

1 VOPs
(VEX OPerations)

1 INTRODUCTION

1.1 VOPS

VOPs provide you with a visual programming method for writing OP elements
within Houdini, such as shaders and surface deformers. The underlying language
used by all VOPs is Houdini�s VEX language.

Instead of writing code, VOPs allow you to visually hook nodes containing snippets
of VEX code together to deÞne not only shaders, but all sorts of other logic within
Houdini � they simplify the process of writing code for you, and provide you with a
rich graphical interface to the underlying Power of Houdini�s engines.

Many of the VOPs contain subnetworks of simpler VOPs, allowing you to under-
stand, learn, and modify a function�s behaviour easily. One such example is the Fire
VOP, which includes Noise, Spline and Mix VOPs (among others). Open it to inves-
tigate how it�s wired up.

WHERE TO LOOK FOR OP HELP

HELP

Every VOP has built-in Help. For VOPs which you don�t Þnd here, click on the �?�
icon in the VOP�s parameters for up-to-date help.

Help
191 1 Houdini 6.0 Reference | 07 - VOPs

Intr

oduction

1.2 VOPS VS VEX

Unlike other OP types in Houdini, VOPs simply generate a piece of VEX code for
you. Basically, VOPs provide a graphical wrapper for the VEX language. The whole
of a VOP network comprises the �circuit� of a VOPnet, which is roughly inter-
changeable with code that you can write within VEX. VOPs provide you a simpler
graphic way to generate the code that would normally have to be written by hand in
VEX.

1.3 VOP CONTEXTS

VOPs Operate in multiple Contexts � that is, they can use more or less the same
code to work on different sorts of data. For example, parts of the VOP network you
create to transform pixel data in a COP context could be reused to transform point
positions in a SOP context. This is discussed further in: VOP Contexts p. 196.

MAIN VOP CONTEXTS

� VEX Compositing Filter
� VEX Compositing Generator
� VEX Displacement Shader
� VEX Fog Shader
� VEX Geometry Operator
� VEX Image3D Shader
� VEX Light Shader
� VEX Motion and Audio Operator
� VEX Particle Operator
� VEX Shadow Shader
� VEX Surface Shader

1.4 WHAT YOU NEED IN A VOP NETWORK

OUTPUT VOP

Any VOP Network needs at least one Output VOP. The Output VOP is the particular
result to which you wire all your workings within a VOP network to provide a
result. The inputs you provide to an Output VOP come from the following sorts of
VOPS:

� Global Variables
� Parameters
� Constants
� Other VOPs

You need to wire these into one or more of the inputs of the Output VOP.

The only exception to this is the Parameter VOP � which implicitly sends its outputs
to the Output VOP, even if you don�t see a physically wired connection between
them.
192 1 Houdini 6.0 Reference

Intr

oduction

example

If the result you are seeking is a shader � this output VOP will have inputs for Cf,
Of, Af, and N � Surface Colour, Surface Opacity, Surface Alpha/Transparency, and a
Normal � for which you will have to provide the inputs.

The inputs of the Output VOP depend on the context. Thus, the COP or CHOP con-
text will require different inputs for you to Þll.

1.5 WHAT MAKES VOPS UNIQUE

VOPS ARE NOT ANIMATABLE

They just generate code to be used by, say � a SHOP. By wiring Parameter VOPs
into the VOPnet, you expose those parameters, say, at the SHOP level, where they
can be animated.

POLYMORPHISM

The polymorphic property of VOPs allows them to run the same code on multiple
data types. One such example is the Mix VOP (which calls several ßavours of the
�lerp� VEX function). Mix allows ßoats, vectors and vector4�s on its inputs and
blends the inputs in a linear fashion.

VOPS ARE STRONGLY TYPED

VOP inputs are strongly typed. A �typed input� means simply that: you have to hook
integer outputs to integer inputs (a single number, no decimals); ßoat outputs to ßoat
inputs (numbers with decimal points); and vectors to vectors (a group of three num-
bers indicating a direction), and so on. The inputs and outputs are colour-coded on
the VOPs themselves to make this typing more apparent.

colour legend

Blue Integer and Toggle.
Light Green Vector
Dark Green Float, etc.

matching types

You can connect disparate types in VOPs using one of the Convert VOPs:

� Degrees to Radians
� Float to Integer
� Float to Matrix
07 - VOPs 1 193

Intr

oduction

� Float to Vector
� HSV to RGB
� Integer to Float
� Matrix to Float
� Vector to Float

There are more. These conversion VOPs allow you match the different types that
VOPs expect in their inputs.

VOPS ACCEPT A VARIABLE NUMBER OF INPUTS

Whereas other OP types accept only a particular number of inputs, VOP nodes can
accept any number of inputs. The types of inputs and outputs VOPs provide are
analagous to variables � for example, in VEX, you have the variable Cs � which
stands for surface colour. In VOPs, you have these variables listed explicitly as
inputs and outputs on the VOP tiles. One such example is the Add VOP.

1.6 MAIN FAMILIES OF VOPS TO KNOW

PRIMARY WORKFLOW VOPS TO KNOW

Output VOP Everything connects into here.
It cannot be deleted or duplicated.

Parameter VOP Allows you to specify parameters for input into your
VOP Network, and the user of that network (e.g. a
SHOP shader).

Constant VOP When you don�t need a value to change outside the
VOPnet (like parameters do), this allows you to deÞne
a constant value for use within the VOP network. Con-
stants aren�t visible outside of VOPs.

Global Variables Allow you to access all the predeÞned variables avail-
able to you in a given context, whether they are writ-
able (like the Output VOP), or only readable.

OTHER CATEGORIES OF USEFUL VOPS

� Materials (Wood, Marble, Fire, Bricks, etc.)
� Patterns (Noise)
� Displacements
� UV Shading
� SuperMat (Phong Blinn Cook & Texture Maps)
194 1 Houdini 6.0 Reference

Intr

oduction

1.7 SHOPS WITH VOPS

One of the places where you can use VOPs is within SHOPs (i.e. shaders). Once you
place a SHOP � If the SHOP is comprised of VOPs instead of VEX code, you�ll be
able to select Edit VOP Network from the SHOP�s \ pop-up menu.

If not � you can select Create New VOP Type... from the menu, and it will embed the
SHOP into a new VOP which you can save to disk.

Once you�ve done this, then, you can place the created SHOP in a VOP network, and
have access to its Inputs and Outputs from within a VOP network.

1.8 COPYING AND PASTING PARAMETER VOPS

When you copy and paste a Parameter VOP that has already been setup (e.g.
Image(string)) � it results in a Parameter VOP that is partially uneditable � the
parameter type is inaccessible.

The reason for this is that if you have two Parameter VOPS that both use the same
Parameter Name (let�s say 'uv'), then only one of them gets to actually specify the
characteristics of 'uv'.

SpeciÞcally, whichever Parameter VOP was created Þrst gets to deÞne what 'uv' is
like. The second and third Parameter VOP with that parameter name does not get to
specify the label and data type, etc. Why? Suppose you had two Parameter VOPs
that both deÞned 'uv'. One of them could deÞne it to be a ßoat, and the other deÞne
it to be a string. In the resulting VEX code 'uv' would be declared twice:

shader foo(int uv = 0; vector uv = "hi")

which yields a syntax error. Or 'uv' would be declared only once, but in the code it
would get used as if it were a ßoat and a string. Again, this yields a syntax error.

The other approach would have been to enforce that each parameter name must be
unique. So copying and pasting a 'uv' Parameter VOP would get you a second
Parameter VOP with the parm name 'uv2'. This was not done because it can be very
convenient (and help the organization of your network) to be able to access the same
parameter in several locations in your network without having to have all the wires
leading back to the same single Parameter VOP.
07 - VOPs 1 195

V

OP Conte

xts

2 VOP CONTEXTS
These are the same contexts that VEX operates with.

2.1 INTRODUCTION

There are several VOPs which are common to all OP contexts. These functions eval-
uate a channel (or parameter) and return its value. When evaluating string parame-
ters at a speciÞed time, the time value must be the same for all evaluations of the
parameter. If the time is not constant over the all the points/pixels being evaluated,
results are not predictable.

2.2 THE COP CONTEXT

The COP evaluation works by setting either the R, G, B, A or the C1,C2, C3,C4 var-
iables. The variables are initialized to the color of the Þrst input (or zero for R, G, B
and 1 for A if there is no input). It then calls the COP function. If any of the varia-
bles are modiÞed, then they will be used to determine the new color for the current
pixel.

The RGBA variables are for programmer convenience; they read and write directly
to the Color and Alpha planes. Reading from RGB and A will give you the value of
the Þrst input's color plane and alpha plane. If one or both of these planes do not
exist, 0 will be returned. If you are writing to R, G, B or A and either Color and/or
Alpha doesn't exist, the planes will be created for you. If you only write to R, a full
Color plane will be created, but with the G and B channels set to 0.

