p $arg1 = $returnValue

The -u option will un-set the speciÞed variable.

See also: setenv .

EXAMPLE

setenv -l HOUDINI_LOD = 2

Temporarily changes the Houdini Level of Detail to 2 within the current script.

THE DIFFERENCE BETWEEN SET AND SETENV

Using the setenv command in the scripting language is different than using the set
command in two ways:

1. The set command is local to the script which is currently running. This means
that when another script is called, or the current script exits, the variable is no
longer visible. Also, this means that you can re-use variables within different
scripts without over-writing their values.

2. The setenv command will create a global variable. The setenv command will also
export all variables to any processes started from Houdini. For example:

hscript-> set foo = 0 ; unix echo '$foo'
foo undefined variable
12 - Scripting 2 117

Intrinsic Commands
hscript-> setenv foo = 0 ; unix echo '$foo'
0

1.27 SETENV

SYNTAX

setenv [-l] varname = value
setenv -u name
setenv [-s]

EXPLANATION

The setenv command sets the global variable you specify by name to the value spec-
iÞed. If you do not provide a name, a list of all variables is displayed. When not pro-
viding a name, and using the -s option, the command will produce output suitable
for loading as a script.

The -l (local) option on setenv makes it work like set � forcing the variable to act
locally, meaning their values are discarded once the current script Þle ends.

If no name is speciÞed and the -s option is given, it will output the list of variables in
a form which is useful for sourcing into another .hip Þle. This makes it easier to
move variables from one .hip Þle to another.

The -u option will un-set the speciÞed variable.

See also: set .

Note: It is important to note that this command actually sets a real UNIX environ-
ment variable, its inßuence is therefore both within the Houdini shell, and in your
standard UNIX shell. You can Þnd a complete list of Houdini-related environment
variables in: Environment Variables p. 211.

1.28 SHIFT

SYNTAX

shift

EXPLANATION

When a script is sourced, the arguments are set to variables $arg0, $arg1 ... The
shift command will shift the arguments so that $arg1 goes into $arg0, $arg2 goes
into $arg1 etc. The $argc variable is decremented to reßect the changes.
118 2 Houdini 6.0 Reference

Intrinsic Commands
1.29 SOURCE

SYNTAX

source filename [arg1...]

EXPLANATION

Sources a command script and executes the commands contained in the script until
the exit command is reached or the end of Þle is reached. The arguments to the
script are passed in local variables $arg0... $argn. The number of arguments is
passed as $argc. This command is often used to load in Þles generated by opscript
and opwrite.

EXAMPLE

source 123.cmd

This command runs the commands in the Þle 123.cmd.

1.30 TIME

SYNTAX

time [command]

EXPLANATION

The Time command allows you to time other commands (i.e. a render command or a
source command). The time displayed shows how much user/system and real time
the command took.

EXAMPLE

0.0u 0.0s 0.0r
% time render mantra1
0.1u 0.2s 18.7r

This indicates that Houdini took .1 seconds of CPU, .2 seconds of system time and
then had to wait 18.7 seconds of real time for mantra to Þnish rendering.

1.31 UNDOCTRL

SYNTAX

undoctrl [on|off]
undoctrl -s
12 - Scripting 2 119

Intrinsic Commands
EXPLANATION

This can turn on or off the undo mechanism in Houdini. With no options, the current
state will be printed out. Please use this command with extreme caution. Turning off
the undo mechanism can cause scripts to execute with greater speed, but the changes
made by the script will not be undo-able. As well, be careful to restore the undo
state at the conclusion of the script.

The second usage with the -s option queries the memory usage of the undo mecha-
nism.

Note: Be careful to restore the undo state at the conclusion of the script! It would
be a shame to lose hours of work because a script forgot to turn undo�s back on.

1.32 VERSION

SYNTAX

version

EXPLANATION

Displays the current version of the program you are running.

1.33 WHILE

SYNTAX

while (expression)
...

end

EXPLANATION

The while loop construct. A while loop will iterate continuously while the expres-
sion evaluates true. When the expression is false, the loop will terminate. This
means you will have to manually include a variable within the expression, and
increment that variable somewhere within the body of the loop in order for a while
loop to Þnish its execution.

Warning: It is very easy to create endless loops which will not terminate if you are
not careful about incrementing the variable within the expression somewhere within
the body of your loop. You may want to use the foreach and for loop constructs
which implicitly increment your variable.

EXAMPLE

set i = 0
while ($i < 10)
 set i = `$i+1`
120 2 Houdini 6.0 Reference

Intrinsic Commands
 echo $i
end

output: 1 2 3 4 5 6 7 8 9
12 - Scripting 2 121

Unix Related Commands
2 UNIX RELATED COMMANDS
These commands provide a minimal interface to the UNIX shell.

2.1 UCD

SYNTAX

ucd [path]

EXPLANATION

Changes the current working directory to the one you specify in the path statement.

EXAMPLE

ucd /n/usr/staff/mulder

In this example the working directory would be altered to mulder.

2.2 UPWD

SYNTAX

upwd

EXPLANATION

This command displays the current UNIX working directory.

2.3 UNIX

SYNTAX

unix command [argument1...]

EXPLANATION

Runs the UNIX command you specify. The command will be run in its own csh.

EXAMPLE

unix csh -f -c

In the example above, the csh will be started.
122 2 Houdini 6.0 Reference

Plug-In Commands
3 PLUG-IN COMMANDS
These commands are provided through plug-in modules. These plug-ins do not have
to be loaded, but provide extra functionality if they are.

For an example of how to create a Tcl/Tk script, see Scripting chapter of the User
Guide.

3.1 TCL

SYNTAX

tcl [args]

EXPLANATION

This command allows you to run scripts written in the Tcl language from within
Houdini, and is useful for customising Houdini�s interface and dialog boxes.

Tcl starts a tcl shell with the arguments given. There is an additional command in tcl
�hscript� which can be used to run any Houdini command. tcl is a public domain
scripting language which has many powerful features (see tk).

You can run a sample Tcl script by typing tk hbrowser.tk in the Textport. This script
simply brings up a Þle requester style browser which shows the Houdini objects
instead of Þles. By double clicking on an object, you will see the contents of the
object. This is a quick way of seeing what objects are available.

Tcl is a scripting language which is in common use around the world. Tk is an
extension to Tcl which allows you to create Windows and interface elements
through the scripting language. You should be able to Þnd books that discuss Tcl/Tk
(commonly pronounced �tickle�) in any computer book store.

3.2 TK

SYNTAX

tk [args]

EXPLANATION

Tk is a version of Tcl which supports X11 and Motif extensions. This allows you to
build custom user interfaces in scripts. Again, there are several books which
describe the tk language as well as a wealth of information on the world wide web.
There are some simple example scripts installed in $HH/scripts/tk .
12 - Scripting 2 123

Channel and Operator Commands
4 CHANNEL AND OPERATOR COMMANDS
These commands deal with channels and operators in general. The commands have
been written so there is a minimal number to become familiar with, yet powerful
enough to do almost anything that can be done through the graphical interface.

4.1 BONECONVERT

SYNTAX

boneconvert [-r | -m] [-x] [-t]

EXPLANATION

This command is used to update old hip Þles to use the new bones introduced in
Houdini 5. The conversions performed are:

� All bones which have lock channels in their translate parameters matching:

lock(0), lock(0), lock(-ch(strcat("../", strcat(opinput(".", 0), "/length"))))
are changed to: lock(0), lock(0), lock(0) .

The new bone objects have an output transform that places all child objects at their
end points. To force this conversion, use the -t option.

� The Top Cap and Bottom parameters in the CRegion SOP of bone objects have their
multiplication factor removed and multiplied into the values of the object-level cre-
gion parameters. This will only be performed if the object-level cregion parameters
have no channels. To deal with special cases, please see the options described below.

� All bone objects have their xray ßag turned on. Use the -x option to avoid doing this
conversion.

� Adds the command "boneÞxchops $OPSUBNAME" to the delete script.

OPTIONS

The -r option forces the conversion of the CRegion SOP parameters even if the
object-level cregion parameters already have channels. This option is useful if you
have channel references in the object-level parameters that mirror other capture
regions. The CRegion SOP parameters are forced to be correct without interpreta-
tion of the parameter.

The -m option not only forces the conversion of the CRegion SOP parameters like:
-r, but it will also attempt to add the multiplication factor if the object-level parame-
ters have channels on them. This option will not have different behaviour if the
object-level cregion parameters do not have channels. It will also fail to add the mul-
tiplication factor if the cregion SOP parameters do not have an expression of the
form <number>*<expression> .
124 2 Houdini 6.0 Reference

Channel and Operator Commands
4.2 BONEFIXCHOPS

SYNTAX

bonefixchops [-r] bone_object

EXPLANATION

This command is used to clean up InverseKin CHOPs that may reference the given
bone object before the bone is deleted. For example, if an InverseKin CHOP is using
an Inverse Kinematics solver on a bone chain from bone1 to bone4, and you execute
"boneÞxchops bone4", this CHOP will be changed to apply its solver to the chain
from bone1 to bone3. If you have an InverseKin CHOP that is using an Inverse Kin-
ematics solver on bone1 only, and you execute "boneÞxchops bone1", the CHOP
will be deleted. This command is used in the default delete script of bone objects.

If the -r option is used, then it will recursively destroy all outputs of the found
InverseKin CHOPs as well.

4.3 BONEMOVEEND

SYNTAX

bonemoveend bone_object [-f "world"|"parent"] [-x xpos] [-y ypos]
[-z zpos]

EXPLANATION

This command adjusts the length and rest angles of the given bone object so that in
the rest chain the bone would end at the speciÞed position.

4.4 BOOKMARK

SYNTAX

bookmark [-a path] [-l] [-r path_pattern]

EXPLANATION

This command is used to add, list and remove path bookmarks.

OPTIONS

-a path Add path to bookmarks.

-r path_pattern Remove path from bookmarks, wildcards such as *, ?
and [] are valid.

-l List current bookmarks.
12 - Scripting 2 125

Channel and Operator Commands
4.5 CHCP

SYNTAX

chcp source_channel_name destination_channel_name

EXPLANATION

Copies the contents of one channel to another. If the destination channel already
exists, its contents are deleted Þrst.

EXAMPLES

chcp /obj/logo/tx /obj/sky/tx_copy

Copies the previously created tx channel of the logo object to be a spare channel of
sky named tx_copy.

chcp /obj/logo/tx /obj/logo/ty

Copies the previously created tx channel of the logo object to the ty channel, over-
writing any existing keyframe information of ty.

chcp /obj/logo/tx /obj/sky

Copies the previously created tx channel of the logo object to the sky object.
The new channel is named /obj/sky/tx.

4.6 CHADD

SYNTAX

chadd [-f fstart fend] [-t tstart tend] object�s name1 [name2...]

[-f fstart fend] Represents the frame range you want to add the chan-
nel to.

[-t tstart tend] Represents the time range you want to add the channel
to.

object�s name Represents name of the object you wish to add a chan-
nel to.

EXPLANATION

Adds channels to the speciÞed objects. You can specify objects using pattern match-
ing i.e. geo*. By default, the channels have a segment stretching from the beginning
to the end of the animation. Specifying a frame, or time, range causes the segment to
adopt that range.

EXAMPLE

chadd geo* tx ty tz spare1
126 2 Houdini 6.0 Reference

Channel and Operator Commands
Adds channels tx, ty, tz and spare1 to all objects matching geo*.

4.7 CHGADD

SYNTAX

chgadd -f group_name [second_name...]

EXPLANATION

This command creates a new channel group (or groups). If the group_name speci-
Þed already exists, chgadd will not add a new group. The -f option can force chgadd
to add a group. If there is already a group by that name, the new group is given a
unique name.

EXAMPLE

chgadd bison

Creates the channel group bison.

4.8 CHCOMMIT

SYNTAX

chcommit [-l] [channel_pattern...]

EXPLANATION

Simulates adding a keyframe (i.e. clicking the red Key button in the Playbar). The -l
option will not modify, but only list pending keyframe changes to the Textport. If no
channel_pattern is speciÞed, all pending keyframes changes are assumed.

4.9 CHGLS

SYNTAX

chgls [-l][-g] [pattern...]

EXPLANATION

This command lists channel groups. The -l option lists the contents of the channel
group as well. The -g option generates commands which can be used to re-create the
channel group (or groups) speciÞed. If a pattern is speciÞed, then only the groups
matching the pattern are listed.
12 - Scripting 2 127

Channel and Operator Commands
EXAMPLE

chgls -l

Lists the contents of all available channel groups

4.10 CHGOP

SYNTAX

chgop group_name operation channel_pattern [second_pattern...]

EXPLANATION

This command performs operations on groups of channels. It allows for the addition
or removal of channels from a group. group_name designates the name of the chan-
nel group to modify. The operation variable permits three actions on the group:

set Sets the contents of the group

add Adds channels to a group

remove Removes channels from a group

The channel_patern variable designates the list of channels to work on.

EXAMPLE

chgop group1 set /o*/g*/r?

Sets the group�s contents to the channels.

chgop group1 add /o*/g*/t?

Adds channels to group one.

chgop group1 remove /o*/g*/tx

Removes tx channels from group one.

4.11 CHGRM

SYNTAX

chgrm group_pattern

EXPLANATION

This command remove a channel group or groups.

EXAMPLE

chgrm bison
128 2 Houdini 6.0 Reference

Channel and Operator Commands
Removes the channel group bison.

4.12 CHHOLD

USAGE

chhold [-b | -e] [channel_patterns]
Or: chhold [-s] [-l]

Allows you to put channels into a �hold� (or pending) state at the current time. This
can be used in conjunction with the chcommit command to force the creation of
keys.

OPTIONS

-b (begin) Turn on the hold status for the given channels so that
they remain in a pending state even if time changes. If
no patterns are given, then all currently scoped chan-
nels will be affected.

-e (end) Releases the previously held channels. If no patterns
are given, then it will release all held channels.

-s (status) Queries the current hold status.

-l (list) Lists currently held channels.

4.13 CHKEY

SYNTAX

chkey [-f frame] [-t time] [-v value] [-m slope] [-a accel] [-F
function] channel_pattern

Edit or insert a key frame by specifying the following:

-v The value at the key frame

-m The slope at the key frame

-a The acceleration at the key frame

-F The expression function for the segment following the
keyframe.

EXPLANATION

Edits or creates a key frame with the values you specify. If a key frame already
exists the time/frame you specify, the values for that key frame are modiÞed. The
channel pattern speciÞes which channels are affected by the command.
12 - Scripting 2 129

Channel and Operator Commands
EXAMPLE

chkey -f 1 -v3 -F �cubic ()� geo*/t?

Will, at frame one, set the value to three and the expression function to cubic () for
all channels matching the pattern geo*/t?. The expression function should usually
be bracketed by � � in order to prevent expansion of its contents. In this example, the
() would be expanded, producing a syntax error.

4.14 CHLS

SYNTAX

chls [-1] object_name

EXPLANATION

This command lists the existing channels. If you specify the -1 option, the key
frames for the channel are listed.

EXAMPLE

chls -1 geo*/*

This command string would produce a listing of the keyframes and channels for all
geometry objects (*/*). When you use this command, ensure that you specify the
object name.

4.15 CHREAD

SYNTAX

1) chread [-f fstart fend] channel_pattern ...filename.{chan,bchan}
2) chread [-f fstart fend | -o fstart] [-r src_pat dest_pat]
filename.{chn,bchn}

3) chread -i filename.{chn,bchn}

EXPLANATION

Usage 1: The speciÞed Þle is assumed to be a raw channel data Þle (.chan or .bchan)
and column data from the Þle will be read and matched with the channels listed in
the order speciÞed. Loading will only occur in the frame range speciÞed or will start
at the global animation start time if no range is given. The order of channels result-
ing from a pattern match is not well deÞned.

Note that only channels with raw segments in the frame range will have values
assigned to them. You must convert segments to raw before reading values in with
chread.
130 2 Houdini 6.0 Reference

Channel and Operator Commands
Usage 2: The speciÞed Þle is assumed to be a keyframe data channel Þle and loaded
into the current hip Þle. The Þle extension must be either be .chn (ASCII) or .bchn
(binary). The -f option gives the frame range to load the data into. Keys will be
scaled into the frame range if the Þle's range does not match. Instead of the -f
option, the -o option simply gives the starting frame to load the data into (no scaling
will be done). If the -f and -o options are omitted, then the Þle�s frame range is used.
If there are existing channels, then any animation outside the frame range will be
preserved with keyframes set at the beginning and end of the frame range.

The -r option allows renaming of channel node paths before the channels are loaded
from Þle. In the chwrite command, full paths of the nodes are saved out. This option
allows the mapping of animation from one set of nodes into a different set. This
renaming function will rename nodes from the data Þle in the same manner as how
the Rename CHOP functions. Here are some examples:

For any nodes that do not match the src_pat (source pattern), then will be loaded
into their original path. Note that if the destination node is not found, then loading
will stop.

Usage 3: The -i option takes speciÞed Þle (.chn or .bchn extension) and gives infor-
mation regarding the Þle. This option is similar in output to the command line
"chinfo" program.

See also: chwrite chadd chkey chls.

4.16 CHRENAME

SYNTAX

chrename channel new_name

EXPLANATION

The chrename command will rename a speciÞed channel to a new name. When a
channel is renamed, references to that channel are not automatically updated (see
the opchange p. 141 command). If a channel which is bound to a parameter is
renamed, that parameter will no longer be animated. If a user deÞned channel is
renamed to a parameter channel, the parameter will become animated.

EXAMPLES

chrename /obj/geo1/tx translate_x
chrename /obj/geo1/spare1 tx

old_path src_pat dest_pat result
/obj/apple /obj/a*le /obj/b* /obj/bpp

/obj/a_to_b /obj/*_to_*
/obj/

(1)_to_(0)
/obj/b_to_a

/obj/Lleg /obj/L* /obj/R* /obj/Rleg
12 - Scripting 2 131

Channel and Operator Commands
4.17 CHREVERSE

SYNTAX

chreverse [-f fstart fend] [-t tstart tend] channel_pattern

EXPLANATION

This command reverses selected channels for the frame range you specify. If you
specify neither the frame nor the time range, the entire length of the channel is
reversed.

EXAMPLE

chreverse geo1/r*

This command would reverse the rotation channels for the object geo1.

4.18 CHRM

SYNTAX

chrm channel_pattern

EXPLANATION

This action removes the channels you specify.

EXAMPLE

chrm geo*/t?

In the example above, the translation channels would be removed from the geometry
object.

4.19 CHRMKEY

SYNTAX

chrmkey [-f frame] [-t time] channel_pattern

EXPLANATION

Removes the key frames for the designated channels. You must specify either the
time or the frame to identify the key frame you want to remove.

EXAMPLE

chrmkey -f 30 geo2/rx
132 2 Houdini 6.0 Reference

Channel and Operator Commands
This command removes the keyframe (thirty) for the x axis rotation channel for the
object geo2.