The channel variables, C1 to C4, are more ßexible. They allow you to write to any
plane's channels. If a channel of a plane does not exist and you write to it, nothing
happens. For example, when cooking the Alpha plane (with only 1 channel), if C2,
C3 or C4 is written to, the data is lost; only C1 is valid. However, no error occurs,
since it is possible to have planes with different sizes in the same sequence. You can
read from a channel variable in exactly the same way as reading from the R,G,B and
A variables. The channel variable will be Þlled with the pixel values from the plane
in the Þrst input corresponding to the one being cooked.

You should not mix writing to R,G,B,A and C1,C2,C3,C4 in the same VOP func-
tion. While it will not harm anything, it can lead to confusing results if you are writ-
ing different things to R and C1 and the function is cooking the Color plane.
196 1 Houdini 6.0 Reference

V

OP Conte

xts

GLOBAL VARIABLES – COPS

Variable Type Read-
Write

Description

XRES int

The horizontal resolution of the image
being processed (in pixels).

YRES int

The vertical resolution of the image being
processed (in pixels).

AR ßoat The aspect ratio (width to height).
IX int

Horizontal position of the pixel currently
being shaded. In the range of (0, XRES-1)

IY int Contains the vertical position of the pixel
currently being shaded. This will be in the
range of (0, XRES-1).

X ßoat Contains the horizontal location of the
center of the current pixel being shaded in
the range 0 to 1. Zero being the left hand
side of the image, and 1 being the right
hand side.

Y ßoat Contains the vertical location of the center
of the current pixel being shaded in the
range 0 to 1. Zero being the bottom of the
image, and 1 being the top.

H ßoat Contains the hue of the current pixel. The
hue is expressed as a ßoating point
number between zero and one. HSV is
calculated based on the Color plane (C),
not the current plane.

S ßoat Contains the saturation of the current
pixel. The saturation is expressed as a
ßoating point number between zero and
one.

V ßoat Contains the value (or intensity) of the
current pixel. The value is expressed as a
ßoating point number between zero and
one.

R ßoat

�

Contains the value of the red channel of
the current pixel. The value is expressed
as a ßoating point number between zero
and one. If the COP does not have a color
plane (C), one will be created.

G ßoat

�

Contains the value of the green channel of
the current pixel. The value is expressed
as a ßoating point number between zero
and one. If the COP does not have a color
plane (C), one will be created.
07 - VOPs 1 197

V

OP Conte

xts

B ßoat

�

Contains the value of the blue channel of
the current pixel. The value is expressed
as a ßoating point number between zero
and one. If the COP does not have a color
plane (C), one will be created.

A ßoat

�

Contains the value of the alpha (transpar-
ency) channel of the current pixel. The
value is expressed as a ßoating point
number between zero and one. If the COP
does not have a color plane (C), one will
be created.

C1 - C4 ßoat

�

Contains the value of the plane component
1, 2, 3 or 4. Unlike the R,G,B or A varia-
bles, these components represent the cur-
rent plane's values.

PNAME string Contains the name of the current plane
being cooked.

PI int Contains the index of the current plane
being cooked.

PS int Contains the size of the current plane
being cooked (the number of channels).

AI int The array index of the current plane that is
being cooked (from 0 to AS-1).

AS int The array size of the current plane.
NP int Returns the number of planes in the image

(ie, for a RGBA image, this would be 2
since the COP must contain two planes,
Colour and Alpha).

NI int Returns the number of images in the
sequence (i.e. a sequence with a frame
range of 1-19 would have 20 images in it).

F int The frame number of the current image.
SF int The starting frame of the current

sequence.
EF int The ending frame of the current sequence.
I int The index number of the current image,

which always starts at zero for the Þrst
image in the sequence.

TIME ßoat The time of the current image.
TINC ßoat The time increment between frames at the

global frame rate.
FR int The frame rate of the current sequence.
198 1 Houdini 6.0 Reference

VOP Contexts
2.3 THE POP/SOP CONTEXT

The POP and SOP contexts have the same variables and functions. Both of these
contexts allow processing of point attribute data. With the POP context, the points
are typically used in a particle system, however, this is not a requirement of the con-
text. In general, a function written for POPs will work as a SOP or vice versa.

Export variables in the POP/SOP contexts will cause new attributes to be created on
the geometry. The attribute will have the name and size of the export variable.

GLOBAL VARIABLES – POP/SOP

Variable Type Read-
Write

Description

ptnum int

Contains the point number of the point
being processed.

Npt int

Contains the total number of points geom-
etry.

Frame ßoat Contains the current frame.
This may not be an integer value.

Time ßoat Contains the current time (in seconds).
TimeInc ßoat Contains the time increment for particle

simulations. In the SOP context, it con-
tains the time increment between frames.

P vector � Contains the position of the current point.
v vector � Contains the velocity of the current point.
accel vector

�
Contains the acceleration of the current
point.

Cd vector
�

Contains the colour (RGB) of the current
point.

id int

�

Contains the value of the id attribute.
Warning! If this value is modiÞed, it is
possible to generate duplicate id�s for par-
ticles which can cause bad problems.

age ßoat
�

Contains the age associated with the cur-
rent point. This represents how many sec-
onds a particle has been alive.

life ßoat

�

Contains the expected lifetime (in sec-
onds) of the current point. It is possible
that a particle may die earlier than
expected (if a collision or some other
event occurs).

pstate int
�

Contains the state of the current particle.
This is an integer bit Þeld which has the
following bits deÞned (see Notes, below).
07 - VOPs 1 199

VOP Contexts
notes

pstate � The state of the current particle.
This is an integer bit Þeld which has the following bits deÞned:

� 0x01 - The particle is a �primary� particle (not birthed off an existing particle).
� 0x02 - The particle will die before the next frame.
� 0x04 - The particle is ßagged as stopped.
� 0x08 - The particle has collided
� 0x10 - The particle is stuck to static or moving geometry.
� 0x20 - The particle is associated with a rigid body dynamic simulation.
� 0x40 - The particle is currently active
� 0x80 - The particle motion is overridden by a CHOP.

The bit-Þeld associated with this variable may change in the future.
Please see $HFS/houdini/vex/include/pop.h for the latest info.

2.4 THE CHOP CONTEXT

The CHOP context allows users to change values of channels in a CHOP.
Each CHOP function works on a single sample of a single channel of a CHOP.

GLOBAL VARIABLES – CHOPS

Variable Type Read-
Write

Description

V ßoat

�

Contains the value of the current sample.
This variable should be set to the new
value by the function. The variable is ini-
tialized to the value of the Þrst input�s
channels.

I int

Contains the index or sample number of
the current channel.

S int Contains the index of the start of the cur-
rent channel. This is the index of the Þrst
sample.

E int Contains the index of the last sample (end
sample).

SR ßoat Contains the sample rate for the channel.
L int Contains the length of the channel (total

number of samples).
C int Contains the channel number for the cur-

rent channel. When processing multiple
channels, this is the index of the channel
currently being evaluated.

NC int Contains the total number of channels the
CHOP will affect.
200 1 Houdini 6.0 Reference

VOP Contexts
2.5 THE 3D IMAGE CONTEXT

The Image3D context is used by the stand-alone program i3dgen to generate 3D tex-
ture images. In turn, these 3D texture images may be used by the texture3d() func-
tion calls in VEX to efÞciently evaluate the 3D texture images.

Any export variables in the image3d context will cause additional channels to be
created in the 3D texture map.

GLOBAL VARIABLES – IMAGE 3D

Variable Type Read-
Write

Description

P vector Contains the position being evaluated.
density ßoat

�
SpeciÞes the value of the density channel
at point P.
07 - VOPs 1 201

Shading Contexts
3 SHADING CONTEXTS

3.1 INTRODUCTION

The shading contexts share many common attributes. Each context represents a dif-
ferent stage in the rendering pipeline. Displacement shading is done Þrst, followed
by surface shading and then fog/atmosphere shaders are run. During surface and fog
shading, light and shadow shaders may be run in order to compute illumination.

3.2 COMMON GLOBAL VARIABLES

The global variables which are used in all shading contexts are:

Variable Type Description
Cf vector The Þnal color for the surface. The vector represents

the RGB color for the surface.
Of vector The Þnal opacity for the surface. A value of {1,1,0}

will be opaque in red/green, but let through blue light
from behind.

Af ßoat The Þnal alpha for the surface. This is the value which
is placed in the alpha channel of the output image.

P vector The position of the point on the surface being shaded.
In light or shadow shaders, the P variable contains the
point on the light source.

Pz ßoat The z component of the point being shaded.
Ps vector In light & shadow shaders, this is the position of the

point on the surface being illuminated.
I vector The direction from the eye to the point being shaded.

This may or may not be a normalized vector.
Eye vector The position of the eye.
s ßoat The parametric s (sometimes also called U) coordi-

nate of the surface being shaded.
t ßoat The parametric t (sometimes called V) coordinate of

the surface being shaded.
dPds,
dPdt

vector The change in position with respect to the parametric
coordinates s, t

N vector The shading normal for the surface.
Ng vector The geometric normal for the surface. This normal

represents the "true" normal of the surface being
shaded. For example, with Phong shading, the N vari-
able represents the interpolated normal, while the Ng
variable represents the true polygon normal.

Cl vector The Light Colour.
202 1 Houdini 6.0 Reference

Shading Contexts
3.3 GLOBAL VARIABLE ACCESS

Each context is responsible for setting or modifying different variables. For exam-
ple, the displacement context can modify the position of the surface being rendered,
while the light context is responsible for setting the color of the light source. The
Read/Write access of the variables for each context can be described below.

* Although P is modifiable in the surface context, at the current time, changing P will
not affect rendering of the surface, only shading.

L vector The vector from the point on the surface to the light
source. The length of this vector represents the dis-
tance to the light source. Please see Initialization of
the L Variable p. 205 for further information.

Lz vector The z-axis in the space of the light.
This is a unit vector.

Variable Displace Surface Light Shadow Fog
Cf - Write - - Read/

Write
Of - Write - - Read/

Write
Af - Write - - Read/

Write
P Read/

Write
Read/
Write *

Read Read Read

Pz Read Read - - Read
Ps - - Read Read -
I - Read Read Read Read
Eye - Read Read Read Read
s Read Read Read Read Read
t Read Read Read Read Read
dPds,
dPdt

Read Read Read Read Read

N Read/
Write

Read/
Write

Read Read Read

Ng Read Read
Cl - Read/

Write
Write Read/

Write
Read/
Write

L - Read Read/
Write

Read Read

Lz - - Read Read -
07 - VOPs 1 203

Shading Contexts
3.4 SURFACE SHADING CONTEXT

The surface shading context�s purpose is to set the Þnal colour, opacity and alpha of
the surface being rendered. If the Of and Af varaibles are not set, they will default to
1. If the Af variable is not set, it will resolve to average of the componets (see the
Average VOP). It is possible to set the Af variable to any arbitrary value, making it
possible to build matte/cutout shaders.

Inside the surface context, it is possible to loop through all light sources in the scene
computing their illumination and shadows. This is done using the illuminance() con-
struct. This creates will loop through all light sources, calling the light shader for
each light source to ensure that the Cl and L variables are set properly. The shadow
shader will not be called unless speciÞcally requested. However, once the shadow
shader has been called, the value of Cl will be changed for the duration of the sur-
face shader. The shadow shader is automatically called when using any of the built-
in lighting calls.

ILLUMINANCE

The default value for the axis is the surface normal. The default value for the axis is
P I / 2 .The de fau l t va lue fo r t he l i gh t mask i s L IGHT_DIFFUSE |
LIGHT_SPECULAR (please see shading.h for the light deÞnitions). The Illumi-
nance Loop VOP will loop through all light sources which meet the criteria dot(L,
axis) > cos(angle).

3.5 DISPLACEMENT SHADING CONTEXT

Displacement shading can be used to move the position of the surface before the
surface gets rendered. It is intended as a mechanism to add Þne detail to a surface,
not as a modelling technique. After moving a surface, you must typically re-com-
pute the normals of the surface. For surfaces which have interpolated normals (i.e.
polygons which are smooth shaded), the Shading Normal VOP can be used to
approximate what the �smooth� displaced normal will be.

Light

Axis

Angle

Surface

L

204 1 Houdini 6.0 Reference

Shading Contexts
3.6 LIGHT SHADING CONTEXT

Light shaders will get called from surface or fog shaders to compute the illumina-
tion from a given light source. The light shader can be invoked using the Illumi-
nance Loop VOP.

3.7 SHADOW SHADING CONTEXT

Shadow shaders will get called from surface or fog shaders to occlude the illumina-
tion from a given light source. The light will already have been computed by calling
the light shader. The function of a shadow shader is to modify the Cl variable. Typi-
cally, the light will be occluded, causing the Cl variable to decrease in intensity.
However, it is possible to create �negative� shadows, and increase the illumination
due to occlusion.

The shadow context is typically used to separate illumination from expensive ray-
tracing calls (like the Fast Shadow and Filter Shadow VOPs). This allows fog shad-
ers (or surface shaders) to bypass shadow testing.

3.8 FOG SHADING CONTEXT

A fog shader is responsible for modifying the Cf, Of or Af variables after the surface
shader has completed its shading. It is possible to use Illuminance Loop VOP inside
of fog shaders.

3.9 INITIALIZATION OF THE L VARIABLE

In the Light and Shadow contexts, the P variable represents the position of the light
source and the Ps variable represents the position of the surface point being shaded.

In Houdini, lights can have either perspective or orthographic projections. An ortho-
graphic light in Houdini is used to represent an inÞnite (or very distant) light source
which has all the light raysparallel with each other. A perspective light acts more as
a point light source.

When a perspective light shader runs, the L variable is initialized as follows:

L = P - Ps;

Orthographic lights, on the other hand, are initialized so that the direction of L is the
same for each light ray eminating from the light source.

L = Lz * dot(Lz, P - Ps);

Where Lz represents the normalized "z-axis" of the light source (i.e. a unit vector
pointing down the z-axis in the space of the light). Thus, the scale of the L variable
will be the orthographic distance from the plane of the light source and the surface
point being shaded.

In a light shader, it is possible to change the L variable to any value you choose.
However, this is how the L variable is initialized.
07 - VOPs 1 205

Shading Contexts
3.10 SPECIAL VARIABLES

There are several �special� variables used in the shading contexts. These are speci-
Þed as parameters to shaders. Typically, these are export parameters. You can Þnd
reference to these in: VEX Surface Shader:VOPs > Shading > Lighting Model >
Diffuse; Specular.

3.11 TRANSFORM SPACES

One of the key features of VEX shading is the concept of spaces. There are at least
two or three transform spaces deÞned for each context. Often, shading it is impor-
tant to transform a position or vector in one space to a different space. This is done
using the Space Change VOP (among others). However, it is important to know
what space variables are in and to which space the transform functions will take a
variable.

In all VEX contexts, global variables are in "world" space. In the mantra renderer,
this space is deÞned with the camera at the origin pointing down the positive Z axis.
Each shader has a local "object" space associated with it. This is the space which
deÞned as the object at the origin of the space. Displacement, Surface and Light
shaders also have a special "NDC" (Normalised Device Coordinate) space associ-
ated with them.
206 1 Houdini 6.0 Reference

Shading Contexts
SPACE TYPES

Context Space Description
Displacement
Surface

World The space which has the camera at the origin,
looking down the positive Z axis.

Displacement
Surface

Shader Often, this is the same as object space. However,
in Houdini, it is possible to deÞne different
spaces for displacement/surface shading. Typi-
cally, this space should be used for shading pur-
poses.

Displacement
Surface

Object This is deÞned as the space which has the object
at its origin. This is basically the inverse of the
object's transform.

Displacement
Surface

NDC This is a special "Normal Device Coordinate"
space. A position in world space can be con-
verted to NDC space by calling the: To NDC
VOP. This will transform the X & Y components
of the position so that {0,0,z} will be the bottom
left hand corner of the image plane as viewed
from the camera. The top right hand corner will
be represented by {1,1,z}. The Z component of
the position remains unchanged by the NDC
transformations. Given a point in NDC space, it
is possible to Þnd it's world space position by
calling the From NDC or UV Spacechange
VOPs.

Light Shadow World The space which has the camera at the origin,
looking down the positive Z axis.

Light Shadow Shader For Light & Shadow contexts, this is the same as
object space.

Light Shadow Object This is deÞned as the space which has the light
at the origin, pointing down the positive Z axis.

Light Shadow NDC Since light sources in Houdini have the same
attributes as cameras, NDC space is deÞned for
light sources as well. To transform a position
into the NDC space for the light source, the
object space position should be used in the
toNDC space call. The Z component of the
object space position will remain unchanged.
Given a point in NDC space, it is possible to Þnd
it's world space position by calling the From
NDC VOP.

Fog World The space which has the camera at the origin,
looking down the positive Z axis.

Fog Shader For fog shaders, this is the same as object space.
07 - VOPs 1 207

Shading Contexts
3.12 OPACITY VS ALPHA

In the surface shader context, there are two separate variables to control transpar-
ency. Of and Af are related, but represent different quantities. The Of variable repre-
sents the opacity of the surface. For example,

Of = {1, 0, 0};

will make the surface opaque in red, but pass through green and blue light from
behind. This will give you a cyan colored Þlter. The opacity is used when mantra is
resolving surface colors.