4.20 CHROUND

SYNTAX

chround [-v] -a
chround [-v] channel_pattern

EXPLANATION

The chround command moves keyframes to lie on exact frame values. If the -a (all)
option is speciÞed, then all channels in the entire session are scanned for keys that
require shifting. If a channel pattern is given instead, then only the speciÞed chan-
nels are scanned.

The -v (verbose) option causes the command to report all keys that are modiÞed,
showing the old an new frame positions.

This command is useful after changing the frame rate (FPS) of an animation which
causes keyframes at the old frame rate to no longer lie on exact frames at the new
frame rate.

4.21 CHSCOPE

SYNTAX

chscope [-w] [-c|-e @group_name] [channel_pattern ...]

EXPLANATION

The chscope command will set or modify the channel scope according to the pat-
terns speciÞed. Patterns may be preÞxed by a '+' or ',' character to add channels to
the current scope or by a '-' to remove channels from the scope. No preÞx or an '='
character will set the scope to the given pattern. A channel group may be speciÞed
as '@group_name'.

If the -c (collapse) option is speciÞed, then all channel group name patterns will be
scoped into the Dopesheet as a single row. Similarly, the -e (expand) option will
scope and expand all channel group name patterns into separate rows in the
Dopesheet.

If the channel editor is open when this command is executed it will load the new
channel scope. Multiple patterns may be speciÞed, in which case an implicit '+'
operation is assumed between each argument.

Note that the results will not be visible if the channel editor is not currently open.
Specify the -w option to open a channel editor if it is closed.
12 - Scripting 2 133

Channel and Operator Commands
If no scope patterns are speciÞed this command will list all currently scoped chan-
nels from the current folder on down.

EXAMPLES

The following three examples are equvalent:

chscope tx+ry+sz
chscope tx,ry,sz
chscope tx ry sz

Othere usages:

chscope geo1/*-geo1/r?
chscope +light1/t?
chscope -light1/ty

4.22 CHSTRETCH

SYNTAX

chstretch [-f fstart fend] [-t tstart tend] [-F nframes]
[-T nseconds] [-v] [-p pivot_frame] [-s] channel_pattern

-F nframes speciÞes the number of frames to add or subtract

-T nseconds speciÞes the number of seconds to add or subtract

-f start end speciÞes the frame range to stretch

-t start end speciÞes the time range to stretch

-v enables verbose mode for the command

EXPLANATION

This command stretches the channels speciÞed. Either the -F or -T option must be
speciÞed to indicate how much time to add or subtract (if the value is negative),
from the channel.

If the -f or -t options are speciÞed, the channel will only be stretched in the speciÞed
range. If neither the -f or -t options are speciÞed, then the whole channel will be
stretched. If the -v option is speciÞed, the command will be verbose about what
channels are stretched.

EXAMPLE

chstretch -F 10 geo1/tx

Adds 10 frames to geo1/tx. The frames are added so that each segment between key-
frames grows in proportion to the length of the channel.

chstretch -f 30 60 -T 4.1 -v geo1/*

Adds 4.1 seconds for all channels of geo1, however, it adds the time by moving key-
frames between frame 30 and 60.
134 2 Houdini 6.0 Reference

Channel and Operator Commands
Warning: If the time/frame range speciÞed does not fall directly on keyframes,
then the following segments may also be adjusted slightly to accommodate the
stretch.

For example, if there are keyframes only at frame 1 and frame 150, and the frame
range speciÞed is from frame 40 to 90, the keyframe at frame 150 will be adjusted to
allow for a proper stretch.

Also, if time is being removed, and more time is speciÞed than exists over the frame
range, then some keyframes may not move as expected. i.e. it is not possible to
reverse keyframes by removing more seconds than exist in the channel.

chstretch -f 30 40 -F -30 geo/tx

The command shown above will cause any keyframes between frame 30 and 40 to
be squashed to frame 30 because it is impossible to remove 30 frames from the 10
frames speciÞed.

4.23 CHWRITE

SYNTAX

1. chwrite [-f fstart fend] channel_pattern...filename.{chan,bchan}
2. chwrite channel_pattern ... filename.{chn,bchn}

EXPLANATION

Usage 1: This command will write out the speciÞed channels as columns of raw val-
ues with one sample per frame across the given frame range. If no range is given the
current global animation time range will be used. Channels will be output in col-
umns in the order speciÞed. The output will be saved as ASCII data unless the Þle
has a sufÞx of ".bchan", in which case binary format will be used. The order of
channels resulting from a pattern match is not well deÞned.

Note: Channels need not be raw in order to save them using chwrite. The channel
values will be sampled at the current frame rate.

Usage 2: This command writes out the speciÞed channels along with their full node
paths into the speciÞed Þle as keyframe data. The extension must be one of .chn
(ASCII) or .bchn (binary). The chread command can be used to read these Þles.

See also: chread, chadd, chkey, chls .

4.24 HIP

SYNTAX

hip [unix_path]
12 - Scripting 2 135

Channel and Operator Commands
EXPLANATION

If no path is speciÞed, this command displays the current setting of the $HIP varia-
ble. If a path is speciÞed, it sets the $HIP variable to the path.

EXAMPLE

hip /usr/people/helene/jobs

Sets the $HIP environment variable to: /usr/people/helene/jobs .

4.25 MREAD

SYNTAX

mread [-m merge_pattern | -M] [-c] [-o] filename

EXPLANATION

Reads a hip Þle with the following options:

-m The -m option merges the speciÞed Þle into the current
HIP Þle. A pattern is speciÞed to indicate which sec-
tions of the Þle should be merged in.

-M The -M option is a shortcut for -m * which will merge
the entire contents of the speciÞed Þle.

-c If the -c option is speciÞed, a merge will not be done,
but instead, a list of collisions is reported. Collisions
occur when an object in the merge Þle has the same
name as an existing object in the HIP Þle.

-o If the -o option is speciÞed, the merge will attempt to
overwrite the nodes whose names collide with those in
the current session.

EXAMPLES

mread job3.hip # Replace current HIP file with job3
mread -m * job3.hip # Merge in everything from job3
mread -m *geo* job3.hip # Merge in all ops which match *geo*

See also: mwrite, opread, source.
136 2 Houdini 6.0 Reference

Channel and Operator Commands
4.26 MWRITE

SYNTAX

Usage1: mwrite [-i] [filename]
Usage2: mwrite -c filename

EXPLANATION

Write out a hip Þle containing the entire active session.

-i If the -i option is speciÞed, then the Þlename is auto-
matically Incremented.

-b If the -b option is speciÞed, a numbered backup is cre-
ated. That is, if the Þlename already exists, then it is
renamed to a Þlename containing the next number in
the sequence before saving. The -b and -i options are
exclusive.

-c If the -c option is speciÞed, then the Þlename is manda-
tory and a partial hip Þle will be saved containing only
the animation channels. To load such a channels-only
hip Þle into a current session use the command:
mread -o -M <filename> .

See also: mread, opwrite, opscript.

EXAMPLE

mwrite -i example.hip

The command above writes and increments the motion Þle example.hip.

4.27 KINCONVERT

SYNTAX

kinconvert

DESCRIPTION

Create InverseKinematic CHOPs for all bone objects that have a solver type other
than �none�. This command easily updates old (i.e. 3.0) .hip Þles to the new struc-
ture for performing IK.
12 - Scripting 2 137

Channel and Operator Commands
4.28 NETEDITOR

SYNTAX

neteditor <options> [-d <desktop_name>] pane1 ...

EXPLANATION

Allows different options of the Network Editor to be set. A valid pane name must
be speciÞed. If no desk name is given, it will assume the current desk.

OPTIONS

-d <string> Desktops to operate on. If blank, it will default to the
current desktop.

-x 0|1 Display group dialog.

-p 0|1 Display parameters.

-c 0|1 Display the color palette.

-e 0|1 Display expose ßag in list mode.

-n 0|1 Display operator names.

-o 0|1 Display the network overview

-s 0|1 Toggle connection style (direct or not)

-z 0|1 Minimize operator bar.

-G <float> The split fraction for groups

-P <float> The split fraction for parameters

-S order Set the sort order. The order may be one of:
user = User deÞned order
alpha = Alphabetic
type = Operator type
hier = Hierarchical

-v path x y scale Changes how the network speciÞed by path should be
displayed. The x and y refer to panning positions, and
the scale to the zoom level.

4.29 NEXTKEY

SYNTAX

nextkey [-s | -c channel_list | -p]
138 2 Houdini 6.0 Reference

Channel and Operator Commands
If no arguments are speciÞed, nextkey will take you to the next keyframe using the
current method of key seeking.

-p goes to the Previous key.

-s seeks the next key by using the currently Scoped chan-
nels (i.e. the Channel List�s selection).

-c seeks the next key by using keys from the speciÞed
channels.

4.30 OBJPARENT

SYNTAX

objparent [on|off|useflag]

EXPLANATION

With no arguments, the command returns the state of the "Keep Position when
Parenting" option. With an argument, the command will set the speciÞed option.
Objects which are re-parented (using opwire) when the option is turned "on" will
always maintain their world space position. If the option is "off", then it will never
change the object's position. If the option is "useßag", then positioning of objects
when re-parented will depend upon the keeppos (Keep position when parenting)
parameter of the object.

4.31 OPADD

SYNTAX

opadd [-n] [-v] [type [name] [name2...]

-n Suppresses initialization.

-v The -v option causes the opadd command to display
the name of the operator that was created.

EXPLANATION

This command lists all valid operators. If you specify the type, you add an operator
of that type; if you designate a name, the operator is given that name. Before enter-
ing this command, you Þrst have to go to the folder speciÞc to that OP type.

You can specify any number of names after you have speciÞed the type. For
instance, opadd geo arms legs torso hands feet creates Þve geometry objects
with those names.
12 - Scripting 2 139

Channel and Operator Commands
When any OP (i.e. SOP, COP) is created a script can be run. This can be used to ini-
tialize certain parameters or create other OPs. The directories where the scripts are
located are as follows:

OP Type Script Directory
Object objects/
SOP sops/
Shaders materials/
Texture OPs tops/
COP networks comps/
COPs cops/

The script which is run is determined by the type of the OP being added.
For example, when adding a geo object, the script will be found in objects/geo.cmd

There is one argument passed to the script which is the name of the object.

These scripts are only run when you add an OP interactively, or add one via the
opadd command. The opadd command has an option to prevent the script from
being run -n.

EXAMPLE

opadd cam eyeball

The above command adds a camera object (cam) named eyeball to the working
environment.

If you had a geometry object (geo1) and typed:

set test = `run(�opadd -v geo geo1�)` and then typed echo $test , geo2
would be displayed.

4.32 OPCF

SYNTAX

opcf op_path

EXPLANATION

Changes the working operations directory to that speciÞed in the path portion of the
command. See also: ucd.

EXAMPLE

opcf /n/usr/doug

This command line changes the working directory�s path.
140 2 Houdini 6.0 Reference

Channel and Operator Commands
4.33 OPCHANGE

SYNTAX

opchange from_pattern to_pattern

EXPLANATION

This will search all operators for the from_pattern. If the pattern is found, it will be
replaced with the to_pattern. All parameters of all operators will be searched for the
pattern

The -s option causes opchange to operate silently.
Normally opchange outputs all the information about the changes being made.

EXAMPLE

opchange plastic constant

Changes the word plastic to the word constant wherever it is found.

See also: opÞnd

4.34 OPCHANGETYPE

SYNTAX

opchangetype [-n] [-p] [-c] -t operator_type operator_pattern

This will change the given operators to the speciÞed type.

OPTIONS

-n Keep name

-p Keep parameters

-c Keep network contents

EXAMPLE

opchangetype -n -p -t null /obj/logo

See also: opadd, opget, opparm, opset.

4.35 OPCOOK

SYNTAX

opcook [-f frame_range] [-i frame_inc] [-v] object
12 - Scripting 2 141

Channel and Operator Commands
EXPLANATION

This command will cook, or process, any OP for a speciÞed range. This may have
uses for particle systems etc. When specifying the object, you either have to be in
the correct directory (opcd /obj for object cooking) or specify implicitly the object
to be cooked.

EXAMPLE

opcook -f 1 35 -i 1 -v /obj/geo1/particle1

Cooks a speciÞc SOP (particle1) for the indicated frames.

4.36 OPCP

SYNTAX

opcp operator1 [operator2...] destination

EXPLANATION

This will copy the speciÞed operators. If the destination directory is speciÞed then
the operator(s) are copied there. If not, the operator will be copied to a new operator
with the destination name (a new name will be generated if there�s already an object
of that name).

EXAMPLE

opcp geo*
opcp /obj/geo1/* /obj/geo2
opcp geo1 fred

The Þrst example copies all operators that start with geo to the current directory. The
second example copies all the operators in geo1 to geo2. The third example copies
geo1 to fred.

See also: opname p. 149.

4.37 OPDEPEND

SYNTAX

opdepend [-b] [-i] [-I] [-o] [-u idx] [-e] [-p] [-s] [-l level] node
 or opdepend {-n | -N} [-b] [-l level] node

EXPLANATION

Lists all the operators that are either dependent on this object or that this object
depends on. The -i (inputs) option lists all OPs that are the inputs to this node (i.e
that this object depends on). The -o (outputs) list all ops that depend on this node.
142 2 Houdini 6.0 Reference

Channel and Operator Commands
The -e option speciÞes �extra� inputs to this object. For example, a Texture TOP that
references a COP network for its source image.

Note: To get correct results, you must cook the network Þrst.

OPTIONS

-b the output does not show full paths.

-l Which level to descend to in the hierarchy.

-i lists all OPs that are inputs to the node.

-I lists all OPs that are indirect inputs to the node.

-o lists all OPs that are outputs of the node.

-O lists all OPs that are extra outputs of the node
(i.e. list who depends on the node).

-u with the -o option, speciÞes the index of the output to
look at when Þnding outputs of the node.

-e lists all extra (reference) inputs to the node (for exam-
ple a CHOP that references a COP network for its
channels).

-p select the nodes speciÞed.

-s silent mode � no output to the textport.

-n lists all name references starting from this node.

-N lists all name dependents starting from this node.

EXAMPLES

opdepend -i -e /mat/blue_plastic
opdepend -i -o -e /obj/geo1
opdepend -i -p -s /obj/logo
opdepend -n /obj/light1
opdepend -N /obj/logo

4.38 OPFIND

SYNTAX

opfind string
12 - Scripting 2 143

Channel and Operator Commands
EXPLANATION

This command will search all nodes in the project to Þnd the string speciÞed. The
string is case sensitive and also must match a �word�.

EXAMPLE

opfind Welcome

In this case, opÞnd will look for the string �Welcome�. The search is case sensitive,
and looks for an exact match, therefore �welcome� or �elcome� would not display
what you are looking for.

4.39 OPGADD

SYNTAX

opgadd group_name [second_name...]

EXPLANATION

Opgadd creates one or more operator groups. Use the opgop command to add and
remove operators from each group.

See also: opgls, opgop, and opgrm. These commands allow you to perform opera-
tions on groups associated with a network. The groups can contain a list of operators
from within the network.

Note: Names may contain only alphanumeric characters or underscores. The name
must contain at least one alphaBETIC character or at least one underscore.

The following are legal op names: _ _1 1_ 12345a a12345 hello .
The following are illegal op names: 1 123 a:b fu-bar ?%!arrgh

4.40 OPGET

SYNTAX

opget [-q] [flag] ... operators ...

EXPLANATION

The opget command queries individual operator ßags and outputs the result as an
�opset� command. The -q (quiet) option supresses messages from being displayed
on an unknown ßag or operator.

OPTIONS

-d Display.
144 2 Houdini 6.0 Reference

Channel and Operator Commands
-r Render.

-t Template.

-b Bypass.

-l Lock (off, soft, hard (or equivalently �on�)).

-e Expose.

-h Highlight.

-f Footprint.

-s Save data in motion Þle.

-u Unload data after cook.

-c Compress icon,

-C Set to be the �current�,

-p Set the �picked� ßag,

-x Object pivot axes (Objects only)

-y Xray (Objects only).

-a Audio (CHOPs only).

-o Export (CHOPs only).

EXAMPLE

opget -d geo*
opget -p -r light*
opget geo*/*

See also: opadd, opchangetype, opparm, opset.

4.41 OPGETINPUT

SYNTAX

opgetinput [-n num | -o outputop [-u outputidx]] inputop

EXPLANATION

With the -n option, this function returns the name of the node that is attached to
input num of the inputop. It returns the empty string if no input is attached to the
given input. With the -o option, this function returns the input number of the inputop
that is connected to the outputop. If the outputop is not connected to the inputop, -1
is returned. If the outputop is connected to more than one input of the inputop, the
highest input number is returned. When the -o option is speciÞed, the -u option can
12 - Scripting 2 145

Channel and Operator Commands
also be used to specify which output index of the outputop must be connected to the
inputop. The default for this option is -1, which indicates that any output of the out-
putop should be considered.

4.42 OPGLOB

SYNTAX

opglob object_pattern

EXPLANATION

Expands the pattern according to the parameters you specify and then displays the
results of the expansion.

EXAMPLE

opglob geo...

4.43 OPGLS

SYNTAX

opgls [-l][pattern...][-g] [group_pattern]

EXPLANATION

Lists operator groups. The -l option will list the names of the operators in each
group as well. The -g option generates commands which can be used to recreate the
group(s) speciÞed. This option can be used to implement scripts for speciÞc groups.
If a pattern is speciÞed, then only groups which match the pattern will be listed.

4.44 OPGOP

SYNTAX

opgop group_name [set, add, remove] name_pattern
[second_pattern...]

EXPLANATION

This command performs operations on operator groups (i.e. allows addition or
removal of operators from the group). group_name is the name of the operator
group to modify. It can be one of:

set Set the contents of the group

add Add operators to group
146 2 Houdini 6.0 Reference

Channel and Operator Commands
remove Remove operators from group

The name_pattern speciÞes a list of operators to be added/removed from the group.

EXAMPLE

opgop group1 set geo* opgop group1 add light1 light2 light3 opgop
group1 remove geo4

The above command sets the contents of group one to all geo objects, adds three
light objects to that group, and then removes geo4 from the group.

4.45 OPGRM

SYNTAX

opgrm group_pattern [second_group...]

EXPLANATION

Removes the speciÞed operator groups from the current network.

4.46 OPHELP

SYNTAX

ophelp [operator] [operator type]

EXPLANATION

Displays help for an operator or for an operator type. Operator type is of the form
<class>/<type>

Available operator classes are:

sop Surface Operators
obj Objects
ch CHOPs
mat Shaders
pop Particle Operators
top Texture Operators
cop Composite Operators
out Drivers

EXAMPLE

ophelp sop/add Displays the help for add SOPs.

ophelp /obj/geo1 Displays the help for the geo objects since /obj/geo1 is
a geo object.
12 - Scripting 2 147

Channel and Operator Commands
4.47 OPINFO

SYNTAX

opinfo operator [operator...]

EXPLANATION

Displays information about the operator. This typically displays the information
contained when clicking on the Info pop-up of an operator tile.

4.48 OPLAYOUT

SYNTAX

oplayout [-p] [width] [height]

EXPLANATION

Arranges the operators according to your speciÞcations in the options of the com-
mand string. If the -p option is used, this command will only place the selected
operators where there is space available in the Layout area.

-p lays out only those operators that have been selected

width speciÞes the width in inches

height speciÞes the height in inches

4.49 OPLOCATE

SYNTAX

oplocate [-d] [-x xval] [-y yval] object_pattern

EXPLANATION

This command locates the operators you specify in the worksheet view. The bottom
left-hand corner of the worksheet has the coordinates 0,0 independent of any scroll-
ing you might have done.

-d The -x and -y are the delta values and are added to the
current location

-x SpeciÞes the X position

-y SpeciÞes the Y position

If neither x nor y are speciÞed, the current position is displayed.
148 2 Houdini 6.0 Reference

EXAMPLE

oplocate geo2

This command provides you with the location of geo2 in the Layout Area, expressed
in x,y coordinates.

4.50 OPLS

SYNTAX

opls [options] [object_pattern]

EXPLANATION

This command lists the operators you have speciÞed in the object_pattern.

-a Show all Þles (including hidden items).

-l List items in long* format.

-R Recursively list contents of Operators.
For example, list all SOPs contained in the objects
or all operators in sub-networks.

* The long format lists eight ßags along with the operator and the number of nodes
it contains. The meanings of the ßags are:

d Display ßag
r Render ßag
t Template ßag
l/L Soft lock/Hard lock
e/h Exposed/Hidden
b Bypassed
c Current
s Selected

EXAMPLE

opls geo*
opls /*/*/*

These two examples lists all geo(metry) operators, and all operators, respectively.

4.51 OPNAME

SYNTAX

opname old_name new_name

EXPLANATION

Renames the speciÞed operator.
149 2 Houdini 6.0 Reference | 12 - Scripting

Channel and Operator Commands
Note: Names may contain only alphanumeric characters or underscores. The name
must contain at least one alphaBETIC character or at least one underscore.

The following are legal op names: _ _1 1_ 12345a a12345 hello .
The following are illegal op names: 1 123 a:b fu-bar ?%!arrgh

EXAMPLE

opname harv.geo nell.geo

This command gives the harv.geo object the new name nell.geo.

4.52 OPORDER

SYNTAX

oporder operator1 [operator2...] before_operator

EXPLANATION

The oporder command will reorder the speciÞed operators such that they appear
before the before_operator. These changes will be reßected in the User DeÞned
sorting option for lists of operators in the user interface.

EXAMPLE

oporder geo1 cam2

This example places the geo1 operator before the cam2 operator in the Object Edi-
tor�s list view.

4.53 OPPARM

SYNTAX

opparm [-q] operator_pattern [-v] parameters
opparm [-q] -c operator_name parameter [parameter_choice]
opparm [-q] -d operator_pattern [-v] parameter_names

EXPLANATION

The Þrst two instances of opparm will set parameters for the given operator. The
third instance (-d) displays the contents of the listed parameter names for the given
operator.

The parameters are operator dependent and thus are different for each object type.
To get a list of parameters, please try �opscript�.

If the -q (quiet) option is used, no warning or error messages are displayed.
150 2 Houdini 6.0 Reference

Channel and Operator Commands
When using opparm to set parameter values, the animation channels of the parame-
ters are deleted by default. But if the -v option is speciÞed and the value speciÞed
for the parameter is a number, then the channels aren't deleted. The opparm com-
mand will behave as if the values had been entered into a parameter dialog at the
current time.

When using "opparm" to query parameters contents, the animation channels of the
parameters will be displayed by default. Use the -v option to evaluate the channels
at the current time and display parameter values.

clicking a virtual button (-c)

The -c option allows the scripting language to �click� these types of buttons for you.

If the parameter is a button which causes initialization or execution, setting the data
does not invoke the function associated with the button. For these buttons, it is pos-
sible to use the second usage (-c) to invoke the function. Examples of these types of
buttons are in the Creep SOP (initialize), the Skeleton SOP (clear capture regions),
and many render output drivers (the Render button).

If the -c option is speciÞed on the wrong type of parameter, a usage message is
printed out. If an invalid parameter choice is speciÞed, a list of valid choices is also
printed.

EXAMPLES

opparm geo1 t (1 2 3)
opparm -c /obj/geo1/creep1 Initialize initfill
opparm -d geo1 t

See also: opadd, opchangetype, opget, opset.

4.54 OPPWF

SYNTAX

oppwf

EXPLANATION

Displays the current working folder. Similar to the UNIX pwd command.

4.55 OPRAMP

SYNTAX

Form1: opramp operator_name pos r g b a
Form2: opramp -r operator_name position

The Þrst form of this command�s syntax adds a key in the color ramp of the speci-
Þed OP (if it contains a color ramp) by specifying the name, position and the red,
green, blue, and alpha values at that key.
12 - Scripting 2 151

Channel and Operator Commands
The second form removes a key at the speciÞed position (pos ranges from 0-1). This
command is mostly useful for COP Ramps and Two tone shaders. The -r option
removes a key frame from the ramp. The position of the key should be a value
between zero and one. If you set a key within 0.01 units of an existing key, that key�s
color will be altered. You cannot remove the ramp�s Þrst and last keys. For a list of
available keys, use the opscript command on the shader you want to modify.

The opramp command is a more general implementation of the matramp command,
which is actually an alias for opramp. This allows control of COP Ramps from
scripts. See also: matramp.

4.56 OPREAD

SYNTAX

opread Þlename

EXPLANATION

Reads the contents of the Þle into the current directory oppw. The Þle you specify
should have been created using the opwrite command.

EXAMPLE

opread environment.hip

Reads the Þle environment.hip to the current directory.

4.57 OPRM

SYNTAX

oprm object_pattern

EXPLANATION

Removes the speciÞed objects.

EXAMPLE

oprm geo*

This command removes all objects that adhere to the geo* pattern.

4.58 OPSAVE

SYNTAX

opsave [-f start end] [-i inc] object filename
152 2 Houdini 6.0 Reference

Channel and Operator Commands
EXPLANATION

Opsave saves the contents of the designated object to the Þlename you specify.
Options include the ability to specify a frame range as well as the increments to be
saved.

EXAMPLE

opsave -f 1 10 -i 2 twist1 twist1\$F.rib

This command saves every other frame over the range one through ten for the object
twist1 to the Þle twist\$F.rib.

Note: opsave only saves the geometry belonging to a SOP.

4.59 OPSET

SYNTAX

opset [flags] on|off [node_name]

EXPLANATION

Sets the options for the speciÞed node�s ßags. The ßags are as follows:

-d Display

-r Render

-t Template

-b Bypass

-l Lock (off, soft, hard / on)

-e Expose

-h Highlight

-f Footprint

-s Save data in motion Þle

-u Unload data after cook (CHOPs only)

-c Compress icon

-C Current

-p Picked

-S Selectable in Viewport (objects only)

-x Object pivot axes (objects only)

-y X-Ray (objects only)

-a Audio (CHOPs only)

-o Export (CHOPs only)
12 - Scripting 2 153

Channel and Operator Commands
EXAMPLE

opset -d on geo*
opset -l on -s on geo*/*

The Þrst example toggles the display ßags on for all geometry objects. The second
example toggles both the save data and lock features on for all geometry objects.

4.60 OPUNWIRE

SYNTAX

opunwire node input_number [input_number...]

EXPLANATION

This command disconnects inputs from an operator node.

EXAMPLE

opunwire merge1 0 3 12

The above command disconnects inputs 0, 3, and 12 from the merge1 operator.
See also: opwire below.

4.61 OPUPDATE

SYNTAX

opupdate

EXPLANATION

This command causes all OPs which reference external disk Þles to re-cook if the
referenced disk Þle has been changed. Any cached textures or geometry Þles which
are out of date will be re-loaded.

See also: texcache p. 161, geocache p. 159.

4.62 OPWIRE

SYNTAX

opwire [-n] object -input_number wire_object [-input_number...]

EXPLANATION

This command �wires� or connects the output of one OP node to the input of another
node. It is recommended that for multiple input OPs like the merge SOP that the
154 2 Houdini 6.0 Reference

Channel and Operator Commands
inputs are Þlled up consecutively. Use -input_number to specify which input
number to wire.

The -n option will ignore the Keep Position when Parenting ßag on objects.

EXAMPLE

opwire twist1 -0 box1

Connects twist1 to the Þrst input of box1.

opwire box1 -0 merge1 ; opwire box2 -1 merge1

Connects box1 to the Þrst input of merge1, box2 to the second input of merge1.

See also: opunwire above.

4.63 VARCHANGE

SYNTAX

varchange [-v] [-V]

EXPLANATION

When a variable value changes, the OPs which reference that variable are not auto-
matically cooked. Running the varchange command causes all OPs which use a var-
iable that has changed to be re-cooked. The -v and -V options represent different
levels of verbosity. -v will cause all changed variables to be listed. -V will also list
all the OPs which get changed due to the variable changes.
12 - Scripting 2 155

Commands to Manage Time Groups
5 COMMANDS TO MANAGE TIME GROUPS

5.1 TMGADD

SYNTAX

tmgadd -t time | -f frame group_name [second_name...]

EXPLANATION

Creates one or more time groups.

EXAMPLE

tmgadd -f 35 group_one

Creates time group group_one at frame 35.

5.2 TMGLS

SYNTAX

tmgls [-l] [-k] [pattern...]

EXPLANATION

Lists time groups.

-l Lists time groups. The -l option will list the full con-
tents of a time group. If a pattern is speciÞed, then only
groups which match the pattern are listed.

-k The -k option lists only some of the keys belonging to
the time group. If a pattern is speciÞed, then only
groups which match the pattern are listed.

EXAMPLE

tmgls -l newt*

Lists the contents of groups matching the pattern newt*.
156 2 Houdini 6.0 Reference

Commands to Manage Time Groups
5.3 TMGNAME

SYNTAX

tmgname old_name new_name

EXPLANATION

Renames the speciÞed time group to the new name.

5.4 TMGOP

SYNTAX

tmgop -t time_from time_to | -f frame_from frame_to group_name
operation channel_pattern [second_pattern...]

EXPLANATION

This command performs operations on time groups (i.e. allows addition or removal
of keyframes from the group).

options

group_name The name of the time group to modify

operation Can be one of:
set Sets the contents of group
add Add keyframes to group
remove Remove keyframes from

group

channel_pattern speciÞes a list of channels to work on.

EXAMPLE

tmgop -f 1 50 group1 set /o*/g*/r?

Sets the contents of time group group1 to the rotate channels (i.e. r?) of all objects
that start with the letter �g� (i.e. g*).

tmgop -f 1 50 group1 add /o*/g*/t?

Adds channels to group1.

tmgop -f 1 50 group1 remove /o*/g*/tx

Removes /tx channels from group1.
12 - Scripting 2 157

Commands to Manage Time Groups
5.5 TMGRM

SYNTAX

tmgrm group_pattern [second_group...]

EXPLANATION

Removes the speciÞed time groups.

5.6 TMSHIFT

SYNTAX

tmgshift [-a] [-g] [-r] -f numframes | -t time group_name

EXPLANATION

Shift the time group by a certain number of frames or by an increment of time.

-a Will shift everything absolutely i.e. tmshift -a -f 55 T1
will move the time group to frame 55

-g Will only shift the time group and not its members

-r The shift will only occur if it can within the keyframe
boundaries.
158 2 Houdini 6.0 Reference

Operator-Specific Commands
6 OPERATOR-SPECIFIC COMMANDS
This set of commands deals with speciÞc types of operators. Some operators have
special features which don�t Þt into the paradigm of the general commands, so spe-
ciÞc commands have been created to access these functions.

6.1 COMPFREE

SYNTAX

compfree

EXPLANATION

This command releases all cached images from all composite networks in the cur-
rent Houdini session. Use after working in the composite editor, when current image
caches are no longer required.

6.2 GEOCACHE

SYNTAX

geocache [-s] [-l] [-c] [-a 0|1] [-m max]

EXPLANATION

This command allows access to the internal geometry cache.
The geometry cache is used by VEX geometry functions.

query options

-s See the current settings

-l List the contents of the geometry cache

control options

-c Clear the cache

-n Clear the cache only if newer Þles exist on disk.

-a Turn auto-ßushing of geometry Þles on or off. Leaving
the geometry in the cache (i.e. no auto-ßushing)
improves performance at the cost of extra memory.

-m Specify the cache size (in Kb).
This defaults to 8192 (8 Mb).

See also:texcache p. 161, texcache p. 161, opupdate p. 154.
12 - Scripting 2 159

Operator-Specific Commands
6.3 MATRMAN

SYNTAX

matrman material name

EXPLANATION

Saves the material speciÞed in RenderMan Shader Language. This provides a sim-
ple way of generating RenderMan shaders very quickly. The output of this com-
mand may be re-directed to a Þle.

EXAMPLE

matrman phong1 > /tmp/phong1.sl

This command saves the material phong1 as a RenderMan shader in the speciÞed
directory.

6.4 MATRAMP

SYNTAX

Form1: matramp material_name position r g b a
Form2: matramp material_name -r position

EXPLANATION

The Þrst form of this command�s syntax sets a key in a shader�s ramp by specifying
the name, position and the red, green, blue, and alpha values at that key.

The second form removes keys from a shader�s ramp. The -r option removes a key
frame from the ramp. The position of the key should be a value between zero and
one. If you set a key within 0.01 units of an existing key, that key�s color will be
altered. You cannot remove the ramp�s Þrst and last keys. For a list of available keys,
use the opscript command on the shader you want to modify.

EXAMPLE

matramp twotone1 0.5 18 2 6 1

This command generates a key on the Two tone shader�s ramp at the halfway mark.
Its red, green, blue, and alpha values are listed sequentially, producing a headache-
inducing color ramp.

6.5 RENDER

SYNTAX

render [-V] driver_name
160 2 Houdini 6.0 Reference

Operator-Specific Commands
EXPLANATION

This command causes an output driver to render.

The -V option causes a line of output as each frame begins rendering.
For example: 11:46:06 Rendering frame 1 (1 of 3)

EXAMPLE

% render mantra1

This will cause the output driver named mantra1 to render.

6.6 TEXCACHE

SYNTAX

texcache [-s] [-l] [-c] [-a on|off] [-r xres yres] [-m max]

EXPLANATION

This command allows access to the internal texture map cache used by Houdini. The
texture map cache is used when displaying texture maps in the Viewports (or also
for background images when texturing is turned on).

query options

-s See the current settings.

-l List the contents of the texture map cache.

control options

-c Clear the cache.

-a Turn auto-ßushing of maps on or off. Leaving maps in
the cache improves performance at the cost of extra
memory.

-r Specify the maximum resolution of an image for the
cache. This does not include maps stored in COPs.

-m Specify the cache size (maximum number of images
stored in the cache).
12 - Scripting 2 161

Time Related Commands
7 TIME RELATED COMMANDS

7.1 FCUR

SYNTAX

fcur [frame]

EXPLANATION

Sets the current frame to the frame speciÞed.

EXAMPLE

fcur 15

Sets the current frame to frame 15.

7.2 FPLAYBACK

SYNTAX

fplayback [-i on|off] [-r on|off] [-f factor] [-s step_size]

EXPLANATION

These commands are used to save the state of the playbar to motion Þles. Now, the
information will be retrieved from motion Þles when they are loaded.

Options:

-i Integer frame values on or off

-r Real-time on or off

-f Real-time factor

-s Non-real time frame step size

7.3 FPS

SYNTAX

fps [frames_per_sec]
162 2 Houdini 6.0 Reference

Time Related Commands
EXPLANATION

Sets the output rate to the value you specify. If the value isn�t speciÞed, the current
frames per second rate is used. See also: chround.

EXAMPLE

fps 30

The command above sets the output rate at thirty frames per second.

7.4 FRANGE

SYNTAX

frange [start end]

EXPLANATION

Specify the frame range for playing the animation. If the range is not speciÞed, then
the current range is displayed.

EXAMPLE

frange 20 60

7.5 FSET

SYNTAX

fset [nframes]

EXPLANATION

Sets the frame range is set to the number of frames speciÞed. If no frame count is
speciÞed, the current frame range is displayed.

EXAMPLE

fset 30-100

The command above speciÞes that frames thirty to one hundred should be dis-
played.
12 - Scripting 2 163

Time Related Commands
7.6 FTIMECODE

SYNTAX

ftimecode [timecode]

EXPLANATION

Sets the current frame to the timecode speciÞed. If none is speciÞed, the current
frame is displayed in timecode format.

7.7 TCUR

SYNTAX

tcur [time]

EXPLANATION

Sets the current frame to the time speciÞed. If you don�t set the time, the current
time is displayed.

7.8 TSET

SYNTAX

tset [time]

EXPLANATION

Sets the frame range to the time speciÞed. If no time is speciÞed, the current time is
displayed.
164 2 Houdini 6.0 Reference

Interface Related Commands
8 INTERFACE RELATED COMMANDS
These commands are speciÞc to Houdini�s user interface. They have no effect when
running from the scripting version of Houdini (hscript), but will produce warnings
indicating that information may not be saved correctly.

8.1 QUAD-VIEW REFERENCING CONVENTIONS (FIND: UPDATE!)

The view commands described in this section allow access to the parameters of each
of the individual viewports. If, for example, you wanted to change the level of detail
in the perspective viewport in the modeler you could type:

viewdisplay -l 3 Build.pane1.world.persp1

To get a list of valid Viewport names, use:

viewls -v

Note: As a convenience, <viewport name> can be any regular expression.
Thus, Build* references Build.top, Build.front1, Build.persp1 etc.

Currently, <viewname> cannot be a pattern, nor can the memory name when refer-
encing a view memory with the form <viewname>:<memory name/number>.

Note that some commands do not support pattern matching of Viewport names:

� viewcopy does not support pattern matching for the source viewport
� viewtransform does not support pattern matching at all

8.2 ANIMVIEW

SYNTAX

animview [-v port|edit|both] [-c graph|table|both]
[-S <main_split>] [-s <chooser_split>]

EXPLANATION

Sets the Animation Editor screen layout options. This command is primarily used to
save and restore the Animation Editor layout in a .hip Þle. The split fractions set the
position of the screen area split bars, and are ßoating point values between zero and
one.

OPTIONS

-v <layout> Set Main View layout.

-c <layout> Set Channel Editor layout.

-S <split> Set main screen split fraction.

-s <split> Set channel chooser split fraction.
12 - Scripting 2 165

Interface Related Commands
8.3 AUDIOPANEL

SYNTAX

audiopanel [options]

EXPLANATION

Change the parameters for the audiopanel (in the Options menu).
If no options are speciÞed, the current settings are displayed.

OPTIONS

-s n <name> Set the network menu.

-s o <name> Set the CHOP menu.