The Af variable is used to decide what value gets put into the alpha channel of an
RGBA image. If the Af variable is not set by a shader, it is automatically assigned
by using:

Af = avg(Of) (use an Average / Average Coordinate VOP)

However, because this variable is available, it is possible for a shader to decide what
value gets put in the alpha channel of the output image. This makes it possible to
write shaders like "matte" or "shadowmatte". See the Matte and Shadowmatte VOPs
in the Material toolbar.

Fog Object This is deÞned as the space which has the fog
object at the origin, pointing down the positive Z
axis.

Fog NDC This is a special "Normal Device Coordinate"
space. A position in world space can be con-
verted to NDC space by calling the To NDC
VOP. This will transform the X & Y components
of the position so that {0,0,z} will be the bottom
left hand corner of the image plane as viewed
from the camera. The top right hand corner will
be represented by {1,1,z}. The Z component of
the position remains unchanged by the NDC
transformations. Given a point in NDC space, it
is possible to Þnd it's world space position by
calling the From NDC VOP.
208 1 Houdini 6.0 Reference

Shading Contexts
EXAMPLE

For example, a VEX shader with the following parameters simulates a blue screen:

surface bluescreen(vector clr=0)
{
Cf = clr;
Of = 1;
Af = 0;

}

Here is the same shader represented with VOPs:

The colour of the surface is set to black (by default). The opacity is 1, meaning that
this surface will occlude other surfaces in the scene. However, the alpha output to
the image will be 0. This means that if this image is composited over an other
image, the background image will blend appear where this surface was rendered. An
example use of this would be to create a window in a wall without having to modify
the geometry.

It is also possible to set the Af variable to be something other than 1, meaning that
the background image will appear �shadowed� where the matte surface is rendered.
This is the theory behind the �shadowmatte� shader.
07 - VOPs 1 209

2 VOPs
1 ABSOLUTE VOP

1.1 DESCRIPTION

This operator computes the absolute value of the argument. It can be used to convert
negative values into their positive equivalent.

1.2 SEE ALSO

� Complement
� Multiply
210 2 Houdini 6.0 Reference | 07 - VOPs

Add VOP
2 ADD VOP

2.1 DESCRIPTION

This operator outputs the sum of its inputs.

The Þrst input can be an integer, ßoat, vector, vector4, matrix3, or matrix. The
allowed data types of subsequent inputs depend on the data type of the Þrst input.
For example, if the Þrst input is a ßoat, subsequent inputs can be either ßoats or inte-
gers. The output data type is always the same as the data type for the Þrst input.

2.2 INPUTS

INPUT NUMBER 1...N

The input values to be added together.

NEXT INPUT

Where the next input value should be connected.

Any number of inputs can be speciÞed.

2.3 OUTPUTS

COMBINED VALUE

The sum of all the input values.

2.4 SEE ALSO

� Add
� Constant
� Complement
� Divide, Multiply
� Subtract
07 - VOPs 2 211

Align VOP
3 ALIGN VOP

3.1 DESCRIPTION

This operator computes a matrix representing the rotation around the axes normal to
two vectors (their cross product), by the angle which is between the two vectors.
The resulting matrix maps the Þrst vector onto the second. If both vectors have the
same direction, the result will be an identity matrix. If the vectors are opposed, the
rotation is undeÞned.

3.2 SEE ALSO

� Direction
� Space Change
� Look At
� Orient
� Rotate
212 2 Houdini 6.0 Reference

And VOP
4 AND VOP

4.1 DESCRIPTION

This operator performs a logical "and" operation between its inputs and returns 1 (if
all inputs are non-zero) or 0 (if at least one input is zero).

Typically, "and" is used as an input to conditional operators such as If and While.
All inputs and the output data type are integers.

4.2 INPUTS

INPUT NUMBER 1...N

The input values to be combined together.

NEXT INPUT

Where the next input value should be connected.

Any number of inputs can be speciÞed.

4.3 OUTPUTS

COMBINED VALUE

The logical "and" combination of all inputs.

4.4 SEE ALSO

� Or
� Not
� Compare
� If
� While
07 - VOPs 2 213

Avg VOP
5 AVG VOP

5.1 DESCRIPTION

This operator outputs the average of its inputs.

The Þrst input can be an integer, ßoat, vector, vector4, matrix3, or matrix. The
allowed data types of subsequent inputs depend on the data type of the Þrst input.
For example, if the Þrst input is a ßoat, subsequent inputs can be either ßoats or inte-
gers. The output data type is always the same as the data type for the Þrst input.

5.2 INPUTS

INPUT NUMBER 1...N

The input values to be averaged together.

NEXT INPUT

Where the next input value should be connected.

Any number of inputs can be speciÞed.

5.3 OUTPUTS

COMBINED VALUE

The average of all the input values.

5.4 SEE ALSO

� Average Vector Component
� Maximum
� Minimum
214 2 Houdini 6.0 Reference

Compare VOP
6 COMPARE VOP

6.1 DESCRIPTION

This operator compares two values and returns true or false. Both operands must
have the same type.

6.2 SEE ALSO

� And
� If
� Or
� Not
� While
07 - VOPs 2 215

Constant VOP
7 CONSTANT VOP

7.1 DESCRIPTION

This operator outputs a constant value of any VEX data type.

Use this operator type to create a value that is not going to change between different
instantiations of the VEX operator deÞned by the VOP network. For example, if a
shading function required multiplying a value by 2, or Þnding the cross product of a
vector and { 0, 1, 0 }, the values 2 and { 0, 1, 0 } would most easily be represented
by a Constant VOP. If the value 2 or { 0, 1, 0 } might change depending on the
properties of the material being shaded, a Parameter VOP should be used instead.

Unlike this operator, the Parameter VOP allows the speciÞcation of a different value
for each instantiation of the OP type that uses this VOP network. For example, if
you want the surface color to be accessed by a Surface shader (SHOP) using this
VOP network, make the color a Parameter VOP instead of a Constant.

7.2 PARAMETERS

CONSTANT TYPE

SpeciÞes the VEX data type of the value output by this operator. In some cases there
is more than one way to represent a VEX data type. For example, the vector type can
be represented by 3 ßoat values, or a single color value. This parameter also speci-
Þes how the VEX value should be represented. This determines which parameter to
use to deÞne the value output from this operator.

CONSTANT NAME

The name of the constant deÞned by this operator, both in the generated VEX code
and on the operator tile's output.

CONSTANT LABEL

The label that pops up when the cursor moves over the operator tile's output.

DEFAULT VALUES

Depending on the constant type selected, it represents the value of the constant in
the VEX function.

7.3 OUTPUTS

CONSTANT VALUE

The value speciÞed by the parameters of this operator.
216 2 Houdini 6.0 Reference

Constant VOP
7.4 SEE ALSO

� Global Variables
� Parameter
� Shading Layer Parameter
07 - VOPs 2 217

Divide VOP
8 DIVIDE VOP

8.1 DESCRIPTION

This operator outputs the result of dividing each input value by the next.

The Þrst input can be an integer, ßoat, vector, vector4, matrix3, or matrix. The
allowed data types of subsequent inputs depend on the data type of the Þrst input.
For example, if the Þrst input is a ßoat, subsequent inputs can be either ßoats or inte-
gers. The output data type is always the same as the data type for the Þrst input.

8.2 INPUTS

INPUT NUMBER 1...N

The input values to be divided.

NEXT INPUT

Where the next input value should be connected.

Any number of inputs can be speciÞed.

8.3 OUTPUTS

COMBINED VALUE

The result of dividing each input by the next.

SEE ALSO

� Add
� Complement
� Multiply
� Multiply Constant
� Subtract
218 2 Houdini 6.0 Reference

Forpoints VOP
9 FORPOINTS VOP

9.1 DESCRIPTION

This operator is only available in Image3D VOP networks. It contains other VOP
operators, and executes the code for the contained operators once for each metaball
or particle that contains the position passed in.

If the distance is speciÞed, all metaballs and particles within the distance of the
point speciÞed will be iterated through. The distance parameter is optional and may
result in slower execution of the shader.

Inside the point loop, the Metaball Density and Metaball Attribute operators may be
used to query the contribution of the current point instead of getting a blended value.
The Metaball Space operator can be used to transform the points into the local space
of the metaball.

Any value that you wish to modify inside the point loop must be provided as an
input. The outputs of the Point Loop operator will contain the modiÞed versions of
the inputs once the loop exits. The actual values wired into the Point Loop inputs
are never modiÞed, and so can be connected to other operators in the network; but
remember that the values from these operators will always be the values unmodiÞed
by the Point Loop operator.