-s r on|off Set the scrub repeat toggle.

-s s <value> Set the scrub sustain value.

-s f <frequency> Set the scrub rate value.

-t p reverse|stop|play
Set the test play direction.

-t l on|off Set the test loop toggle.

-t r on|off Set the test rewind toggle.

-o m on|off Set mono output toggle.

-o t on|off Set volume tied toggle.

-o u on|off Set meter toggle.

-o l <value> Set the left volume.

-o r <value> Set the right volume.

-o d 0 | 1 | 2 Turn off audio | Timeline mode | Test mode.

Note: There can only be one -s, -t or -o option speciÞed per command.

8.4 CHLAYOUT

SYNTAX

chlayout options network_pattern
166 2 Houdini 6.0 Reference

Interface Related Commands
EXPLANATION

The chlayout command is used to customize all aspects of each speciÞc CHOP Net-
work. If no options are speciÞed, the current settings are displayed.

OPTIONS

-a <val> Set the Notes CHOP index.

-b <val> Set the number of graphs (less one).

-B <val> Graph type: 0=all, 1=per channel, 2=per CHOP,
3=per name.

-c <string> Graph scope exclusions of the form:
�chop chanel chop channel...� .

-d on|off Toggles display of dots at each sample of the CHOP
channel. Useful for debugging sampling errors by visu-
ally examing the individual values of the channel.
(shortcut: type d in the CHOP Graph).

-e on|off Display extend regions toggle.

-g low|medium|high Grid density.

-h on|off Display handles toggle.

-H on|off Horizontal adapt toggle.

-i on|off Swap interface toggle.

-l on|off Display labels toggle.

-L 0|1 List mode (0=network, 1=list)

-m <index><val><val> Graph height start/end range.

-n on|off Graph disable toggle.

-o <val> <val> Graph dimensions.

-p on|off Scope disable toggle.

-r h <val><val> Graph horizontal start/end range.

-r b <val> <val> Bar height start/end range.

-s on|off Scroll lock toggle.

-S <val> Scroll lock position.

-t on|off Time bar toggle.

-T 0|1 List order: 0=alphabetic, 1=user deÞned.
12 - Scripting 2 167

Interface Related Commands
-u <UnitType> UnitType: �frames�, �samples�, �seconds�.

-v graph|bar Graph viewing mode.

-V on|off Vertical adapt toggle.

-w on|off Full width toggle.

-W <string> Viewport settings script.

8.5 CLOSEPORT

SYNTAX

closeport port_number

Closes a communication port created by the openport command.

See Also: openport; Stand Alone > hCommands p. 428.

8.6 CPLANE

SYNTAX

cplane [options] viewers

ModiÞes or displays current construction plane parameters.

OPTIONS

-o x y z Sets origin to (x, y, z)

-n x y z Sets plane normal to (x, y, z)

-x x y z Sets plane horizontal axis to (x, y, z)

-u x y z Sets the up-vector to (x, y, z)

-l [n|x|y|z] Locks the up-vector to either the plane normal, world
X-axis, world Y-axis or world Z-axis.

-s x y Sets the grid spacing to x units along the X-axis and y
units along the Y-axis.

-r a b Sets the grid ruler to a units along the X-axis and y
units along the Y-axis.

-c a b Sets the # of grid cells to a along X and b along Y.

-d [on|off] Turns construction plane display on or off

For details on how to specify viewers, type "help viewerformat"
168 2 Houdini 6.0 Reference

Interface Related Commands
EXAMPLES

cplane -o 0 0 0 *
cplane -o 1 1 1 -n 0 0 1 -r 10 10 Build.pane1.world

8.7 DOUBLEBUFFER

SYNTAX

doublebuffer [on|off]

EXPLANATION

This command turns double buffering on or off. If no options are passed to the com-
mand, the current state is returned.

Double buffering improves the quality of moving images on a 24 bit monitor. If
Double Buffering is not used, everything is drawn directly to the screen without any
synchronization to the monitor�s refresh rate. This causes areas of the screen which
are being frequently redrawn tend to be displayed while only partially redrawn, this
produces a �ßickering� effect.

When Double Buffering is on, the new image is drawn in an offscreen buffer in
video RAM and then swapped into the display almost instantaneously, thereby elim-
inating the display of half-drawn images, and the ßicker.

Why not have it on all the time? Because some machines do not have sufÞcient
video RAM to perform double buffering in full (24 bit) colour. The colour resolution
must be halved and then still-frame image quality is reduced due to dithering.

8.8 EDITOR

Warning: This command is obsolete since 4.0. Similar commands are: desk, pane.

8.9 NETEDITOR

SYNTAX

neteditor <options> [-d <desktop_name>] pane1 ...

EXPLANATION

Allows different options of the network editor to be set. A valid pane name must be
speciÞed. If no desk name is given then it will assume the current desk.

OPTIONS

-d <string> Desktops to operate on. If it is blank it will default to
the current desktop.
12 - Scripting 2 169

Interface Related Commands
-x 0|1 Display group dialog.

-p 0|1 Display parameters.

-c 0|1 Display the color palette.

-e 0|1 Display expose ßag in list mode.

-n 0|1 Display operator names.

-o 0|1 Display the network overview.

-s 0|1 Toggle connection style (direct or not).

-z 0|1 Minimize operator bar.

-G <float> The split fraction for groups

-P <float> The split fraction for parameters

-S order Set the sort order. The order may be one of:
user = User deÞned order
alpha = Alphabetic
type = Operator type
hier = Hierarchical

-v path x y scale Changes how the network speciÞed by path should be
displayed. The x and y refer to panning positions, and
the scale to the zoom level.

8.10 OMBIND

SYNTAX

ombind [-t <type>] [-d <settings>] <instance> <op_parm>
<manipulator_parm>

EXPLANATION

Binds an operator parameter to the movement of a manipulator.

OPTIONS

-t <type> Network type. Available types are obj, sop, pop, and
top. The default value is sop if the argument is unspec-
iÞed.

<instance> The label to associate with the bind operation. If the
label exists, the new binding is appended to the group
of bindings with the existing label.

<op_parm> String specifying both the operator and the parameter
170 2 Houdini 6.0 Reference

to be bound, delimited by a colon.

<manipulator_parm> String specifying the manipulator and parameter to
bind, delimited by a colon.

<settings> The default settings for this manipulator type when
bound to this type of operator. The meaning of these-
settings varies between types of manipulators. This
option only has meaning when the instance of the
manipulator does not yet exist (i.e.it only works for the
Þrst ombind command in the set of commands for one-
manipulator). To turn the manipulator off by default,
use a default setting of "i".

EXAMPLE

ombind -t sop "First U" carve:group uisoparm:input
ombind -t sop "First U" carve:domainu1 uisoparm:k

The Þrst command binds the group parameter of the carve sop, to the movement of
the input parameter of the uisoparm handle.

The "First U" instance is created assuming it is not already created. The domainu1
binding to the manipulator parameter k is appended to the existing "First U"
instance.

See also: ombindinfo, omls, omunbind, omwhere, omwrite.

8.11 OMBINDINFO

SYNTAX

ombindinfo [-t <type>] <operator>

Lists the parameters that are bound to a manipulator for the speciÞed operator.

OPTIONS

-t <type> Network type. Available types are: obj, sop, pop, and
top. The default value is sop if the argument is unspeci-
Þed.

<operator> The operator.

OUTPUT FORMAT

instance manipulator { op_parm->manipulator_parm ... }

EXAMPLE

ombindinfo carve

Lists the bound parameters of the carve sop operator.
171 2 Houdini 6.0 Reference | 12 - Scripting

Interface Related Commands
See also: ombind, omls, omunbind, omwhere, omwrite.

8.12 OMLS

SYNTAX

omls [-t <type>] [manipulator]

Lists the available manipulators for the given operator type. If the manipulator
parameter is speciÞed, this command lists the bindable parameters of the speciÞed
manipulator.

OPTIONS

-t <type> Network type. Available types are: obj, sop, pop, and
top. The default value is sop if the argument is unspeci-
Þed.

manipulator If unspeciÞed, omls lists the available manipulators.
Otherwise a list of bindable parameters for the speci-
Þed manipulator is displayed.

EXAMPLE

omls domain

Lists the bindable parameters of the domain manipulator.

See also: ombind, ombindinfo, omunbind, omwhere, omwrite.

8.13 OMPARM

SYNTAX

omparm <manip_name> <manip_type> <op_node_name> <settings>

For the given manipulator (handle) and operator node, set the manipulators's set-
tings to the speciÞed settings string. These settings will be used the next time the
user enters the state for this operator node.

The values for the settings are speciÞc to the type of manipulator and are undocu-
mented. This command is used internally to save manipulator settings to the hip
Þle.

See also: ombind, ombindinfo, omunbind, omwhere, omwrite.
172 2 Houdini 6.0 Reference

Interface Related Commands
8.14 OMUNBIND

SYNTAX

omunbind [-t <type>] <op_parm> [instance]

Removes the bindings between an operator and manipulator that match the speciÞed
search criteria.

OPTIONS

-t <type> Network type. Available types are: obj, sop, pop, and
top. The default value is sop if the argument is unspec-
iÞed.

<op_parm> SpeciÞes the bindings to remove with respect to the
bound operator. Legal formats include: operator_name
operator_name:parm_name The operator name must
be speciÞed.

<instance> SpeciÞes the label of the manipulator that should be
disconnected from the speciÞed operator or parameter.

EXAMPLES

omunbind xform

Removes all bindings for the xform sop.

omunbind xform:tx

Removes all bindings to xform's tx parameter.

omunbind xform:tx Transformer

Removes all bindings of xform's tx parameter that are bound to the Transformer
handle.

See also: ombind, ombindinfo, omls, omwhere, omwrite

8.15 OMWHERE

SYNTAX

omwhere [-t <type>] [manipulator]

Lists the operators bound to the speciÞed manipulator.

OPTIONS

-t <type> Network type. Available types are obj, sop, pop, and
top. The default value is sop if the argument is unspec-
iÞed.
12 - Scripting 2 173

Interface Related Commands
[manipulator] If unspeciÞed, lists all operators bound to a handle.

EXAMPLE

omwhere pivot

Lists those operators bound to the pivot handle.

See also: ombind, ombindinfo, omls, omunbind, omwrite.

8.16 OMSBIND

SYNTAX

omsbind [-t <type>] <op_parm> <selector> <sel_description>
<sel_prompt> <op_input_index> <op_intput_required> <primmask>
<allow_drag> <menu_name> <ast_sel_all>

Binds an operator parameter to a selector.

OPTIONS

-t <type> Network type. Available types are obj, sop, pop, and
top. The default value is sop if the argument is unspec-
iÞed.

<op_parm> String specifying both the operator and the parameter
to be bound, delimited by a colon. The parameter spec-
iÞcation is optional.

<selector> The name of the selector type. A list of selectors can be
obtained using the omsls command.

<sel_description> A description of the purpose of the selector. Used with
omsunbind.

<sel_prompt> The string that is displayed in the status area when the
selector is active.

<op_input_index> Index of operator input where the result of this selec-
tion should be fed.

<op_input_required> SpeciÞes if this input is required.

<primmask> A string representing the types of primitives that can be
picked using this selector. This string can consist of
one or more primitive types, or primitive types pre-
ceded by a "^" to remove that primitive type from the
selectable primitive types. The available primitive
types are: all, face, poly, nurbcurve, bezcurve, hull,
mesh, nurb, bez, quadric, circle, sphere, tube, particle,
and meta.
174 2 Houdini 6.0 Reference

Interface Related Commands
<allow_drag> Determines if the user is allowed to select and begin
manipulation with a single mouse click.

<menu_name> Name of the operator's "Group Type" parameter (or ""
if there is none). This lets the selector set this parame-
ter to "Primitive" if the user selected primitives,
"Points" if the user selected points, etc.

<ast_sel_all> If set to a non-zero value, this indicates that the group
parameter requires a "*" to select all geometry. A zero
value indicates that the group parameter should be left
blank if the whole geometry is selected.

EXAMPLE

omsbind -t obj blend objselect "Second Input" "Select the second
blend input" 1 1 all 0 "" 0

Binds a simple object selector to the second input of the blend object.

See also: omsbindinfo, omsls, omsunbind, omswhere, omwrite.

8.17 OMSBINDINFO

SYNTAX

omsbindinfo [-t <type>] <operator>

Lists the selectors that are bound to the speciÞed operator.

OPTIONS

-t <type> Network type. Available types are obj, sop, pop, and
top. The default value is sop if the argument is unspec-
iÞed.

<operator> The operator.

OUTPUT FORMAT

selector "Selector Label" "Selector Prompt"
op_parameter op_input_index op_input_required primmask allow_drag
menu_name ast_sel_all

EXAMPLE

omsbindinfo carve

Lists the bound selectors of the carve sop operator.

See also: omsbind, omsls, omsunbind, omswhere, omwrite.
12 - Scripting 2 175

Interface Related Commands
8.18 OMSLS

SYNTAX

omsls [-t <type>]

Lists the available selectors for the given operator type.

OPTIONS

-t <type> Network type. Available types are obj, sop, pop, and
top. The default value is sop if the argument is unspec-
iÞed.

EXAMPLE

omsls -t obj

Lists the selectors that can be bound to object parameters.

See also: omsbind, omsbindinfo, omsunbind, omswhere, omwrite.

8.19 OMSUNBIND

SYNTAX

omsunbind [-t <type>] <op> [instance]

Removes the bindings between an operator and selector that match the speciÞed
search criteria.

OPTIONS

-t <type> Network type. Available types are obj, sop, pop, and
top. The default value is sop if the argument is
unspeciÞed.

<op> SpeciÞes the operator from which to remove bindings.

<instance> SpeciÞes the label of the selector that should be discon-
nected from the speciÞed operator.

EXAMPLE

omsunbind particle

Removes all selector bindings for the particle SOP.

omsunbind particle "Force Geometry"

Removes the selector with the label "Force Geometry" from the particle SOP.

See also: omsbind, omsbindinfo, omsls, omswhere, omwrite.
176 2 Houdini 6.0 Reference

Interface Related Commands
8.20 OMSWHERE

SYNTAX

omswhere [-t <type>] [selector]

Lists the operators bound to the speciÞed selector.

OPTIONS

-t <type> Network type. Available types are obj, sop, pop, and
top. The default value is sop if the argument is unspec-
iÞed.

[selector] If unspeciÞed, lists all operators bound to a selector.

EXAMPLE

omswhere everything

Lists those operators bound to the everything selector.

See also: omsbind, omsbindinfo, omsls, omsunbind, omwhere.

8.21 OMWRITE

SYNTAX

omwrite [bindings_file]

This command writes out all manipulator and selector bindings to the speciÞed Þle.
If no Þle name is speciÞed, this argument defaults to $HOME/houdini5/OPbindings.
The format of this Þle is such that it can replace the default bindings Þle found in
$HH/OPbindings.

See also: ombind, ombindinfo, omls, omunbind, omwhere, omsbind, omsbindinfo,
omsls, omsunbind, omswhere.

8.22 OPENPORT

SYNTAX

openport port_number

Opens a communication port to Houdini. This allows the hcommand program to run
Textport commands from a remote process.

See Also: closeport; Stand Alone > hCommands p. 428.
12 - Scripting 2 177

Interface Related Commands
8.23 PANE

SYNTAX

pane <options> [-d desk_name] pane_name

EXPLANATION

Allows different options of the pane to be set. A valid pane name must be speciÞed.
If no desk name is given then it will assume the current desk.

Also if no options are speciÞed then all panes of that desktop will be listed.

OPTIONS

-c 0|1 Follow the parent's current node selection.

-f 0|1 Toggle fullscreen mode.

-l 0-5 Set the link value on the current pane.
A zero turns linking off.

-m type Valid types are:
neteditor
chaneditor
geosheet
listchans
parmeditor
textport
uicustom
viewer
maniplist

-h path Set the operator path.

-T type Set the operator type. This is used to determine what
type of network (SOP, CHOP, POP, etc.) the desktop
referred to if the -h path doesn�t exist.

-o Open a new copy of the pane.

-p Move the playbar to this pane.

-s 0|1 Split the pane in two:
0 � left/right, 1 � top/bottom.

-t 0|1 Tear off the window (1), or put it back (0).

-z Close the pane.
178 2 Houdini 6.0 Reference

Interface Related Commands
EXAMPLES

pane -f 1 pane2 Turn fullscreen mode on for pane2.

pane -h /obj pane2 Set the path to objects for pane2.

pane -l 0 -p pane2 Turns linking off and moves the playbar to pane2.

8.24 PERFORMANCE

SYNTAX

performance [options]

EXPLANATION

Change the parameters for the Performance Monitor (noramlly to be found in the
Options > Performance Monitor.

options

-l off|window|stdout Set the Output Log mode.

-c on|off Set Monitor OP Cook toggle.

-o on|off Set Monitor Object Display toggle.

-v on|off Set Monitor Viewport Display toggle.

-f on|off Set Monitor Frame Length toggle.

-i on|off Set Tile Statistics in OP Info toggle.

-h on|off Set Tile Hilight when Cooking toggle.

-s on|off Set Single Frame Capture toggle.

-p on|off Set Pause toggle.

-e on|off Set Enable Output toggle.

When no options are speciÞed, the current settings are displayed.

8.25 PLAY

SYNTAX

play options
12 - Scripting 2 179

Interface Related Commands
EXPLANATION

The play command controls the Playbar. If neither the -r or -s options are not speci-
Þed, the playbar will start playing forwards.

options

-1 The -1 (number �1�) causes playback to occur one time
only, and will stop when it reaches the last frame.

-l The -l (letter �l�) causes play in loop mode, repeating
over and over again until explicity stopped.

-z Play in zigzag mode � alternately playing backwards
and then forwards.

-s Stops playback.

-r Play in reverse.

Tip: To set the Playbar to a speciÞc frame number, use the fcur command.

8.26 VIEWBACKGROUND

SYNTAX

viewbackground [options] viewname

EXPLANATION

This command sets background/rotoscoping parameters for a Viewport. When no
options are speciÞed, the current settings of the speciÞed Viewports and view-mem-
ories are displayed.

OPTIONS

-b on|off Turn background image on or off.

-t on|off Turn texture mapped backgrounds on or off.

-a on|off Turn automatically placing background image on or
off. To use Þxed background image offset and scale,
this option must be off and texture mapped back-
grounds must be on.

-o x y Offsets the image by x and y.

-s x y Scales the image by x and y.

-q quality Quality of the background image.

-S file|cop The source of the background image.
180 2 Houdini 6.0 Reference

Interface Related Commands
For Files only:

-F <filename> The Þlename of the disk Þle.

-O on|off Toggles manual override of the Þle res.

-r <xres> <yres> Manually sets the Þle res.

For COPs only:

-c icename copname Specify the COP to use as a background image.

-f frame The frame of the image to display

-p <color> <alpha> Sets the Color and Alpha planes to use.