Here is a pseudocode example of how to compute the point color of the metaball
which contributes the maximum weight to the point in space:

 float crt_distance = 0;
 float max_distance = 0;
 vector max_color;

 for_all_points(P)
 {
 crt_distance = metaball density of P;
 if (crt_distance > max_distance)
 {
 max_color = metaball attribute "Cd" of P;
 max_distance = crt_distance;
 }
 }
 vector blended_color = max_distance * max_color;
07 - VOPs 2 219

Forpoints VOP
9.2 INPUTS

All connected inputs mimic the properties of the output wired into them. They adopt
the same help label and name as the output connected to them. If multiple outputs
with the same name are connected, the names of the inputs are automatically incre-
mented to make them unique.

POSITION

Vector representing the position of a point in space. If no no input is connected, the
default is the global P.

DISTANCE

If speciÞed, all metaballs particles within the distance of the point speciÞed will be
iterated through.

NEXT INPUT

Any number of inputs can be connected here. Each time an input is connected, a
new input slot is added.

9.3 OUTPUTS

The list of outputs depends on the inputs connected to the Subnet Output operator
contained in this operator. The data type and name of each output will match the
corresponding input of the Subnet Output operator.

9.4 SEE ALSO

� Global Variables
� Subnet
� Subnet Input
� Subnet Output
� While
� Metaball Attribute
� Metaball Density
� Metaball Space
220 2 Houdini 6.0 Reference

Global VOP
10 GLOBAL VOP
This operator provides outputs that represent all the global variables for the current
VOP network type. There are no inputs to this operator.

The variables available from this operator will almost always include all of the input
variables provided in the Output Variables operator. The difference between these
two operators is that the Output Variables operator only provides inputs for those
global variables that can be changed.

Every VOP network type has a set of global variables associated with it. These are
the variables inherent to the VEX context that the VOP network operates in. For
shading contexts (such as Surface and Displacement) these will be variables like the
position of the point on the geometry being shaded (P), or the normal of the surface
at the point being shaded (N). For Sop or Pop Operator networks, these variables
include the position of the point being manipulated (P), and the point number of the
point being manipulated (ptnum).

10.1 PARAMETERS

OUTPUT A SINGLE VARIABLE

When enabled, it shrinks the number of outputs to one and outputs only the global
variable chosen from the menu below. This option is very useful when the operator
is part of a subnetwork that needs to be accessed by different contexts.

VARIABLE NAME

Menu of all available global variables.
It works in conjunction with the toggle above it.

10.2 INPUTS

None.

10.3 OUTPUTS

The list of available outputs depends on the current VOP network type. The number
of outputs depends on whether "Output A Single Variable" is enabled.

10.4 SEE ALSO

� Constant
� Is Connected
� Parameter
� Output Variables
07 - VOPs 2 221

IF VOP
11 IF VOP

11.1 DESCRIPTION

This operator contains other VOP operators. The code for the contained operators is
executed only if the value fed into the Þrst input matches the criterion speciÞed by
the Condition parameter. At least one input must be connected to this operator.

Use this operator when you want something to happen only if a certain condition is
met. The Condition Value is usually the output of a Compare operator, but any inte-
ger value can be used.

Any value that you wish to modify inside the If operator must be provided as an
input. The outputs of the If operator will contain the modiÞed versions of the inputs
(if the condition was met) or the unmodiÞed version of the inputs (if the condition
was not met). The actual values wired into the If operator inputs are never modiÞed,
and so can be connected to other operators in the network, but remember that the
values from these operators will always be the values unmodiÞed by the If operator.

There is no place in this operator to specify what should happen if the condition is
not met (i.e. an Else block). To achieve the same effect as an if-then-else statement,
use two If operators. Connect the same output value to both Condition Value inputs
of the two If operators. Then set the Condition parameters of the two If operators to
be different. At this point one If operator represents the "if" block, and the other
represents the "else" block. Then connect your inputs to the "if" block operator.
Then connect all but the Condition Value output from the "if" block into the inputs
of the "else" block. Now the outputs of the "else" block are going to be what you
would expect from an if-then-else statement. For simple if-then-else constructs, use
the Two Way Switch operator instead.

11.2 PARAMETERS

CONDITION

SpeciÞes the condition that must be met by the Þrst input for the contained code to
be executed. Either the input value must be False (equal to 0) or True (not equal to
zero).

11.3 INPUTS

CONDITION VALUE

This integer input must be connected. The value connected to this input is compared
to the requirements of the Condition parameter. Usually this input will be connected
to the output of a Compare operator, or one of the logical operators (And and Or).
222 2 Houdini 6.0 Reference

IF VOP
NEXT INPUT

Any number of inputs can be connected here. Each time an input is connected, a
new input slot is added. All connected inputs mimic the properties of the output
wired into them. They adopt the same help label and name as the output connected
to them. If multiple outputs with the same name are connected, the names of the
inputs are automatically incremented to make them unique.

11.4 OUTPUTS

The list of outputs depends on the inputs connected to the Subnet Output operator
contained in this operator. The data type and name of each output will match the
corresponding input of the Subnet Output operator.

11.5 SEE ALSO

� And
� Compare
� Or
� Subnet
� Subnet Input
� Subnet Output
� Switch
� Two Way Switch
� While
07 - VOPs 2 223

Illuminance VOP
12 ILLUMINANCE VOP

12.1 DESCRIPTION

This operator is only available in Surface VOP networks. It contains other VOP
operators, and executes the code for the contained operators once for every light that
affects the surface being shaded.

This operator should only be used by advanced users with a good understanding of
shading and rendering. For most purposes, the Lighting Model operator will pro-
vide all the functionality necessary to generate convincing and realistic materials.
Within the illuminance loop, the Global Variables operator will change slightly.
Two additional outputs will be available: the Color of the current light (Cl) and the
direction from the point on the surface being shaded to the light (L). As is always
the case within an illuminance loop, the values of these global variables are reset for
each iteration through the code.

Any value that you wish to modify inside the illuminance loop must be provided as
an input. The outputs of the Illuminance Loop operator will contain the modiÞed
versions of the inputs once the loop exits. The actual values wired into the Illumi-
nance Loop inputs are never modiÞed, and so can be connected to other operators in
the network; but remember that the values from these operators will always be the
values unmodiÞed by the Illuminance Loop operator.

12.2 INPUTS

All connected inputs mimic the properties of the output wired into them. They adopt
the same help label and name as the output connected to them. If multiple outputs
with the same name are connected, the names of the inputs are automatically incre-
mented to make them unique.

SURFACE POSITION

The position of the point on the surface being shaded. If no input is connected, the
default is the global P.

SURFACE NORMAL

The normal of the point on the surface being shaded. If no input is connected, the
default is the global N.

PERMITTED LIGHTING ANGLE

The range of angle (in radians) away from the Surface Normal from which lights
can inßuence the surface. Any light outside the cone deÞned by this value and the
Surface normal is not part of the illuminance loop. If no input is connected, the
default is PI/2 (i.e. 90 degrees in radians).
224 2 Houdini 6.0 Reference

Illuminance VOP
LIGHT TYPE MASK

SpeciÞes the types of lights that are allowed to inßuence the surface. This is a bit
mask, where:

LIGHT_AMBIENT = 0x01
LIGHT_DIFFUSE = 0x02
LIGHT_SPECULAR = 0x04

If no input is connected, the default is LIGHT_DIFFUSE | LIGHT_SPECULAR.

LIGHT MASK

SpeciÞes a string listing names of light objects that can inßuence the surface. If no
input is speciÞed, the light mask speciÞed in the parameters for the object being ren-
dered is used.

NEXT INPUT

Any number of inputs can be connected here. Each time an input is connected, a
new input slot is added.

12.3 OUTPUTS

The list of outputs depends on the inputs connected to the Subnet Output operator
contained in this operator. The data type and name of each output will match the
corresponding input of the Subnet Output operator.

12.4 SEE ALSO

� Global Variables
� Shadow
� Subnet
� Subnet Input
� Subnet Output
� While
� Lighting Model
07 - VOPs 2 225

Max VOP
13 MAX VOP

13.1 DESCRIPTION

This operator outputs the maximum value from its inputs.
All inputs and the output are ßoat values.

13.2 INPUTS

Any number of inputs can be specified.

INPUT NUMBER 1...N

The input values to be compared.

NEXT INPUT

Where the next input value should be connected.

13.3 OUTPUTS

COMBINED VALUE

The maximum of all the input values.

13.4 SEE ALSO

� Average
� Ceiling
� Clamp
� Max Vector Component
� Minimum
226 2 Houdini 6.0 Reference

Min VOP
14 MIN VOP

14.1 DESCRIPTION

This operator outputs the minimum value from its inputs. All inputs and the output
are ßoat values.

14.2 INPUTS

Any number of inputs can be specified.

INPUT NUMBER 1...N

The input values to be compared.

NEXT INPUT

Where the next input value should be connected.

14.3 OUTPUTS

COMBINED VALUE

The minimum of all the input values.