EXAMPLE

viewbackground -b off Build*

Entering this command in the Textport turns off the display of background images in
all of the Build desk�s Viewports.

8.27 VIEWCAMERA

SYNTAX

viewcamera [-c camera_name] viewname [viewname2...]

EXPLANATION

This command sets the camera to view through for the Viewport(s) speciÞed. If the
Viewport does not support viewing through a camera (i.e. Geometry Editor View-
ports), or if the object speciÞed is not a valid type (i.e. Geometry), an error is
reported. It is not possible to specify a camera per memory.

Without any options, the cameras for the viewports speciÞed are displayed.

See also: viewls, viewdisplay, viewbackground, viewprojection.

8.28 VIEWCOPY

SYNTAX

viewcopy fromview toview [toview...]

EXPLANATION

This command copies the settings of one viewport or view-memory to another. For
example, you can set up memory buttons based on the current state of a viewport,
12 - Scripting 2 181

Interface Related Commands
copy the state stored in the memory buttons back to a viewport, or copy settings
between different viewports.

If the destination is a view-memory that doesn't exist, it will be created.

You can specify more than one destination at the same time.

For details on how to specify viewports and memories, type: help viewportformat

EXAMPLES

viewcopy Build.pane1.world.persp1 Build.pane1.world.persp1:1

Copy the perspective view to memory location 1 of pane1 of the Build desk.

viewcopy Build.pane1.world.persp1:1 Build.pane1.world.persp1
Build.pane1

Copy memory location 1 to the perspective view and also to a named memory loca-
tion in the perspective view of the Build desktop�s viewer in pane1.

8.29 VIEWDISPLAY

SYNTAX

viewdisplay [options] viewname

EXPLANATION

This command changes the Display options of a Viewport for either the view occu-
pying a Viewport, or for one of the memory settings associated with it.

Tip: You need to supply a viewname. You can get this with the viewls command.

Note: All viewing information (including memories) set using viewdisplay are lost
when saving from non-graphical appliactions such as hscript.

OPTIONS

geo_type is one of:

all Apply to All elements.
sel Apply to Selected elements.
unsel Apply to Un-selected elements.
templ Apply to Templates
target Apply to target output (i.e. the display SOP in

the �View Current� mode).

-M geo_type mode Change the display mode, where mode is one of:
182 2 Houdini 6.0 Reference

Interface Related Commands
wire Wireframe
hidden_invis Hidden Line Invisible
hidden_ghost Hidden Line Ghost
flat Flat Shaded
flat_wire Flat Wire Shaded
shade Smooth Shaded
shade_wire Smooth Wire Shaded
vex VEX Shaded
vex_wire VEX Wire Shaded

-N geo_type m on|off Set display of points.

-N geo_type n on|off Set display of point numbers.

-N geo_type l on|off Set display of point normals.

-N geo_type t on|off Set display of point texture coordinates.

-N geo_type p on|off Set display of point positions.

-E geo_type n on|off Set display of vertex numbers.

-E geo_type t on|off Set display of vertex texture.

-E geo_type g on|off Set display of vertex texture.

-I n on|off Set display of primitive numbers.

-I l on|off Set display of primitive normals.

-I h on|off Set display of primitive hulls.

-I t on|off Set display of primitive proÞles.

-I p on|off Set display of primitive proÞle numbers.

-I b on|off Set display of primitive breakpoints.

-B bw|wb Set the colour scheme: light or dark.

-a on|off Set �match selected with nonselected� on or off.

-A templ|target on|off
Turn faded look on or off for template or target output
geometry.

-b on|off Turn backface removal on or off.

-C <value> Set constant sensitivity level.

-D on|off Turn display geometry on or off
12 - Scripting 2 183

Interface Related Commands
-e value Set line width

-f on|off Turn Þeld guide on or off.

-F on|off Turn Þlled selections on or off.

-g on|off Turn guide geometry on or off.

-h on|off Turn �hulls only� display on or off. If on, only the hulls
will be drawn.

-i on|off Turn footprint geometry on or off.

-l <value> Adjust Level of Detail (for meta and quadrics).
Default 1.0)

-L on|off Turn multi-texturing on or off.

-n <value> Option for scaling the display normal (default 0.2)

-o on|off Turn object origin axes on or off.

-O on|off Turn ßoating origin axes on or of (the one in the bot-
tom-left corner of the Viewport).

-q on|off Turn transparency on or off.

-r on|off Turn projected textured and spotlights on or off.

-R on|off Turn target output geometry on or off.

-s on|off Turn safe area on or off.

-S on| off Turn specular on or off in Shaded mode.

-t on|off Turn texturing on or off in Shaded mode.

-T on|off Turn template geometry on or off.

-V <value> Set variable sensitivity level.

-w on|off Turn wireframe move on or off.

-x on|off Turn on grid in YZ plane (normal is X).

-y on|off Turn on grid in XZ plane.

-z on|off Turn on grid in XY plane.

EXAMPLES

viewdisplay -O off Build*

Turns off the Origin Axes display in all Viewports in the Build desktop.

viewdisplay -M all wire Build*

Sets all objects in the Build desk�s Viewports to wireframe mode.
184 2 Houdini 6.0 Reference

Interface Related Commands
viewdisplay -l 3 Build.pane1.world.persp1

Sets the display resolution in the Build desk�s persp1 Viewport for NURBS surfaces
and metaballs to 3.

Tip: You could also set this in: i) Viewport Display Options (Viewport page),
or ii) by setting the environment variable HOUDINI_LOD.

8.30 VIEWLAYOUT

SYNTAX

viewlayout -q -d [h | v] -s 1-4

EXPLANATION

The viewlayout command allows you to change how the view�s viewports are
arranged on screen. Currently, you can switch to a quad view with the -q option,
switch to a double view with the -d option and switch to a single view with the -s
option:

viewlayout -q modelmain
viewlayout -d h 1 3 modelmain
viewlayout -d v 2 4 modelmain
viewlayout -s 4 modelmain

the h and v after the -d option specify whether you want the two viewports arranged
vertically or horizontally.

The numbers after the -d and -s options refer to the quadrants of the standard quad
view:

1 Top Left
2 Top Right
3 Bottom Left
4 Bottom Right

8.31 VIEWLS

SYNTAX

viewls [-n] [-t type] [-l] [-v [-T viewport-type]] [pattern]

EXPLANATION

Lists all the available viewers using the following format:

 viewername type

type will be either �world�, �texture�, or �particle�
viewername will be of the form Desk.pane.type
12 - Scripting 2 185

Interface Related Commands
OPTIONS

-n Outputs a terse list with the names only.

-t Restricts output to viewers of the speciÞed type.

-l Includes currently used view-memories, using the fol-
lowing format: viewername:memname view-type

-v Lists the the Viewports that are associated with each
viewer as well. It uses the format: viewername.view-
portname viewport-type

-T Restricts output to Viewports of the given type. The
viewport-type can be one of:
perspective
ortho_front
ortho_right
ortho_top
uv

If any patterns are speciÞed, then output is also limited
to viewers whose names match the given patterns.

For help on related commands type: help view

8.32 VIEWPROJECTION

SYNTAX

viewprojection [-o on|off] viewname

EXPLANATION

This command sets the projection type for a viewport.

options

-o on|off Turn ortho viewing on or off

When no options are speciÞed, the current settings are displayed.

EXAMPLE

viewprojection -o off objmain

This command disables orthographic projection in the Object Editor�s main View-
port.
186 2 Houdini 6.0 Reference

Interface Related Commands
8.33 VIEWTRANSFORM

SYNTAX

viewtransform [-p] [data] viewname

EXPLANATION

This command is not intended for use by humans. This sets the transform for a view
(as well as some options). The command is really only used for saving to .hip Þles.

Options:

-p Will display the viewtransform command.

A possible use for this (the -p option) is to save one transform and load it into
another view. For example, you might want to save the current settings into a mem-
ory button, or move a memory button�s settings into the current view.

All Viewport settings are saved to the .hip Þle using these commands.

8.34 VIEWTYPE

SYNTAX

viewtype [-t type] [name]

EXPLANATION

This command allows you to change the type of the given viewport(s) and or view
memories. This type can be one of:

ortho_top / bottom / right / left / front / back
perspective
uv

For details on how to specify viewports and view-memories,
type: help viewportformat

EXAMPLE

viewtype -t ortho_top Build.pane1.world.persp1

will change the viewport called persp1 in the Þrst pane of the Build desktop to be an
ortho_top Viewport.
12 - Scripting 2 187

8.35 VIEWUPDATE

SYNTAX

viewupdate [-c] [-u update_mode]

When changes are made in an interactive Houdini session the viewports will update
in one of three possible ways depending on the state of the global update mode. This
mode can be set to one of the following values:

off | never Views update only on demand.
on | changes Views update after changes.
continuous | always Views update continuously.

The special update mode of �now� will force a single Viewport update if the current
update mode is �never�.

With no options speciÞed the viewupdate command will show the current status of
the view update mode.

If the -c option is speciÞed then this output will be in the form of a valid "viewup-
date" command.

The -u option allows the current update mode to be modiÞed.

This command correspond to the control offered by the global Update buttons at the
top of each appropriate Editor.

EXAMPLE

viewupdate -u never
viewupdate -u now
viewupdate -c

Note: Currently the update mode applies only to 3D Viewports.
188 2 Houdini 6.0 Reference | 12 - Scripting

Creating a Script from Houdini
3 Uses of the
Scripting Language

1 CREATING A SCRIPT FROM HOUDINI

1.1 OPSCRIPT / OPSAVE / OPWRITE COMPARED

There are three ways of writing out scripts from Houdini. It is important to know the
differences and limitations of each method.

opscript Saves text commands to build operators. This doesn�t
handle saving of locked data (i.e. a Model SOP). How-
ever, it does save the animation information etc.

opsave Saves what ever the data is for the operator. This is
only implemented for SOPs. This saves the data of the
OP.

opwrite Saves a CPIO archive snippet which is useful for copy-
ing operators (in their entirety) from one HIP Þle to
another. This is the internal mechanism used for copy/
pasting within Houdini. This method saves both the
locked data and the animation information for the OP.

1.2 OPSCRIPT

SYNTAX

opscript [-r] [-g] [-b] [-v|-c] [-s] [-G] operator_pattern

EXPLANATION

This command will generate a series of commands which will re-create the objects
speciÞed. This command is very useful when the output needs to be modiÞed, since
the output is quite straightforward. All channel information as well as operator
information is saved. It is also possible to create general scripts which take argu-
ments for the objects to be created. In the general form, care is taken to check for the
number of arguments passed to the script.
12 - Scripting 3 189

Creating a Script from Houdini
options

-r This tells the command to work recursively through the
entire operator hierarchy

-G Operator groups in the objects will be saved with the
objects.

-g SpeciÞes that the top-level arguments are in general
form and that names must be used when sourcing the
script Þle

-b The brief option speciÞes that parameters at their
default values are not displayed

-v This tells the command to evaluate but not to display
channel information

-c Causes only the channels for the speciÞed operator to
be saved. The node creation, parms, ßags and inputs
will not be output when this option is speciÞed. This is
useful for saving animation data only.

-s Output channel and keyframe times in samples
(i.e. not in seconds).

Limitations: Some parts of operators have no script equivalent commands. For
example, there is no way to load geometry into a SOP, so a modelled SOP will not be
re-created correctly from the output of an opscript command.

The opscript command can be re-directed to a Þle, or displayed in the Textport.

To reconstruct the objects, the source command is used to read the script generated.
See source p. 119 for details.

Opscript echos, or displays, the commands necessary to re-create the speciÞed
object. If you specify -r, the command covers the entire operator hierarchy. If you
specify -g, the top-level arguments are general in form. The names of the objects
must be speciÞed using this option.

EXAMPLE

opscript -r /obj/geo*
opscript -r /comp/* > /tmp/mycompfiles.cmd

The Þrst example above will provide you with the commands necessary to recreate
all geometry objects in the operator hierarchy. The second example provides you
with the commands necessary to recreate all operators in the hierarchy located in the
directory speciÞed.

See also: opwrite, opsave
190 3 Houdini 6.0 Reference

Creating a Script from Houdini
1.3 MWRITE

EXPLANATION

This command saves the whole motion Þle into one CPIO archive. There are two
shell scripts provided in the bin directory to take the CPIO archive apart and to
reconstruct it (hexpand and hcollapse). Once the .hip Þle is expanded, each compo-
nent can be edited by hand. Care must be taken to reconstruct the CPIO archive in
the same order that it was originally. The hexpand and hcollapse commands take
care of this automatically.

Limitations: Since this creates a CPIO archive, the contents are not easily editable.
Also, it is not easy to generalize the Þle so that it performs like a macro.

The mread command can be used to load or merge a .hip Þle into an existing .hip
Þle. If you specify the -i option, the Þlename is incremented, that is has a number
appended to it to signify its position in a sequence of saved versions.

1.4 OPWRITE

SYNTAX

opwrite object Þlename

Saves the object�s contents to the Þle you specify.

EXPLANATION

Like the mwrite command, this command saves into a CPIO archive. However, the
opwrite command will save a partial .hip Þle. For example, it is possible to save
only SOPs from a .hip Þle, or only objects, or only materials. This can be used to
extract some information from one .hip Þle and move it into another .hip Þle.

Limitations: Unlike the opscript command, opwrite saves modelled data and all
information required to reconstruct an operator (or operators). Unlike the mwrite
command, this allows for partial save/load of motion data. However, like mwrite the
output is in CPIO archive format, and is less ßexible than the opscript command.
Internally, this command is used for copy/paste operations.

The opread command is used to load the Þles created by the opwrite command.

EXAMPLE

opwrite light2 myfile.hip

This causes the contents of object light2 to be saved to a Þle named myÞle.hip.

1.5 FURTHER EXAMPLES

If geo1 is made with a Circle SOP, a smaller Circle SOP, followed by a Sweep SOP,
followed by a Skin SOP (which is set for display and render), you have created a par-
12 - Scripting 3 191

Creating a Script from Houdini
tial torus. Frequently, you want to use the Sweep SOP followed by the Skin SOP. So,
in the Houdini Textport, you could type the following script:

houdini-> opcf /obj/geo1
houdini-> opscript * > skinner.cmd
Automatic generated script
set saved_path = `execute(�oppwf�)`
opadd circle circle1
oplocate -x 2.1 -y 3.26667 circle1
opparm circle1 type (nurbs) orient (xy) rad (1 1)

t (0 0 0) order (4) divs (10)
arc (openarc) angle (-90 90) impefect(on)

opset -d off -r off -t off -l off -s off -u off
-c off -C off -p off circle1

opadd circle circle2
oplocate -x 0.644444 -y 3.24444 circle2
opparm circle2 type (nurbs) orient (xy) rad (0.2 0.2)

t (0 0 0) order (4) divs (10)
arc (closed) angle (0 360) imperfect (on)

opset -d off -r off -t off -l off -s off -u off
-c off -C off -p off circle2

opadd sweep sweep1
oplocate -x 1.6 -y 2.05556 sweep1
opparm sweep1 xgrp (��) pathgrp (��) cycle (all)

angle (off) noflip (off) skipcoin (on)
usevtx (off) vertex (0) scale (1)
twist (0) roll (0) newg (off)
sweepgrp (sweepGroup)

opset -d off -r off -t off -l off -s off -u off
-c off -C off -p off sweep1

opwire circle2 -0 sweep1
opwire circle1 -1 sweep1
opadd skin skin1
oplocate -x 1.61111 -y 1.17778 skin1
opparm skin1 uprims (��) vprims (��) surftype (quads)

keepshape (off) closev (nonewv) force (off)
orderv (4) skinops (all) inc (2)
prim (off) polys (off)

opset -d on -r on -t off -l off -s off -u off
-c off -C on -p on skin1

opwire sweep1 -0 skin1
opcf $saved_path

This may look like a lot of noise. However, there are really only twenty commands
being executed. Starting with this as a script setup, you would remove the com-
mands relating to the Circle SOPs, and re-work the script slightly as follows:

Script to append a skin and a sweep to the current object.
The first argument = backbone; second = the # cross-section.
if (�$argc� != 3) then

echo Usage: $arg0 backbone_sop cross_section_sop
exit
endif

Here is a neat trick to find out the name of the SOP
which was just added
set sweep_sop = `execute(�opadd -v sweep�)`
oplocate -x 1.6 -y 2.05556 $sweep_sop
opparm $sweep_sop xgrp (��) pathgrp (��) cycle (all)

angle (off) noflip (off) skipcoin (on)
usevtx (off) vertex (0) scale (1)
twist (0) roll (0) newg (off)
sweepgrp (sweepGroup)

opset -d off -r off -t off -l off -s off -u off
-c off -C off -p off $sweep_sop

Here, we change our connections
opwire $arg2 -0 $sweep_sop
opwire $arg1 -1 $sweep_sop

set skin_sop = `execute(�opadd -v skin�)`
oplocate -x 1.61111 -y 1.17778 $skin_sop
opparm $skin_sop uprims (��) vprims (��) surftype (quads)

keepshape (off) closev (nonewv) force (off)
orderv (4) skinops (all) inc (2)
prim (off) polys (off)

opset -d on -r on -t off -l off -s off -u off
-c off -C on -p on $skin_sop

opwire sweep1 -0 $skin_sop
opcf $saved_path
192 3 Houdini 6.0 Reference

Environments
2 ENVIRONMENTS

2.1 THE DEFAULT ENVIRONMENT FILE (123.CMD)

When Houdini is run without any arguments, a default Þle called 123.cmd is loaded.
This is the Þrst Þle found in the Houdini search path, so it can be overridden creat-
ing a Þle $HOME/houdini/scripts/123.cmd. If you want the default start-up environ-
ment to contain nothing, leave an empty Þle there.

2.2 EDITING THE STARTUP SCRIPT

When you start Houdini, a default script is automatically read in called 123.cmd.
This script sets up the scene with a world object, two cameras, three lights and two
geometry objects. A portion of this 123.cmd looks like this:

This is the startup script.
oadd -t world world
oadd -t camera cam1 cam2
oadd -t geometry geo1 geo2
oadd -t light light1 light2 light3
edit
odisplay -d on -s geo1,geo2,light*
odisplay -s geo2 -c 23
sgrid -s geo2:first -R 11 -C 11 -z 20 20 -P 0 -.8 0 -p xz -t quad -
c rc

sopdisplay -s geo2:first -d -r
chadd -s light*/t?,r?,light?
...

This Þle can be modiÞed to customize your default start-up environment. For exam-
ple, you may want Double Buffering to default to off; so you could add the line:

doublebuffer off

Any line which starts with a # will not be executed: use them to add comments to
your cripts.

2.3 SAVING AN ENVIRONMENT

1. Setup your environment (lights, cameras, default geometries, etc.).

2. Open a Textport with the Dialogs > Textport menu.

3. Save your environment by typing in:
opscript -r /obj/* > myEnvironment.cmd

This saves your environment into the Þle myEnvironment.cmd. Although it isn�t nec-
essary to know all the details at this point, it will help to know why this works later
on. The -r option recursively writes all objects to the Þle. The /obj/* means that you
12 - Scripting 3 193

Environments
will be writing out all objects (hence the *) the UNIX redirection character (>)
sends the result to the Þle myEnvironment.cmd.

2.4 LOADING AN ENVIRONMENT

1. Open a Textport with the Dialogs > Textport menu.

2. Type:
source myEnvironment.cmd

This merges the elements from your myEnvironment.cmd Þle with those which
already exist. If you want to start from scratch, you must enter the Objects and
delete all the objects Þrst.

2.5 SAMPLE CUSTOM 123.CMD FOR UNIX SCRIPTERS

Here is a 123.cmd Þle that provides some UNIX type aliases for common commands
like ls and cd. If you put a 123.cmd Þle in $HOME/houdini/scripts, it will be picked
up before $HH/scripts/123.cmd .

If you�re in a large shop where the system administrator has already set up a
123.cmd Þle in /usr/local/houdini/scripts (or somewhere else), you should probably
source this in instead of $HH/scripts/123.cmd .

Here, we source in the installed version of 123.cmd so
that we�ll pick up any changes in the distribution.
#
source $HH/scripts/123.cmd

Now, make some sane aliases
#
alias cd opcf
alias ls opls
alias pwd oppwf
alias add opadd
alias rm oprm
alias date �echo Frame $F: `system(date)`�
alias unsetenv setenv -u
alias unset set -u

You can always change the setup of Houdini so that it�s got whatever objects/materi-
als you want by default. Simply use the opscript command as mentioned above, to
see what the commands are needed to generate an operator.

Once the 123.cmd is read into a HIP Þle, the aliases are saved along with the Þle, so
unless someone removes them, these aliases will be retained.
194 3 Houdini 6.0 Reference

Environments
2.6 EDITING HIP SCRIPTS

Because Houdini .hip Þles are UNIX CPIO archives, you can use cpio to unpack, and
edit them � the commands are the same commands listed here in the scripting com-
mands. Once you are done, you can reassemble them with cpio again. To facilitate
this, there are two scripts: hexpand and hcollapse .

HEXPAND

The script hexpand will expand a cpio Þle such as a .hip Þle into a directory struc-
ture that can then be edited using a text editor, and then collapsed back into a regular
Þle using hcollapse .

Usage:

hexpand <hip_file>

HCOLLAPSE

Usage:

hcollapse [-r] <cpio_file>

-r removes the contents Þle and the expanded directory

The script hcollapse will collapse a directory that was previously extracted from a
cpio Þle using hexpand .

EXAMPLE

Select your .hip Þle in spy, and type:

!hexpand myHIPfile.hip

to expand the Houdini Þle into editable directories and Þles.
12 - Scripting 3 195

Creation Scripts
3 CREATION SCRIPTS
Every OP node in Houdini can have a �creation script� run when it is created. These
scripts must appear somewhere in the Houdini search path (below), and should
appear in a directory according to the type of the node being created.

$HOME/houdini/scripts

3.1 NAMES OF CREATION SCRIPT DIRECTORIES

The names for the creation script directories are:

scripts/obj Objects
scripts/mat Materials
scripts/comp COPs (Composite) Networks
scripts/out Output OPs
scripts/out POP (Particle) Networks
scripts/ch CHOP (Channel) Operators
scripts/shop SHOP (Shader) Operators

3.2 EXAMPLES

ADDING A TOP TO A SHADER UPON CREATION

For example, if, every time you added a new Phong shader, you want to automati-
cally create a Color TOP inside it, you can do it by creating a script:

% cd ~/houdini
% mkdir scripts
% cd scripts
% mkdir mat
% echo 'opcf $arg1 ; opadd texture' > mat/phong.cmd

The Þle phong.cmd should contain:

set save_dir = �run("oppwf")�
opcf $arg1
opadd texture
opcf $save_dir

Important information about the script:

1. The script name must be the operator name with a .cmd Þle extension (to Þnd out
what the operator names are, you can do an opadd command with no arguments).

2. The script must exist in the correct directory

3. When the script is run, the name of the created object as the Þrst argument.

4. The current working directory will be set to the owner of the node just created
(i.e. when the script is run for a SOP, the current working directory will be the
object containing the SOP). The current working directory is restored on comple-
tion of the creation script.
196 3 Houdini 6.0 Reference

Creation Scripts
CREATION OF AN OBJECT

As an example, in terms of the Houdini scripting language, the creation of an object
goes something like this:

First, add a geometry object and get the name of the object
into a variable
hscript-> set save_cwd = `execute("oppwf")`
hscript-> opcf /obj
hscript-> set added_name = `execute("opadd -v geo")`
hscript-> cmdread -q obj/geo $added_name
hscript-> opcf $save_cwd

This is just an example, in reality, none of the variables in the above example are
actually used or set. The example is simply to illustrate the steps taken every time an
object is added.

3.3 EXAMPLE SCRIPTS

You can Þnd examples of creation scripts in: $HH/scripts/obj/ .
12 - Scripting 3 197

Dialog Scripts
4 DIALOG SCRIPTS

4.1 INTRODUCTION

Dialog scripts provide a simple way of creating a graphical interface for building a
command string (this is usually a set of parameters and options for a scripting com-
mand or shader). They do this by deÞning a series of buttons, menus and edit Þelds
to generate the parameters for a command line option.

When available, it is possible to access a Dialog script by clicking on the M button
beside a parameter in Houdini. Some places they are used are: the Shaders M button
in the Light object, and the Operator Scripts... option in the OP Layout > C \
pop-up menu.

EXAMPLE

In the example above, the dialog script in $HH/conÞg/scripts/MANlight.ds is used to
generate the command line options for a Z-depth Shadow (zShadow) with Blur ena-
bled (-b) and Depth outside Field of View (-f 0) at a setting of zero.

4.2 SUPPLIED DIALOG SCRIPTS

Dialog scripts are supplied in $HH/conÞg/Scripts. Each editor (i.e. SOP, COP,
Object) has its own set of dialog scripts, so you can add your function to any of the
editors. If you want to edit these, make a copy in your $HOME/houdini/conÞg/
Scripts/ directory.

adds this option (-f) to the command line,

Clicking

and this value (0) with it.

this button
198 3 Houdini 6.0 Reference

Dialog Scripts
When Houdini reads a dialog script, it will automatically create a UI Þle and pro-
vide a graphical interface for editing a string. Houdini has �hooks� for a dialog
script interface in several parts of the application. These are:

� OBJmacro.ds Object Macros
� SOPmacro.ds Macros for SOPs
� COPmacro.ds Macros for COPs
� MATmacro.ds Material Macros
� MANfog.ds Shader strings for Mantra Fog shaders
� MANlight.ds Shader strings for Mantra Light shaders
� MANlightfog.ds Shader strings for Mantra Atmospheric Light shaders

� RMshader.ds RenderMan Surface Shader Editor
� RMdisplace.ds RenderMan Displacement Shader Editor
� RMlight.ds RenderMan Light Shader Editor
� RMinterior.ds RenderMan Interior Shader Editor
� RMatmosphere.ds RenderMan Atmosphere Shader Editor

� Renderers.ds An interface to common Renderer Commands.
This shows up in the Output Drivers when there
is a command for a speciÞc renderer.

When adding a macro/shader to a dialog script, do not replace the scripts installed in
$HH/conÞg/Scripts . Because all scripts found in the Houdini search path are
merged, it is preferable to install these scripts in any of the path directories (i.e. /usr/
local/conÞg/Scripts).

4.3 SYNTAX OF A DIALOG SCRIPT

The syntax of a dialog script is quite simple. The script describes a nested set of
parameters. Each parameter may be one of many types (i.e. a toggle button, a ßoat
or a string). Internally, each parameter is represented as either a string, ßoat, or an
integer vectored value. However, there are different ways of representing this value
in the user interface. For example, a string might be a string that the user enters, or a
Þle name, or a string chosen from a menu. The list of possible parameter types may
be updated to include new types not listed here.

There are also special controls in a script for special features. For example, if the
script is supposed to parse a RenderMan shader, there is a special keyword to use
the RenderMan syntax. Other special features are the ability to group parameters
onto individual pages.

GENERAL FORM

The general form of a dialog script is:

command {
header
parameter_list
}

12 - Scripting 3 199

Dialog Scripts
HEADER DEFINITION

The header deÞnition is basically used to deÞne what the command is at a global
level. There are certain Þelds which can be speciÞed at this point:

name SpeciÞes the actual command name or shader name.

help SpeciÞes help for the command or shader.

label SpeciÞes a more descriptive name which is used by the
user interface.

default SpeciÞes a default command/string which is used at
startup.

rman SpeciÞes that this command should be interpreted
using RenderMan syntax.

Only the rman keyword doesn�t take any options after it. All of the other keywords
expect a string to follow. The help keyword expects a series of strings enclosed by a
set of braces ({ and }). See below for an example.

Note: When specifying strings, the script requires that the string be enclosed in dou-
ble quotes (") if and only if there are spaces in the string. However, it doesn�t hurt
to put the double quotes for all strings.

Note: The name usually speciÞes the name of the command. Theoretically, it should
not contain any blanks. However, this is not a limitation though presets may not
work correctly.

PARAMETER TYPES

The form of a parameter deÞnition is as follows:

parm {
field value
}

Mandatory Þelds for each parameter are:

name The internal name for the Þeld. This is used when sav-
ing and loading presets for the dialog script.

label The �visible name�. This is what appears in the graphi-
cal interface. It should be more descriptive than the
internal name.

type This determines the type of the parameter. See the list
below for available types.

required | option Needed to specify whether this parameter is a required
Þeld or an optional Þeld.
200 3 Houdini 6.0 Reference

Dialog Scripts
types

The type may be deÞned as one of the following:

� toggle A toggle button.
� string An editable string.
� object An editable string. A menu of all objects

can be used to stuff the string.
� render An editable string. A menu of all output

drivers can be used to stuff the string.
� Þle A string which has a Þle browser button beside it.
� ßoat A single or vector of ßoating point values.
� integer A single or vector of integer values.
� direction Three ßoating point values.

The size Þeld must be set to 3 for this type of value.
� color Three ßoating point values.

Like direction, the size Þeld must be set to 3.
The user interface for this parameter type includes
a set of color sliders.

OPTIONAL PARAMETER KEYWORDS

menu

menu SpeciÞes a list of strings that the parameter may con-
tain. The syntax for menus is:

menu {
value label
value label
value label
}

where the label will show up in the UI, while the value is what is actually used for
the Þeld.

size SpeciÞes the vector size of the parameter. By default,
this is 1.

default SpeciÞes the default value(s) for the parameter.
The syntax is:

default { value1 [value2...] }

Where each value speciÞed is for a different component of a vector. For example, if
the Size of the parameter was 3, you would probably want to specify three default
values. If no default is speciÞed in the parameter declaration, the parameter will
default to 0 (or an empty string).

callback

The keyword callback speciÞes an hscript command Þle to execute when the param-
eter�s value changes. Please see also: Ref > Shaders > VEX Compiler Pragmas >
callback .
12 - Scripting 3 201

Dialog Scripts
4.4 EXAMPLES OF PARAMETER DEFINITIONS

EXAMPLE 1

parm {
name rolloff
label "Spot Light Rolloff"
type float
option -r
size 1
default { 1 }
}

This example shows an optional parameter which is a single ßoat value.
It defaults to 1.

EXAMPLE 2

parm {
name scolor
label "Specular Color"
type color
required
size 3
default { 1 1 1 }
}

This example shows a required parameter which is a color. When the UI is built for
this parameter, it will contain a set of RGB sliders for editing the colour value.

EXAMPLE 3

parm {
name nproc
label "Number of Processes"
type string
option -n
menu {
 1 "1 Process"
 2 "2 Processes"
 4 "4 Processes"
 }
}

This example shows how you can use a menu to cheat and specify an integer as a
string. The menu will simply use the value (i.e. 1, 2, or 4) but present the user with a
list of choices.
202 3 Houdini 6.0 Reference

Dialog Scripts
4.5 SPECIFYING GROUPS (“PAGES”)

The dialog script language allows you to group parameters together in pages (with a
page tab for each page). The syntax of the group speciÞcation is:

group { # First group of parameters/folder tab
name string # Name in the tab
label string
parameter_list
}

group { # Second group of parameters/folder tab
name string # Name in the tab
label string
parameter_list
}

...

It is possible to Þt as many levels of pages as you want in the dialog script. However,
there may be formatting problems when the UI is displayed if you make too many of
them due to the horizontal size constrainsts of the screen. It is also possible to nest
groups, though in general, this is bad UI design since it hides parameters from the
user.

4.6 MIXING PARAMETERS

It is also possible to mix parameters so that some are always displayed, then the
page tab is a separate entity. For example:

command {
name pagetab
label "Paged Tab Example"
help {
"A simple dialog script to show that the always parameter"
"is always visible even when the groups get switched."
"The groups appear below the 'always' parameter."
}

parm {
 name always
 label "Always visible"
}

group {
 name page1
 label page1

 parm {
 name opt1
 label "Option 1"
 }
}
group {
 name page2
 label page2
12 - Scripting 3 203

Dialog Scripts
 parm {
 name opt2
 label "Option 2"
 }
}

parm {
 name always2
 label "Shows up after the folder"
}

}

4.7 EXAMPLES OF DIALOG SCRIPTS

Many examples can be found by looking in: $HH/conÞg/Scripts .

4.8 TESTING DIALOG SCRIPTS

There is an application shipped with the HDK (Houdini Development Toolkit)
called dsparse. This will parse a dialog script and allow you to experiment with the
layout and adding parameters. It is necessary to purchase the HDK in order to get
this utility.

4.9 COMMON PROBLEMS

When each dialog script Þrst gets parsed, it creates a .ui Þle.
This Þle is created in:

/usr/tmp/Dialogs/...

This speciÞes the UI layout for the dialog script. When this Þle is created, the UI is
locked for the script. Therefore, even if parameters change, the UI displayed will be
the same. Therefore, when testing, it is mandatory that this created UI Þle is
removed between each test.
204 3 Houdini 6.0 Reference

rmands
5 RMANDS

SYNTAX

rmands [options] file1.via [file2.vma ...] [file1.slo...]

EXPLANATION

This shell command (not Houdini Textport) accepts for input .via and .vma Þles, and
generates the Dialog Script for a SHOP .slo Þle.

Tip: Once you�ve created or edited a dialog script, you will typically want to click
the Reload button (at the top of the Dialog Script Window) to ensure that they�re
properly updated. Please see: Interface > Dialog Scripts p. 219.

Warning: This program will remove existing .ds Þles!

OPTIONS

-d Destination directory.

-D Destination directory (puts script in this directory
rather than a sub-directory as with the -d option).

-i Run using soinfo (for RenderDotC).

-e Run using sletell (for Entropy).

-p Run using sloinfo (for prman).

-old Generate old style dialog scripts (pre-shop).

-g Specify maximum size per parameter page. The shader
parameters will be split into multiple pages if there are
too many parameters in the shader.

-l file Create an operator type deÞnition Þle for the operator.

-L file SpeciÞes an operator type library Þle that the operator
deÞnition should be added to. If not speciÞed, the type
deÞnition Þle is also used as the library Þle.

-b Create a backup of the operator type library Þle.

-C icon With the -l option, the icon for the operator.

-n name With the -l option, the name of the operator.

-N label With the -l option, the label of the operator.

EXAMPLE

rmands -g 8 -d $HOME/houdini/shop *.slo
12 - Scripting 3 205

rmands
SHADER HELP

When rmands is generating the script for a .slo Þle, it will look for a Þle $shader.hlp
(where $shader is the name of the shader) and include this Þle as help for the shader.
rmands will look in the standard Houdini path (under the ri_shaders sub-directory)
for the help Þles.

For example:

% vi ~/houdini/ri_shaders/myshader.sl
% vi ~/houdini/ri_shaders/myshader.hlp

SEE ALSO

� Stand Alone Tools > dsparse � Dialog Script Parse p. 431.
206 3 Houdini 6.0 Reference

Tcl / Tk Scripting
6 TCL / TK SCRIPTING

6.1 INTRODUCTION

Houdini comes with an embedded Tcl (Tool Command Language) / Tk (Toolkit)
interpreter, which reads Tcl commands in much the same way csh commands are
interpreted in UNIX. Tcl is pronounced �tickle�, and was developed by J.K. Ouster-
hout (University of California at Berkeley). Tcl and its extension, Tk, provide a
means of creating your own interface tools like buttons, scrollbars, and menus. The
language can be used in conjunction with hscript, the non-graphical version of
Houdini, to generate simple, custom tools that integrate with the standard user inter-
face.

To Þnd out more about the language�s rules and syntax, a good place to start is at:
http://www.tcl.tk/ .

6.2 USING TCL AND HSCRIPT

To access at Tcl shell from within hscript, enter the tcl command. This starts a Tcl
interpreter. If you plan to use the Tk extension, type the tk command. We will be
using the Tcl/Tk shell in this example. You can start the Tcl/Tk interpreter from
Houdini�s Textport, but it is easier to write, test and debug Tcl/Tk scripts through
hscript.

The Tcl/Tk interpreter takes over hscript until you type the exit command (see the
section on Limitations below). Houdini adds a command to Tcl/Tk:

hscript command ?hscript_command_args?

hscript runs its Þrst argument as an hscript command. It takes the remaining argu-
ments (which are optional, as indicated by the question marks) and passes them on
as arguments to the given hscript command.

For example, from the Tcl/Tk shell: hscript opls /obj lists all of the object operators
in your current Houdini session.