14.4 SEE ALSO

� Average
� Clamp
� Floor
� Maximum
� Min Vector Component
07 - VOPs 2 227

Multiply VOP
15 MULTIPLY VOP

15.1 DESCRIPTION

This operator outputs the product of its inputs.

The Þrst input can be an integer, ßoat, vector, vector4, matrix3, or matrix. The
allowed data types of subsequent inputs depend on the data type of the Þrst input.
For example, if the Þrst input is a ßoat, subsequent inputs can be either ßoats or inte-
gers. The output data type is always the same as the data type for the Þrst input.

15.2 INPUTS

Any number of inputs can be specified.

INPUT NUMBER 1...N

The input values to be multiplied together.

NEXT INPUT

Where the next input value should be connected.

15.3 OUTPUTS

COMBINED VALUE

The product of all the input values.

15.4 SEE ALSO

� Add
� Divide
� Multiply Constant
� Subtract
228 2 Houdini 6.0 Reference

Or VOP
16 OR VOP

16.1 DESCRIPTION

This operator performs a logical "or" operation between its inputs and returns 1 (if
at least one input is non-zero) or 0 (if all inputs are zero).

Typically, "or" is used as an input to conditional operators such as If and While. All
inputs and the output data type are integers.

16.2 INPUTS

Any number of inputs can be specified.

INPUT NUMBER 1...N

The input values to be combined together.

NEXT INPUT

Where the next input value should be connected.

16.3 OUTPUTS

COMBINED VALUE

The logical "or" combination of all inputs.

16.4 SEE ALSO

� And
� Not
� Compare
� If
� While
07 - VOPs 2 229

Output VOP
17 OUTPUT VOP

17.1 DESCRIPTION

Every VOP network requires one of these.

This operator provides inputs that represent all the global variables for the current
VOP network type that can be modiÞed. There are no parameters and no outputs to
this operator. Every VOP network contains exactly one of this operator type. The
Output Variables operator cannot be deleted except by deleting the parent VOP net-
work. It is also not possible to create a second Output Variables operator within a
VOP network (even within a subnet).

This operator drives the VEX code generation process for a VOP network. When
generating code, only operators that are directly or indirectly connected to an input
of the Output Variables operator will actually generate any code. This operator is
also always the last operator to output its code. It simply goes through all of its
inputs, and sets the global variable corresponding to each connected input to the
value that is wired into it.

The variables available from this operator will be a subset of the variables available
as outputs from the Global Variables operator. The difference between these two
operators is that the Output Variables operator only provides inputs for those global
variables that can be changed.

Every VOP network type has a set of global variables associated with it. These are
the variables inherent to the VEX context that the VOP network operates in. For
shading contexts (such as Surface and Displacement) these will be variables like the
position of the point on the geometry being shaded (P), or the normal of the surface
at the point being shaded (N). For Sop or Pop Operator networks, these variables
include the position of the point being manipulated (P), and the point number of the
point being manipulated (ptnum).

17.2 INPUTS

The list of available inputs depends on the current VOP network type.

17.3 SEE ALSO

� Global Variables
� Parameter
230 2 Houdini 6.0 Reference

Parameter VOP
18 PARAMETER VOP

18.1 DESCRIPTION

This operator creates a parameter to appear in the signature of the VEX function
deÞned by the VOP network (VOPNET) and in the interface of any OP type that
uses the VOPNET.

By providing VEX parameters, it becomes possible to customize the operation of
the VOPNET for each instance of the operator using the VOPNET. For example, if
a Surface VOPNET is used in a surface shader for a variety of colored baloons, the
balloon color should be deÞned by a Parameter VOP. This way there may be 100
individually colored balloons, with a single VOP network deÞning the surface
shader (i.e. the SHOP) for all of them.

18.2 PARAMETERS

PARAMETER TYPE

SpeciÞes the VEX data type of the new parameter. It can also specify how the
parameter should be represented in an OP dialog. For example, a VEX vector can be
viewed as 3 ßoat values or as a color value.

PARAMETER NAME

The name of the new parameter, both in the VEX function declaration, the deÞnition
of any OP type that uses the VOPNET, and the VOP tile's output. If a parameter by
this name already exists, this operator will reference it and will disable most of of its
own Þelds, such as the Parameter Type and Parameter Label.

PARAMETER LABEL

The label that appears in the dialog of the OP type that uses the VOPNET, and in the
baloon help over the VOP tile output.

USE INPUT VALUE IF PARAMETER NOT BOUND

If true, the VEX function parameter is checked to see if it is bound to an attribute in
the current VEX context (e.g. point color). If not bound, the input value is is
assigned to the VEX parameter. In a Surface VOP context, a VEX parameter is
bound if the geometry being shaded has an attribute with the VEX parameter name.

EXPORT PARAMETER

SpeciÞes whether the new parameter can be exported to other contexts (written to as
well as read from). If true, this operator gets an input. The value wired into this input
is then assigned to the exported parameter. In a Surface network, exported parame-
07 - VOPs 2 231

Parameter VOP
ters can be used to create deep rasters. In SOP and POP networks, the exported
parameters create new geometry attributes.

PROVIDE MENU OF CHOICES

If the parameter type is String or Integer, check this toggle to provide a menu of
choices instead of a string entry Þeld or an integer slider.

MENU CHOICES

A list of pairs of strings. The Þrst string in each pair is the parameter value if that
menu item is chosen. The second string is the label that appears in the dialog for that
menu item.

DEFAULT VALUES

Depending on the parameter type selected, it represents the default value of the
parameter in the VEX function and in the OP type that uses this VOP network.

18.3 INPUTS

Unbound or Export Value - The value assigned to the new parameter if the "Export
Parameter" toggle is checked or if the parameter is not bound when "Use Input
Value If Parameter Not Bound" is checked.

18.4 OUTPUTS

OUTPUT PARAMETER

The value of this VEX function parameter. Is Parameter Bound - True is the new
parameter is bound to an attribute.

SEE ALSO

� Constant
� Global Variables
� Output Variables
� Shading Layer Parameter
232 2 Houdini 6.0 Reference

Print VOP
19 PRINT VOP
This operator is used to generate a formatted text string. It can also output this text
to the console, usually for debugging purposes.

Any number of inputs can be connected to this operator. These inputs can be inte-
ger, ßoat, vector, vector4, matrix3, matrix, or string data. By default, each input
value will be printed with the name of the output connected to the input, followed by
the actual value. the values are separated by tabs. So connecting a vector input "P"
and a ßoat input "alpha" would result in string that looked like this:

P: { 0.0, 0.0, 0.0 } alpha: 1.0

This operator can be placed anywhere in the VOP network and does not have to be
part of the node chain that ultimately connects to the "Output Variables" operator.

19.1 PARAMETERS

FORMAT STRING

This string speciÞes how the input values will be formatted and displayed. Any text
can be entered here. To specify that the value from a particular input should be dis-
played, use "%". The inputs will be displayed in the order in which they are con-
nected. To display a "%" character, use "\%". To display a "\", use "\\". To specify
the start of a new line, use "\n". A new line character is automatically put at the end
of the string when it is output to the console. To place a TAB in the text, use "\t".
The double-quotes are not actually needed anywhere in the string. Any input value
that does not explicitly appear in the Format String is appended to the end of the
string using the format described above for the default behaviour.

OUTPUT TEXT TO CONSOLE

Toggle this parameter on to have the formatted output string displayed in the con-
sole window.

INPUTS

Any number of inputs can be specified.

INPUT NUMBER 1...N

The input values to be put in the output string.

NEXT INPUT

Where the next input value should be connected.
07 - VOPs 2 233

Print VOP
19.2 OUTPUTS

FORMATTED OUTPUT TEXT

The string created by formatting the input values according to the details in the For-
mat String.

19.3 EXAMPLE

To generate a more easily readable string than the default, you might set the Format
String to:

The noise value is % with displacement %.
The color is %.

Or to generate the name of a texture map Þle based on an integer input, you could
set the Format String to:

 $HIP/map/Texture%.rat
234 2 Houdini 6.0 Reference

Shading Layer VOP
20 SHADING LAYER VOP

20.1 DESCRIPTION

This operator creates a parameter to appear in the signature of the VEX function
deÞned by the VOP network (VOPNET). The new parameter is named according to
the chosen geometry attribute and the speciÞed layer.

Unlike the Parameter operator, which creates parameters of any name and type,
Shading Layer computes the parameter name from the name of the geometry
attribute and the speciÞed layer. For example, choosing "UV Coordinates" from the
attribute menu will generate "uv, "uv2", "uv3" when the layer is 1 and respectively 2
and 3. The parameter type matches the type of the selected geometry attribute.

This operator always checks if the geometry attribute is bound and, if so, assigns its
value to the new parameter. Thus, the new parameter will be hidden in the operator
type deÞned by the VOP network.