6.3 EXAMPLE

The code that follows builds a graphical representation of the frame-ranges of COPs
in a COP network.
12 - Scripting 3 207

Tcl / Tk Scripting
CODE

A little script that will show your COP frame ranges as bars

proc get_start_range { copname } {
 hscript set tmp=$copname
 set start [hscript echo {`ch("$tmp/start")`}]
 return $start
}

proc get_end_range { copname } {
 hscript set tmp=$copname
 set end [hscript echo {`ch("$tmp/start")+ch("$tmp/length")-1`}]
 return $end
}

proc draw_ruler {} {
 global left_margin pixels_per_frame

 set i 1
 set x1 $left_margin
 set x2 $x1
 .canvas create line $x2 5 $x2 15 -width 2
 while { $i <= 30 } {

set x1 $x2
set x2 [expr $x1 + ($pixels_per_frame * 5)]

.canvas create line $x1 5 $x2 5 -width 2

.canvas create line $x2 5 $x2 15 -width 2

incr i
 }

}

proc draw_tbar { cop_num cop_name start end } {
 global pixels_per_frame left_margin

 set bar_height 15
 set topy [expr $cop_num * ($bar_height + 5)]
 set boty [expr $cop_num * ($bar_height + 5) + $bar_height]
 set startx [expr $left_margin + ($start * $pixels_per_frame)]
 set endx [expr $left_margin + ($end * $pixels_per_frame)]

 .canvas create poly $startx $topy $endx $topy $endx $boty $startx $boty \
-fill red

 .canvas create text [expr ($startx+$endx) *0.5] [expr ($topy+$boty) *0.5] \
-text $cop_name

 .canvas create text [expr $startx+10] [expr ($topy+$boty)*0.5] \
-text $start -fill white

 .canvas create text [expr $endx -10] [expr ($topy+$boty)*0.5] \
-text $end -fill white

}

proc build_tbars { cop_network } {

 .canvas delete all
 draw_ruler

 hscript opcd /img/$cop_network

 set i 2
 foreach cop [hscript opls] {

set start [get_start_range $cop]
set end [get_end_range $cop]
draw_tbar $i $cop [lindex $start 0] [lindex $end 0]
incr i

 }
}

proc build_COPlist {} {
 hscript opcd /img
 foreach network [hscript opls] {

if { $network == "." } { continue }
.copList insert end $network

 }
}

UI Widgets

listbox .copList -bg grey70
canvas .canvas -width 750 -height 500 -bg grey70
wm title . "Composite Time Sheet: Double-click on a composite network"

pack .copList .canvas -side left -fill both
208 3 Houdini 6.0 Reference

Tcl / Tk Scripting
mainline

set pixels_per_frame 5
set left_margin 10
build_COPlist
bind .copList <Double-1> {
 set copnet [.copList get [.copList curselection]]
 build_tbars $copnet
}

6.4 EXPLANATION

It is important to remember to use proper quoting in Tcl. The characters � and $
have special meaning in Tcl, and they are expanded by the interpreter before they
are processed by hscript. For example, the following will not work from Tcl/Tk:

 set cop file1
 hscript echo `ch(�$cop/framerange1�)`

Tcl will see the � characters and expand �$cop/framerange1� to Þle1/framerange1.
This is then passed to hscript, which executes echo `ch(Þle1/framerange1)`, which
is incorrect because hscript expects echo `ch(�Þle1/framerange1�)` (a string needs
the double quotes). What we really want to do is pass the double quotes through to
hscript from Tcl/Tk.

We can accomplish this using the braces (i.e. {})in Tcl/Tk. Tcl does not perform
any expansions within braces. So, using the braces, our command becomes:

hscript echo {`ch(�$cop/framerange1�)`}

But this is still incorrect, since Tcl/Tk will not expand $cop to Þle1. We want Tcl/Tk
to not expand the quotes, yet we still want it to expand $cop. This is impossible, so
we must work around it by setting a variable at the hscript level, then reference that
variable in our hscript command. The correct command is

hscript set tmp=$cop
hscript echo {`ch(�$tmp/framerange1�)`}

The Þrst line creates a variable called tmp at within hscript and sets its value to Þle1
(since $cop is expanded by Tcl/Tk in this case since we have not used braces). The
second hscript command then references this $tmp hscript variable.

You�ll notice that there are two separate name spaces involved here: the Tcl/Tk
name space and the hscript name space. In the above example, the $tmp variable
does not exist in the Tcl/Tk shell. That is, the Tcl/Tk command puts $tmp would
cause an error since $tmp is only deÞned at the hscript level. Similarly, the variable
$cop does not exist in the hscript shell, it is a Tcl/Tk variable. So, hscript echo

{$cop} would also cause an error: since $cop is not an hscript variable.
12 - Scripting 3 209

Tcl / Tk Scripting
LIMITATIONS

If you start a Tcl/Tk shell from Houdini, you will notice that the Tcl/Tk interpreter
takes over the application until you have exited your script. That is, Houdini does
not refresh nor recook while a Tcl/Tk interpreter is active. That does not mean you
cannot modify Houdini objects interactively with a Tcl/Tk script. For example, we
could enhance the above script to modify the frame ranges of the COPs by clicking
and dragging the time bars. We would modify the COPs using the command hscript
opparm.... When we exited the Tcl/Tk script, the COPs would show their new frame
values.

A second limitation involves Tcl/Tk itself. In Tcl/Tk, all variables are treated as
strings or lists of strings. This is Þne for simple applications, but more complicated
programming requires the use of more elaborate data types (integers, ßoating point
numbers) and the ability to group these data types together (such as in C�s concept
of a structure or Python�s concept of a mutable list). Tcl/Tk is great for writing
small, simple, tools very quickly. More sophisticated programming tasks will natu-
rally require a more sophisticated language.
210 3 Houdini 6.0 Reference

Introduction
4 Environment
Variables

1 INTRODUCTION

There are many environment variables that affect the way Houdini operates. They set
preferences for such things as your display, directory structures for loading and sav-
ing files, and paths for the licence server�s location.

1.1 SETTING AN ENVIRONMENT VARIABLE

IN WINDOWS

Click with \ on �My Computer�, and select Properties from the menu that appears.
In the dialog, switch to the Environment tab, and set your variable there.

FROM A SHELL

You can set these from any Window Shell. You can also set them from within the
Houdini Textport with the setenv command. For example:

setenv UT_INTERRUPT_THRESH 50

sets the delay for the Interrupt Cook dialog so it waits 5 seconds before appearing.

ALIASES / VARIABLES DIALOG

You can also set and display some Houdini-speciÞc variables in the Dialogs > Edit
Aliases/Variables... dialog.

1.2 OBTAINING A LIST OF VARIABLES

HCONFIG

To get a listing of all Global Variables, in a Window Shell (Options menu), type:

hconfig -h

this will give you a listing of all current environment variables. The following pages
contain a listing of some of those which are most commonly used.
12 - Scripting 4 211

Environment Variables
2 ENVIRONMENT VARIABLES

2.1 DIRECTORY-RELATED VARIABLES

HFS Root of the Houdini install tree. All Þles related to run-
ning Houdini reside here � binaries, DSOs, etc.

HOUDINI_PATH The Houdini search path. The Houdini path is user
deÞnable, and is where Houdini will look to load sup-
port Þles. Extending it allows you to include a direc-
tory to be searched for site-wide conÞguration Þles.

HIPDIR The directory in which the .hip Þle is located. It always
returns the directory from where the Houdini Þle was
opened.

This variable changes automatically if you move the
.hip Þle to another directory. This allows you to move
the .hip Þle together with its subdirectories, so long as
you use $HIPDIR throughout to point to your project
Þles. If $HIPDIR is used within Þlename paths, then
you can be anywhere on a network and access the
project without having to change the $HIP variable.

It is a good idea to organise you project so that it uses
directories like: $HIPDIR/geo $HIPDIR/mat etc.

HIP Stores the location of the hip Þle when it was Þrst cre-
ated � the job�s home directory. This variable is static
and won�t change unless explicitly changed by the
user, or if you�ve set the variable
HOUDINI_HIP_FROM_PATH . To retrieve the current
location of the hip Þle, use $HIPDIR.

Note! Use the hip scripting command to set this. For
example: hip /usr/people/jobs sets $HIP to the
new path speciÞed.

HOUDINI_HIP_FROM_PATH
Causes the $HIP variable behaviour to change such
that the HIP variable is set to the .hip Þle directory
name (so it acts like $HIPDIR).

HOUDINI_DSO_PATH Search path for Houdini plug-in modules.

HOUDINI_MPLAY_LOCKPATH
Determines where mplay .lockÞles are put. This allows
users with home directories on NFS to avoid the net-
work penalties by setting the lock Þle to a local path
(i.e. /tmp or c:/temp).
212 4 Houdini 6.0 Reference

Environment Variables
HOUDINI_BACKUP_DIR
This is the directory used to store the backed-up hip
Þles when the Numbered Backup preference is set. The
default backup directory is: ./backup and the backed up
Þles will have a _bak{num} sufÞx.

HOUDINI_BUFFEREDSAVE
When enabled, .hip Þles are Þrst saved to a memory
buffer and then written to disk. This is useful when sav-
ing over the network from Windows 2000 machines, or
other places where seeking to the network is expensive.

HOUDINI_TEMP_DIR The directory to which Houdini writes /tmp Þles to.

HOUDINI_UNDO_DIR Allows you to override the location for Þles Houdini
uses for undo operations. The default is /tmp. The Þles
will have names like add### model### and del### .

2.2 VIEWPORT RELATED VARIABLES

HOUDINI_DOUBLEBUFFER
Double buffering improves the quality of moving
images on a 24 bit monitor. If Double Buffering is not
used, everything is drawn directly to the screen without
any synchronization to the monitor�s refresh rate. This
causes areas of the screen which are being frequently
redrawn tend to be displayed while only partially
redrawn, this produces a �ßickering� effect.

When Double Buffering is on, the new image is drawn
in an offscreen buffer in video RAM and then swapped
into the display almost instantaneously, thereby elimi-
nating the display of half-drawn images, and the
ßicker.

Why not have it on all the time? Because some
machines do not have sufÞcient video RAM to perform
double buffering in 24bit colour � so they halve the
colour resolution, and then still-frame image quality is
reduced due to dithering.

HOUDINI_LOD Sets the Level of Detail in displays for NURBS surfaces
and metaballs. The default is one. Tip: You can also set
this in the Viewport Display Options > Viewport page,
or by using the viewdisplay scripting command.

HOUDINI_MDISPLAY_WAIT_TIME
SpeciÞes the time, in seconds, that mantra should
spend looking for an mdisplay window before giving
up, and displaying the Abort / Retry / Fail alert.
12 - Scripting 4 213

Environment Variables
HOUDINI_VIEW_MANTRA
SpeciÞes the command to use for default View: Mantra
renderer in the Viewport.

HOUDINI_VIEW_RMAN
SpeciÞes the command to use for View: R-Man in the
default renderer in the Viewport.

2.3 RENDERMAN-RELATED VARIABLES

RMAN_EYESPLITS Value for RenderMan eyesplits (setting any of these
three variables sets the option in the RIB Þle).

RMAN_SHADERPATH Search path for RenderMan shaders (sets option).

RMAN_TEXTUREPATH Search path for RenderMan textures (sets option).

RMAN_INCLUDE_FIX When generating RIB, the post-include Þle for objects
occurs inside the transform block if there is motion
blur. This allows for correct motion blurring of
ReadArchive data. Setting this environment variable
causes the post-include to be included after the trans-
form block (as it was in H4.1 and prior).

SESI_SLO_PATH Where to build .slo shaders for automatically generated
RenderMan shaders (i.e. when rendering to Render-
Man and converting materials on the ßy).

2.4 ABEKAS RELATED VARIABLES

ABEKAS_NTSC_XRES Variable to override the Abekas NTSC X resolution.

ABEKAS_NTSC_YRES Variable to override the Abekas NTSC Y resolution.

ABEKAS_PAL Variable to set the Abekas image support to PAL
instead of NTSC.

ABEKAS_PAL_XRES Variable to override the Abekas PAL X Resolution.

ABEKAS_PAL_YRES Variable to override the Abekas PAL Y Resolution.

LOGIN_NAME_ENV A65 login name.

LOGIN_PASS_ENV A65 login password.

RE_OVERRIDE_XRES These four variables allow you to manually set the
RE_OVERRIDE_YRES screen resolution that Houdini uses, and the physical
RE_OVERRIDE_WIDTH monitor size (in millimeters).
RE_OVERRIDE_HEIGHT
214 4 Houdini 6.0 Reference

Environment Variables
SESI_A60_HOSTS List of Abekas A60�s host names.

SESI_A65_HOSTS List of Abekas A65�s host names.

2.5 CINEON RELATED VARIABLES

CINEON_FLIP When set (to any value) ßips all Cineon images in Y
during input.

CINEON_FILM_GAMMA SpeciÞes the gamma for Cineon Þles
(default value 0.6).

CINEON_WHITE_POINT The Cineon log scale value that is considered to be full
white and will be mapped on input to the maximum
channel value. (default 685) Range 0 to 1023.

CINEON_BLACK_POINT The Cineon log scale value that is considered to be full
black and will be mapped on input to zero. (default 85)
Range 0 to 1023.

setting the cineon variables

The CINEON environment variables should be set as follows for Þnal composites
requiring perfect conversion to/from logarithmic values:

setenv CINEON_WHITE_POINT 1023
setenv CINEON_BLACK_POINT 0
setenv CINEON_FILM_GAMMA 1.0

For previewing and test composites the default values that follow produce output
that is better for viewing on screen:

setenv CINEON_WHITE_POINT 685
setenv CINEON_BLACK_POINT 85
setenv CINEON_FILM_GAMMA 0.6

Note: Since Houdini 1.1, the environment variables: CINEON_OVER_EXPOSURE
and CINEON_WHITE_VALUE are obsolete. Also, for backwards compatibility the
lookup tables used in Houdini 2.0 can be enabled by setting the environment varia-
ble CINEON_OLD_LOOKUP.

2.6 IMAGE RELATED VARIABLES

HOUDINI_TIFF_BOTTOMLEFT
Older versions of Houdini generated TIFF Þles with
the Þrst scanline of data representing the bottom of the
image. This control can be turned on to replicate the
behaviour of older verions of Houdini.
12 - Scripting 4 215

Environment Variables
HOUDINI_TIFF_SAMPLEFORMAT
If set, then a sample format tag is written to TIFF Þles.
By default, Houdini does not add the SAMPLEFOR-
MAT tag into TIFF Þles (this maintains backward com-
patibility). If the sample format tag is added to a Þle,
older versions of the TIFF library (i.e. 5.x) will not be
able to read the image.

SESI_RAT_USAGE Holds the number of megabytes of RAM to use for tex-
tures when using the .rat image Þle format for texture
maps. i.e. setenv SESI_RAT_USAGE 16 will use a max-
imum of 16 Mb of RAM.

SESI_TIFF_COMPRESSION
Compression type used for TIFF Þles.
Valid values are: �LZW� or �none�.

VERTIGOPIC Create Vertigo style .pic Þles instead of Houdini format
.pic by default.

WFGAMMA Gamma value for the header when writing Wavefront
.rla or .rlb Þles.

2.7 MISCELLANEOUS VARIABLES

CAPTFRAME
The Capture Geometry state create keys at the capture
frame on the capturing hierarchy bone chains. This
variable is used by the object-level character states to
determine which capture frame to use when needed.

HOUDINI_ENABLE_FPS_SCALE
Set this variable if you want your keyframes to scale as
they did in Houdini 4 and prior when setting the FPS in
the Global Animation Parameters.

HOUDINI_FORCECONSOLIDATELOW
When set, causes fast point consolidation to behave the
same as the slow consolidate, Þxing some point order
bugs. Because it changes the previous point order, it is
not the default (Houdini 4.2 and higher).

HOUDINI_HIPEXT
Houdini adds a ".hip" extension to Þlenames that are
entered in the Save dialog (if they don't already have
it). This behaviour can be disabled by setting this vari-
able.
216 4 Houdini 6.0 Reference

Environment Variables
UT_INTERRUPT_THRESH
The time delay before the interrupt cook dialog will
appear. The time is speciÞed in tenths of seconds; the
default value is 60 (six seconds).

HOUDINI_TEXTURE_DEFAULT_COLOR
Sets the default colour for missing texture maps:

setenv HOUDINI_TEXTURE_DEFAULT_COLOR "r g b alpha"

causes missing texture maps to return the colour speci-
Þed when accessed in VEX.

HOUDINI_UISCALE Allows you to adjust the size of Houdini's UI (Fonts,
Icons, and Menus). At the default value of 100, things
are rendered at 85 dpi (the previous default on non-
Windows platforms). Higher values generate larger
icons and fonts, smaller values smaller. To revert to the
previous behaviour set it's value to -1.

HOUDINI_WORKSHEET_BOXPICK
Box selection of operators in the Layout Area is by
default tied to [in order to be consistent with the box-
selection operations in the 3D Viewports and the Chan-
nel Editor. If you prefer to use a different mouse but-
ton, set this variable to �middle� or �right�.

HOUDINI_NOSPLASH Disables the Splash Screen on startup.

RAY_DCSIZE Size of the dice cache for mantra3.

RAY_SCSIZE Size of the split cache for mantra3.

RAY_NO_FOGBOX mantra automatically adds a background object that
encompasses the scene in order to make the atmo-
sphere visible. The object is simply a large box located
at 0.8*far with a matte shader applied to it. You can
disable this behaviour by setting this variable.

SESI_COPY_SUFFIX By default the Þlenames are common between all pro-
cesses, however by setting the environment variable,
SESI_COPY_SUFFIX you can make the clipboard
Þles unique.

SESI_FILE_VIEWER Replaces actview as the Þle viewer within Þle dialogs.

HOUDINI_DSO_ERROR If this variable is set, then DSO errors will be printed
out. This is particularly useful for HDK developers.
12 - Scripting 4 217

Environment Variables
2.8 WINDOWS NT RELATED VARIABLES

HOUDINI_ACCESS_METHOD
This value can be 0, 1, or 2. It speciÞes what method
Houdini will use to check Þle permissions. 0 uses the
default method, which does a real check of Þle permis-
sions using the proper NT security model. But this
method can be quite slow on systems which use a login
server elswhere in their network. Method 1 uses the NT
security model again, and is much faster than method
0, but doesn't work on Win2k SP2 (Microsoft broke an
important function in that release). Method 2 just
checks the Þle attributes, which is fast and works, but
ignores all the NT security stuff, so Þles and directories
which are read only because of NT security permis-
sions will report that they can be written to.

CD_PATH (spy only) Though spy recognizes the standard csh/tcsh CDPATH
variable, it also recognizes a variable CD_PATH which
is synonymous with the CDPATH variable. On some
NT systems, having the environment CDPATH variable
set causes incorrect behaviour in shells. The CD_PATH
variable is a work-around for this situation.

HOUDINI_TEXT_SPACES_FIX
In some cases, users of the NT version of Houdini may
have problems with spaces not appearing in the Text-
port and Info Text displays. If you are having this prob-
lem, you should set this environment variable.

HOUDINI_DISABLE_XMMX
Disabling XMMX disables support for intels XMMX
instructions. These are only present on P3s+. The ßag
is present due to the possibility of errors being present
in them. Crashing with an "invalid op code" when run-
ning VEX functions is a sign that this may be at fault.

HOUDINI_DISABLE_CPUID
Disabling CPUID is present for older 386 era Intel
machines & clones which lack the CPUID instruction.
We�d detect for it directly, but this test is ineffective,
and it is highly unlikely anyone will use such a
machine.

HOUDINI_WINDOW_CONSOLE
Setting this variable forces the creation of a ßoating
console, regradless if its output is redirected. This is
only necessary for broken shells that incorrectly startup
Houdini window applications with redirected output.
At present, only required for cygwin-compiled shells.
218 4 Houdini 6.0 Reference

Environment Variables
2.9 BACKWARDS COMPATIBILITY

HOUDINI4_COMPATIBILITY
When enabled, some of the quirks of Houdini 4 are
turned on. This is designed to be used to allow old hip
Þles to be loaded. Support for these inconsistences is
not guaranteed in future versions of Houdidi. Cur-
rently, this will: i) Change the order of points in
spheres, tubes, torii and circules under certain orienta-
tions; ii) Reverse the direction of the Clip SOP�s Dis-
tance parameter; iii) Revert to the old Capture Region
weighting method.