One of the most common uses of this operator is the creation of layered textures,
which requires different sets of texture coordinates for each Texture operator. To
accomplish this task, choose "UV Coordinates" from this operator's attribute menu
and set the appropriate layer. Pipe the "uv" output into a Vector To Float operator to
extract the "s" and "t" as individual ßoat values, then wire "s" and "t" into the Tex-
ture operator. Repeat this operation for all the layers, then add or multiply the all
Texture outputs using the Add or Multiply operator respectively.

20.2 PARAMETERS

GEOMETRY ATTRIBUTE

The attribute to be searched for in the given layer. The following attributes are avail-
able in this operator:

Geometry attributes are created in the Geometry module using a variety of SOP
operators such as: AttribCreate, Attribute, Point, UV Project, UV Texture, UV
Unwrap, etc.

Label Name Type
Default

If not Bound

V Coordinates uv 3 ßoats
{ global s, global t,

.5 }

RGB Color Cd 3 ßoats
{ 1, 1, 1} (i.e.

white)
Alpha Alpha 1 ßoat (i.e. opaque)
07 - VOPs 2 235

Shading Layer VOP
ATTRIBUTE LAYER

Attribute layer where to search for the geo attribute. Layer 1 is the default layer.
Attributes in this layer do not have a sufÞx. Layers are created in the Geometry
module using the Layer SOP.

EXPORT PARAMETER

SpeciÞes whether the new parameter can be exported to other contexts (written to as
well as read from). If true, this operator gets an input. The value wired into this input
is then assigned to the exported parameter. In a Surface network, for example,
exported parameters can be used to create deep rasters.

20.3 INPUTS

EXPORT VALUE

The value assigned to the new parameter if the "Export Parameter" toggle is
checked.

20.4 OUTPUTS

OUTPUT PARAMETER

The value of this VEX function parameter.

IS PARAMETER BOUND

True is the new parameter is bound to an attribute.

20.5 SEE ALSO

� Constant
� Global Variables
� Parameter
� UV Space Change
236 2 Houdini 6.0 Reference

Spline VOP
21 SPLINE VOP

21.1 DESCRIPTION

This operator computes either a Catmull-Rom (Cardinal) spline or a Linear spline
between the speciÞed key points, given an interpolant (u) in the domain of the
spline. The result is a 1D, 3D, or 4D value representing u's image on the spline.

The Cardinal keys are uniformly spaced over the range 0 to 1. Because of the nature
of the Cardinal spline, the value associated with the Þrst and last keys will never be
returned. However, these keys are used to determine the shape of the curve on entry
and exit. If you want the spline to reach its end points, connect the Þrst key and last
key twice. See the Fire operator for one such example.

If you are blending only two vector types using the Cardinal interpolant, the Color
Mix operator offers the convenience of fewer connections. Make sure, however, that
you choose the "Smooth With Cardinal Spline" option to obtain the exact same
results as with this operator.

The Linear spline interpolation is equivalent to a sequence of Linear Interpolation
operators. Consider the simpler Mix operator if only two inputs are required.

21.2 PARAMETERS

SPLINE

Catmull-Rom (Cardinal) or Linear.

21.3 INPUTS

 Any number of inputs can be specified.

PARAMETRIC COORDINATE

Interpolant (u) representing the parametric location in the domain of the spline
where to evaluate the spline.

INPUT NUMBER 1...N

1D, 3D or 4D spline key points to interpolate.

NEXT INPUT

Where the next key value should be connected.
07 - VOPs 2 237

Spline VOP
21.4 OUTPUTS

COMBINED VALUE

Interpolated spline location.

21.5 SEE ALSO

� Blend Regions
� Color Mix
� Fire, Mix
� Shift
� Smooth
238 2 Houdini 6.0 Reference

Subinput VOP
22 SUBINPUT VOP

22.1 DESCRIPTION

This operator allows the connection of operators outside a subnet to operators inside
the subnet. This operator can only be created inside a subnet type operator (If, Illu-
minance, Subnet, and While).

For every input connected to a subnet type operator, this operator will have an out-
put that corresponds to that output. Connecting the output of this operator to
another operator inside the subnet is the same as connecting the operator outside the
subnet to the operator inside the subnet. Disconnecting an input from the subnet
will delete the corresponding output from this operator. Thus care must be taken
when removing inputs from the subnet to check that the connections from this oper-
ator are still correct.

22.2 OUTPUTS

The list of outputs depends on the inputs connected to the subnet containing this
operator. The data type of each output will match the data type of the corresponding
input. The name will be the same, except it will include the preÞx "sub".

22.3 SEE ALSO

� If
� Illuminance
� Subnet
� Subnet Output
� While
07 - VOPs 2 239

Subnet VOP
23 SUBNET VOP

23.1 DESCRIPTION

This operator contains other VOP operators. It generates no code of its own, and
simply acts as a container for a block of functionality.

Use this operator to help organize complex VOP networks. If a network becomes
very large and difÞcult to navigate, it often helps to collapse self-contained blocks of
functionality into subnets. When doing this, try to isolate and collapse groups of
operators that do not involve large numbers of external connection.

23.2 INPUTS

NEXT INPUT

Any number of inputs can be connected here. Each time an input is connected, a
new input slot is added.

All connected inputs mimic the properties of the output wired into them. They adopt
the same help label and name as the output connected to them. If multiple outputs
with the same name are connected, the names of the inputs are automatically incre-
mented to make them unique.

23.3 OUTPUTS

The list of outputs depends on the inputs connected to the Subnet Output operator
contained in this operator. The data type and name of each output will match the
corresponding input of the Subnet Output operator.

23.4 SEE ALSO

� If
� Subnet Input
� Subnet Output
� While
240 2 Houdini 6.0 Reference

Suboutput VOP
24 SUBOUTPUT VOP

24.1 DESCRIPTION

This operator allows the connection of operators inside a subnet to operators outside
the subnet. This operator can only be created inside a subnet type operator (If, Illu-
minance, Subnet, and While, for example).

Like the Output Variables operator, one and only one of these operators can exist
inside each subnet. This operator cannot be deleted without deleting the containing
subnet. It is also not possible to add a second Subnet Output operator. Also like the
Output Variables operator, this operator drives the VEX code generation within a
subnet. Only operators connected directly or indirectly to it will generate any code
within the subnet block. For While operators, it is important to always have some
value connected to the Þrst input of this operator (which will correspond to the Con-
dition Value of the While operator). If no value is connected to this input, the Con-
dition Value will never change, and the While loop will continue forever.

For every operator connected to an input of this operator, the containing subnet
operator will have an output. Connecting an operator to this subnet output is the
same as connecting the operator to the corresponding input of this operator.

24.2 PARAMETERS

INPUT NAME/LABEL

For each input connected to this operator, excluding those inputs that correspond to
inputs of the containing subnet, you can specify the name and label for the input.
The name and label are also used by the outputs of the containing subnet. To change
the name or label for an input, enter the new value directly in the table presented. If
an epty value is speciÞed in the table, the name and label will be copied from the
operator connected to each input.

24.3 INPUTS

NEXT INPUT

Any number of inputs can be connected here. Each time an input is connected, a
new input slot is added. This also results in a new output being created on the con-
taining subnet operator.

For every input connected to the subnet containing this operator, this operator will
have an input. This input will be the same name as the corresponding subnet input,
with the preÞx "sub" added to it. Connections made to the Next Input input of this
operator will always appear after the connections corresponding to the containing
subnet inputs.
07 - VOPs 2 241

Suboutput VOP
SEE ALSO

� If
� Illuminance
� Output Variables
� Subnet
� Subnet Input
� While
242 2 Houdini 6.0 Reference

Subtract VOP
25 SUBTRACT VOP

25.1 DESCRIPTION

This operator outputs the result of subtracting all its inputs.

The Þrst input can be an integer, ßoat, vector, vector4, matrix3, or matrix. The
allowed data types of subsequent inputs depend on the data type of the Þrst input.
For example, if the Þrst input is a ßoat, subsequent inputs can be either ßoats or inte-
gers. The output data type is always the same as the data type for the Þrst input.

25.2 INPUTS

Any number of inputs can be specified.

INPUT NUMBER 1...N

The input values to be subtracted.

NEXT INPUT

Where the next input value should be connected.

25.3 OUTPUTS

COMBINED VALUE

The result of subtracting all the input values.

SEE ALSO

� Add
� Add Constant
� Complement
� Divide
� Multiply
07 - VOPs 2 243

Switch VOP
26 SWITCH VOP

26.1 DESCRIPTION

This operator outputs the value connected to one of its inputs. The Þrst input is
always an integer that speciÞes the index of the value to output. The other inputs can
be of any type, but they must all be the same type.

26.2 INPUTS

SWITCHER INDEX

The value connected to this input is used as an index to determine which input value
to feed into the output value. For example, a value of 0 will choose input1; a value
of 1 will choose input2, and so on.