HOUDINI_H4_CREGION_WEIGHTING
Houdini weighs points for Capture Regions in the Cap-
ture SOP using the Elendt model by default. Set this if
you prefer the older method (i.e. 1-distance_squared)

2.10 VARIABLES NOT SPECIFIC TO HOUDINI

EDITOR The editor to use when typing A e in an edit Þeld.

PAGER Default pager when viewing a text Þle using actview
(i.e. the Unix commands: less and more).
12 - Scripting 4 219

Environment Variables
2.11 NOTES ON HOUDINI PATHS

houdini_path

Description: This is the main Houdini path. If other path variables aren�t set, their
values are implicitly derived from the HOUDINI_PATH (or its default value).

Default:

$HIP/
$HIP/houdini/$USER
$JOB/
$HOME/houdini/dso
/usr/local/houdini/dso
$HFS/houdini/dso

houdini_dso_path

Description: Where plug-in DSO's are searched for.

Default:

$HIP/dso
$HIP/houdini/$USER/dso
$JOB/dso
$HOME/houdini/dso
/usr/local/houdini/dso
$HFS/houdini/dso

houdini_ui_path

Desc: Typically not used. This is the path to Þles found in $HH/conÞg .
This path is really used by developers only.

CLIP, TEXTURE AND GEO PATHS

The CLIP, VEX, TEXTURE and GEO paths interpret special characters.
The special characters searched for are:

@ Expands to the current HOUDINI_PATH

For example, with the default HOUDINI_PATH,
@/geo expands to:
$HIP/geo
$HIP/$USER/geo
$JOB/geo
$HOME/houdini/geo
/usr/local/houdini/geo
$HFS/houdini/geo

^ Expands to the appropriate sub-path (for VEX). For
example, with the default HOUDINI_PATH when ref-
erencing a surface shader:

@/vex/^ expands to:
220 4 Houdini 6.0 Reference

Environment Variables
$HIP/vex/Surface
$HIP/$USER/vex/Surface
$JOB/vex/Surface
$HOME/houdini/vex/Surface
/usr/local/houdini/vex/Surface
$HFS/houdini/vex/Surface

If the speciÞc path variable isn�t set, the default
HOUDINI_PATH is used (as is evidenced by
the defaults).

& Expands to the existing search path. For example, to
add a single directory to a path, you might use:
setenv HOUDINI_GEO_PATH '~/jobs;&'

houdini_clip_path

Description: Place to search for channel clips

Default: .;@/clips

houdini_texture_path

Description: Place to search for images (in COPs, SOPs or as texture maps)

Default: .;@/pic;@/map;@/maps

houdini_geo_path

Description: Place to search for geometry Þles:

Default: .;@/geo

houdini_vex_path

Description: Place to search for compiled .vex code. This also applies to the default
include path for vcc .

Default: .;@/vex/include;@/vex/^

The portions are:

. Current directory

@/vex/include Expands to $HIP/houdini/vex/include;
~/houdini/vex/include;
/usr/local/houdini/vex/include;
$HFS/houdini/vex/include

@/vex/^ Expands to $HIP/houdini/vex/^
~/houdini/vex/^
/usr/local/houdini/vex/^
$HFS/houdini/vex/^

Where you should substitute ̂for the context which
the VEX function is being used (i.e. SOP, POP, Surface,
Displacement).
12 - Scripting 4 221

Environment Variables
2.12 UI PATH VARIABLES

The following path variables are used for the 4.0 (and greater) UI:

HOUDINI_CFG_PATH
HOUDINI_TOOLBAR_PATH
HOUDINI_CUSTOM_PATH
HOUDINI_DESK_PATH

Note: There is no variable HOUDINI_SHADER_PATH that corresponds to
RMAN_SHADERPATH or RMAN_TEXTUREPATH. These variables are used to
deÞne paths for RIB generation (and are obsolete now).

Every Þle that is found under $HH can usually be replaced with a Þle which is found
earlier in the search path. However, in some cases, all the Þles found in the path are
�merged�. These Þles are:

$HH/FBio
$HH/GEOio
$HH/CHANio
$HH/CHOPio
$HH/RGBcolors
$HH/FBrender
$HH/FBres
$HH/help/exprhelp
$HH/help

The other way that Þles can be excluded from the default Houdini Path is if the Þle
Þts into a �special� category. For example, .vex Þles can have their search path over-
ridden by the HOUDINI_VEX_PATH variable. This means that users can choose to
ignore the default Houdini path. However, all other Þles (i.e. .ds dialog script Þles)
are only searched for within the HOUDINI_PATH.
222 4 Houdini 6.0 Reference

	1 Scripting
	1 Introduction
	1.1 Opening a Textport
	1.2 Navigating Within the Textport
	Keyboard Shortcuts
	Copying and Pasting
	Copying
	Pasting

	2 The Scripting Language
	2.1 Order of Expansion
	Limitations
	Lexical Structure
	Evaluation of Quotes
	Comments

	Command Structure
	Expansion
	Command Expressions

	2.2 Variables
	2.3 Pattern Matching
	Examples

	2.4 Command Loops
	Example

	2.5 Conditional Statements
	2.6 Aliases and Multiple Commands
	2.7 Using Arguments in Scripts
	$arg0 - Name of the Script
	$argc - Number of Arguments Passed to Script
	Shift Command

	2.8 Executing Scripts
	2.9 Example Script
	Textport Example - Wiring OPs
	Guessing Game

	3 Scripting With Hscript and the c-shell
	3.1 The Basics of Incorporating C shell and Hscript
	3.2 Symbols << and >& Explained
	3.3 Examples - Rendering Scripts
	Example 1 - Basic Render
	Source
	Explanation

	Example 2 - Rendering Sequences of Frames
	Example 3 - For - Next Loop

	3.4 Variable Caveats
	3.5 C shell Scripting Notes
	3.6 Obtaining Parameters for Output Drivers and Other OPs
	Opscript Command
	Dumping Opscript Parameters
	Sample Outputs from Opscript

	3.7 Use of the Source Command
	Using Source
	Without Using Source

	3.8 Default Parameters for Output Drivers
	Parameter Meanings

	3.9 Output Driver Samples
	Mantra
	Renderman
	Cop
	Geometry
	Scene

	3.10 A Final Example (Rendering and Compositing)
	Building the COP network
	Writing the Render Script
	Usage
	Example

	Code for Compare Render Script
	Notes on the Render Script
	Things to Watch Out For
	Segment 1 (as it would appear manually typed into Houdini's textport)
	Segment 2 (modified for use with C shell)

	3.11 Building Complex Filenames
	Extracting the base filename, path and extension
	Building a file name with a new extension
	Meaning of :h, :r, :e, :t

	4 Scripting Tricks
	4.1 Group Names in Scripting Commands
	4.2 Embedding Commands
	4.3 Setting according to the Display Flag
	4.4 Traversing an object hierarchy

	2 Scripting Commands
	1 Intrinsic Commands
	1.1 alias
	Syntax
	Explanation
	Example
	Temporarily Disabling Aliasing

	1.2 break
	Syntax
	Explanation
	Example

	1.3 cmdread
	Syntax
	Explanation

	1.4 continue
	Syntax
	Explanation
	Example

	1.5 echo
	Syntax
	Explanation
	Example

	1.6 excat
	Syntax
	Explanation
	Example

	1.7 exedit
	Syntax
	Explanation
	Example

	1.8 exhelp
	Syntax
	Explanation
	Example

	1.9 exls
	Syntax
	Explanation

	1.10 exread
	Syntax
	Explanation
	Example

	1.11 exrm
	Syntax
	Explanation

	1.12 exit
	Syntax
	Explanation

	1.13 for
	Syntax
	Explanation
	Example

	1.14 foreach
	Syntax
	Explanation

	1.15 help
	Syntax
	Explanation
	Example

	1.16 history
	Syntax
	Explanation

	1.17 if
	Syntax
	Explanation

	1.18 job
	Syntax
	Explanation
	Example

	1.19 memory
	Syntax
	Explanation

	1.20 prompt
	Syntax
	Explanation
	Example

	1.21 print
	Syntax
	Explanation
	Example

	1.22 quit
	Syntax
	Explanation

	1.23 read
	Syntax
	Explanation

	1.24 rkill
	Syntax
	Explanation
	Example

	1.25 rps
	Syntax
	Explanation

	1.26 set
	Syntax
	Explanation
	Example
	The Difference Between Set and Setenv

	1.27 Setenv
	Syntax
	Explanation

	1.28 shift
	Syntax
	Explanation

	1.29 source
	Syntax
	Explanation
	Example

	1.30 time
	Syntax
	Explanation
	Example

	1.31 undoctrl
	Syntax
	Explanation

	1.32 version
	Syntax
	Explanation

	1.33 while
	Syntax
	Explanation
	Example

	2 Unix Related Commands
	2.1 ucd
	Syntax
	Explanation
	Example

	2.2 upwd
	Syntax
	Explanation

	2.3 unix
	Syntax
	Explanation
	Example

	3 Plug-In Commands
	3.1 tcl
	Syntax
	Explanation

	3.2 tk
	Syntax
	Explanation

	4 Channel and Operator Commands
	4.1 boneconvert
	Syntax
	Explanation
	Options

	4.2 bonefixchops
	Syntax
	Explanation

	4.3 bonemoveend
	Syntax
	Explanation

	4.4 bookmark
	Syntax
	Explanation
	Options

	4.5 chcp
	Syntax
	Explanation
	Examples

	4.6 chadd
	Syntax
	Explanation
	Example

	4.7 chgadd
	Syntax
	Explanation
	Example

	4.8 chcommit
	Syntax
	Explanation

	4.9 chgls
	Syntax
	Explanation
	Example

	4.10 chgop
	Syntax
	Explanation
	Example

	4.11 chgrm
	Syntax
	Explanation
	Example

	4.12 chhold
	Usage
	Options

	4.13 chkey
	Syntax
	Explanation
	Example

	4.14 chls
	Syntax
	Explanation
	Example

	4.15 chread
	Syntax
	Explanation

	4.16 chrename
	Syntax
	Explanation
	Examples

	4.17 chreverse
	Syntax
	Explanation
	Example

	4.18 chrm
	Syntax
	Explanation
	Example

	4.19 chrmkey
	Syntax
	Explanation
	Example

	4.20 chround
	Syntax
	Explanation

	4.21 chscope
	Syntax
	Explanation
	Examples

	4.22 chstretch
	Syntax
	Explanation
	Example

	4.23 chwrite
	Syntax
	Explanation

	4.24 hip
	Syntax
	Explanation
	Example

	4.25 mread
	Syntax
	Explanation
	Examples

	4.26 mwrite
	Syntax
	Explanation
	Example

	4.27 kinconvert
	Syntax
	Description

	4.28 neteditor
	Syntax
	Explanation
	Options

	4.29 nextkey
	Syntax

	4.30 objparent
	Syntax
	Explanation

	4.31 opadd
	Syntax
	Explanation
	Example

	4.32 opcf
	Syntax
	Explanation
	Example

	4.33 opchange
	Syntax
	Explanation
	Example

	4.34 opchangetype
	Syntax
	Options
	Example

	4.35 opcook
	Syntax
	Explanation
	Example

	4.36 opcp
	Syntax
	Explanation
	Example

	4.37 opdepend
	Syntax
	Explanation
	Options
	Examples

	4.38 opfind
	Syntax
	Explanation
	Example

	4.39 opgadd
	Syntax
	Explanation

	4.40 opget
	Syntax
	Explanation
	Options
	Example

	4.41 opgetinput
	Syntax
	Explanation

	4.42 opglob
	Syntax
	Explanation
	Example

	4.43 opgls
	Syntax
	Explanation

	4.44 opgop
	Syntax
	Explanation
	Example

	4.45 opgrm
	Syntax
	Explanation

	4.46 ophelp
	Syntax
	Explanation
	Example

	4.47 opinfo
	Syntax
	Explanation

	4.48 oplayout
	Syntax
	Explanation

	4.49 oplocate
	Syntax
	Explanation
	Example

	4.50 opls
	Syntax
	Explanation
	Example

	4.51 opname
	Syntax
	Explanation
	Example

	4.52 oporder
	Syntax
	Explanation
	Example

	4.53 opparm
	Syntax
	Explanation
	Clicking a Virtual Button (-c)

	Examples

	4.54 oppwf
	Syntax
	Explanation

	4.55 opramp
	Syntax

	4.56 opread
	Syntax
	Explanation
	Example

	4.57 oprm
	Syntax
	Explanation
	Example

	4.58 opsave
	Syntax
	Explanation
	Example

	4.59 opset
	Syntax
	Explanation
	Example

	4.60 opunwire
	Syntax
	Explanation
	Example

	4.61 opupdate
	Syntax
	Explanation

	4.62 opwire
	Syntax
	Explanation
	Example

	4.63 varchange
	Syntax
	Explanation

	5 Commands to Manage Time Groups
	5.1 tmgadd
	Syntax
	Explanation
	Example

	5.2 tmgls
	Syntax
	Explanation
	Example

	5.3 tmgname
	Syntax
	Explanation

	5.4 tmgop
	Syntax
	Explanation
	Options

	Example

	5.5 tmgrm
	Syntax
	Explanation

	5.6 tmshift
	Syntax
	Explanation

	6 Operator-Specific Commands
	6.1 compfree
	Syntax
	Explanation

	6.2 geocache
	Syntax
	Explanation
	Query Options
	Control Options

	6.3 matrman
	Syntax
	Explanation
	Example

	6.4 matramp
	Syntax
	Explanation
	Example

	6.5 render
	Syntax
	Explanation
	Example

	6.6 texcache
	Syntax
	Explanation
	Query options
	Control options

	7 Time Related Commands
	7.1 fcur
	Syntax
	Explanation
	Example

	7.2 fplayback
	Syntax
	Explanation

	7.3 fps
	Syntax
	Explanation
	Example

	7.4 frange
	Syntax
	Explanation
	Example

	7.5 fset
	Syntax
	Explanation
	Example

	7.6 ftimecode
	Syntax
	Explanation

	7.7 tcur
	Syntax
	Explanation

	7.8 tset
	Syntax
	Explanation

	8 Interface Related Commands
	8.1 Quad-View Referencing Conventions (find: update!)
	8.2 animview
	Syntax
	Explanation
	Options

	8.3 audiopanel
	Syntax
	Explanation
	Options

	8.4 chlayout
	Syntax
	Explanation
	Options

	8.5 closeport
	Syntax

	8.6 cplane
	Syntax
	Options
	Examples

	8.7 doublebuffer
	Syntax
	Explanation

	8.8 editor
	8.9 neteditor
	Syntax
	Explanation
	Options

	8.10 ombind
	Syntax
	Explanation
	Options
	Example

	8.11 ombindinfo
	Syntax
	Options
	Output format
	Example

	8.12 omls
	Syntax
	Options
	Example

	8.13 omparm
	Syntax

	8.14 omunbind
	Syntax
	Options
	Examples

	8.15 omwhere
	Syntax
	Options
	Example

	8.16 omsbind
	Syntax
	Options
	Example

	8.17 omsbindinfo
	Syntax
	Options
	Output format
	Example

	8.18 omsls
	Syntax
	Options
	Example

	8.19 omsunbind
	Syntax
	Options
	Example

	8.20 omswhere
	Syntax
	Options
	Example

	8.21 omwrite
	Syntax

	8.22 openport
	Syntax

	8.23 pane
	Syntax
	Explanation
	Options
	Examples

	8.24 performance
	Syntax
	Explanation
	Options

	8.25 play
	Syntax
	Explanation
	Options

	8.26 viewbackground
	Syntax
	Explanation
	Options
	Example

	8.27 viewcamera
	Syntax
	Explanation

	8.28 viewcopy
	Syntax
	Explanation
	Examples

	8.29 viewdisplay
	Syntax
	Explanation
	Options
	Examples

	8.30 viewlayout
	Syntax
	Explanation

	8.31 viewls
	Syntax
	Explanation
	Options

	8.32 viewprojection
	Syntax
	Explanation
	Options

	Example

	8.33 viewtransform
	Syntax
	Explanation

	8.34 viewtype
	Syntax
	Explanation
	Example

	8.35 viewupdate
	Syntax
	Example

	3 Uses of the Scripting Language
	1 Creating a Script from Houdini
	1.1 opscript / opsave / opwrite Compared
	1.2 OPscript
	Syntax
	Explanation
	Options

	Example

	1.3 mwrite
	Explanation

	1.4 opwrite
	Syntax
	Explanation
	Example

	1.5 Further Examples

	2 Environments
	2.1 The Default Environment File (123.cmd)
	2.2 Editing the Startup Script
	2.3 Saving an Environment
	2.4 Loading an Environment
	2.5 Sample Custom 123.cmd for UNIX Scripters
	2.6 Editing hip Scripts
	hexpand
	hcollapse
	Example

	3 Creation Scripts
	3.1 Names of Creation Script Directories
	3.2 Examples
	Adding a TOP to a Shader Upon Creation
	Creation of an Object

	3.3 Example Scripts

	4 Dialog Scripts
	4.1 Introduction
	Example

	4.2 Supplied Dialog Scripts
	4.3 Syntax of a Dialog Script
	General Form
	Header Definition
	Parameter Types
	Types

	Optional Parameter Keywords
	menu
	callback

	4.4 Examples of Parameter Definitions
	Example 1
	Example 2
	Example 3

	4.5 Specifying Groups (“Pages”)
	4.6 Mixing Parameters
	4.7 Examples of Dialog Scripts
	4.8 Testing Dialog Scripts
	4.9 Common Problems

	5 rmands
	Syntax
	Explanation
	Options
	Example
	Shader Help
	See Also

	6 Tcl / Tk Scripting
	6.1 Introduction
	6.2 Using Tcl and hscript
	6.3 Example
	Code

	6.4 Explanation
	Limitations

	4 Environment Variables
	1 Introduction
	1.1 Setting an Environment Variable
	In Windows
	From a Shell
	Aliases / Variables Dialog

	1.2 Obtaining a List of Variables
	hconfig

	2 Environment Variables
	2.1 Directory-Related Variables
	2.2 Viewport Related Variables
	2.3 RenderMan-Related Variables
	2.4 Abekas Related Variables
	2.5 Cineon Related Variables
	Setting the Cineon Variables

	2.6 Image Related Variables
	2.7 Miscellaneous Variables
	2.8 Windows NT Related Variables
	2.9 Backwards Compatibility
	2.10 Variables Not Specific to Houdini
	2.11 Notes on Houdini Paths
	HOUDINI_PATH
	HOUDINI_DSO_PATH
	HOUDINI_UI_PATH
	Clip, Texture and Geo Paths
	HOUDINI_CLIP_PATH
	HOUDINI_TEXTURE_PATH
	HOUDINI_GEO_PATH
	HOUDINI_VEX_PATH

	2.12 UI Path Variables