Usually, the switcher index will be connected from the output of a Compare opera-
tor, or one of the logical operators (And and Or).

INPUT NUMBER N

Any number of inputs can be connected here. Each time an input is connected, a
new input slot is added.

26.3 OUTPUTS

CHOSEN VALUE

This output will be of the same type as all the inputs.

SEE ALSO

� And, Compare, If, Or, Two Way Switch
244 2 Houdini 6.0 Reference

While VOP
27 WHILE VOP

27.1 DESCRIPTION

This operator contains other VOP operators. The code for the contained operators is
executed repeatedly in a loop until the input condition is no longer satisÞed. At least
one input must be connected to this operator.

Use this operator to repeat the same sequence of code many times. Be careful when
using this operator to ensure that the condition will eventually fail. Otherwise an
endless loop can result. Such endless loops can be interrupted within Houdini, but
can result in renders that never Þnish.

If you know that the contents of the While operator would be executed at least once,
it is easiest to use a Constant operator with an integer value set to 1 as the Condition
Value input. Then within the While operator, set up the real comparisons and condi-
tions that will lead to exiting the loop. If the While operator code may need to be
skipped over entirely, there may be some duplication of operators inside and outside
the While operator.

Any value that you wish to modify inside the While operator must be provided as an
input. The outputs of the While operator will contain the modiÞed versions of the
inputs once the loop exits. The actual values wired into the While operator inputs
are never modiÞed, and so can be connected to other operators in the network, but
remember that the values from these operators will always be the values unmodiÞed
by the While operator.

For those familiar with VEX programming, it may be noted that there is no "For"
operator. This is because a While operator can do anything that a For operator
would be able to do, and provides a simpler framework in which to implement the
loop.

27.2 PARAMETERS

CONDITION

SpeciÞes the condition that must be met by the Þrst input for the contained code to
be executed. Either the input value must be False (equal to 0) or True (not equal to
zero).

INPUTS

All connected inputs mimic the properties of the output wired into them. They adopt
the same help label and name as the output connected to them. If multiple outputs
with the same name are connected, the names of the inputs are automatically incre-
mented to make them unique.
07 - VOPs 2 245

While VOP
CONDITION VALUE

This integer input must be connected. The value connected to this input is compared
to the requirements of the Condition parameter. Usually this input will be connected
to the output of a Compare operator, or one of the logical operators (And and Or).

NEXT INPUT

Any number of inputs can be connected here. Each time an input is connected, a
new input slot is added.

27.3 OUTPUTS

The list of outputs depends on the inputs connected to the Subnet Output operator
contained in this operator. The data type and name of each output will match the
corresponding input of the Subnet Output operator.

SEE ALSO

� And
� Compare
� If
� Or
� Subnet
� Subnet Input
� Subnet Output
246 2 Houdini 6.0 Reference

	1 VOPs (VEX OPerations)
	1 Introduction
	1.1 VOPs
	Where to Look for OP Help
	HELP

	1.2 VOPs vs VEX
	1.3 VOP Contexts
	Main VOP Contexts

	1.4 What You Need in a VOP Network
	Output VOP
	Example

	1.5 What Makes VOPs Unique
	VOPs are not Animatable
	Polymorphism
	VOPs are Strongly Typed
	Colour Legend
	Matching Types

	VOPs Accept a Variable Number of Inputs

	1.6 Main Families of VOPs to Know
	Primary Workflow VOPs to Know
	Other Categories of Useful VOPs

	1.7 SHOPs with VOPs
	1.8 Copying and Pasting Parameter VOPs

	2 VOP Contexts
	2.1 Introduction
	2.2 The COP Context
	Global Variables - COPs

	2.3 The POP/SOP Context
	Global Variables - POP/SOP
	Notes

	2.4 The CHOP Context
	Global Variables - CHOPs

	2.5 The 3D Image Context
	Global Variables - Image 3D

	3 Shading Contexts
	3.1 Introduction
	3.2 Common Global Variables
	3.3 Global Variable Access
	3.4 Surface Shading Context
	Illuminance

	3.5 Displacement Shading Context
	3.6 Light Shading Context
	3.7 Shadow Shading Context
	3.8 Fog Shading Context
	3.9 Initialization of the L Variable
	3.10 Special Variables
	3.11 Transform Spaces
	Space Types

	3.12 Opacity vs Alpha
	Example

	2 VOPs
	1 Absolute VOP
	1.1 Description
	1.2 See Also

	2 Add VOP
	2.1 Description
	2.2 Inputs
	Input Number 1...N
	Next Input

	2.3 Outputs
	Combined Value

	2.4 See Also

	3 Align VOP
	3.1 Description
	3.2 See Also

	4 And VOP
	4.1 Description
	4.2 Inputs
	Input Number 1...N
	Next Input

	4.3 Outputs
	Combined Value

	4.4 See Also

	5 Avg VOP
	5.1 Description
	5.2 Inputs
	Input Number 1...N
	Next Input

	5.3 Outputs
	Combined Value

	5.4 See Also

	6 Compare VOP
	6.1 Description
	6.2 See Also

	7 Constant VOP
	7.1 Description
	7.2 Parameters
	Constant Type
	Constant Name
	Constant Label
	Default Values

	7.3 Outputs
	Constant Value

	7.4 See Also

	8 Divide VOP
	8.1 Description
	8.2 Inputs
	Input Number 1...N
	Next Input

	8.3 Outputs
	Combined Value
	See Also

	9 Forpoints VOP
	9.1 Description
	9.2 Inputs
	Position
	Distance
	Next Input

	9.3 Outputs
	9.4 See Also

	10 Global VOP
	10.1 Parameters
	Output A Single Variable
	Variable Name

	10.2 Inputs
	10.3 Outputs
	10.4 See Also

	11 IF VOP
	11.1 Description
	11.2 Parameters
	Condition

	11.3 Inputs
	Condition Value
	Next Input

	11.4 Outputs
	11.5 See Also

	12 Illuminance VOP
	12.1 Description
	12.2 Inputs
	Surface Position
	Surface Normal
	Permitted Lighting Angle
	Light Type Mask
	Light Mask
	Next Input

	12.3 Outputs
	12.4 See Also

	13 Max VOP
	13.1 Description
	13.2 Inputs
	Input Number 1...N
	Next Input

	13.3 Outputs
	Combined Value

	13.4 See Also

	14 Min VOP
	14.1 Description
	14.2 Inputs
	Input Number 1...N
	Next Input

	14.3 Outputs
	Combined Value

	14.4 See Also

	15 Multiply VOP
	15.1 Description
	15.2 Inputs
	Input Number 1...N
	Next Input

	15.3 Outputs
	Combined Value

	15.4 See also

	16 Or VOP
	16.1 Description
	16.2 Inputs
	Input Number 1...N
	Next Input

	16.3 Outputs
	Combined Value

	16.4 See Also

	17 Output VOP
	17.1 Description
	17.2 Inputs
	17.3 See Also

	18 Parameter VOP
	18.1 Description
	18.2 Parameters
	Parameter Type
	Parameter Name
	Parameter Label
	Use Input Value If Parameter Not Bound
	Export Parameter
	Provide Menu of Choices
	Menu Choices
	Default Values

	18.3 Inputs
	18.4 Outputs
	Output Parameter
	See Also

	19 Print VOP
	19.1 Parameters
	Format String
	Output Text to Console
	Inputs
	Input Number 1...N
	Next Input

	19.2 Outputs
	Formatted Output Text

	19.3 Example

	20 Shading Layer VOP
	20.1 Description
	20.2 Parameters
	Geometry Attribute
	Attribute Layer
	Export Parameter

	20.3 Inputs
	Export Value

	20.4 Outputs
	Output Parameter
	Is Parameter Bound

	20.5 See Also

	21 Spline VOP
	21.1 Description
	21.2 Parameters
	Spline

	21.3 Inputs
	Parametric Coordinate
	Input Number 1...N
	Next Input

	21.4 Outputs
	Combined Value

	21.5 See Also

	22 Subinput VOP
	22.1 Description
	22.2 Outputs
	22.3 See Also

	23 Subnet VOP
	23.1 Description
	23.2 Inputs
	Next Input

	23.3 Outputs
	23.4 See Also

	24 Suboutput VOP
	24.1 Description
	24.2 Parameters
	Input Name/Label

	24.3 Inputs
	Next Input
	See Also

	25 Subtract VOP
	25.1 Description
	25.2 Inputs
	Input Number 1...N
	Next Input

	25.3 Outputs
	Combined Value
	See Also

	26 Switch VOP
	26.1 Description
	26.2 Inputs
	Switcher Index
	Input Number N

	26.3 Outputs
	Chosen Value
	See Also

	27 While VOP
	27.1 Description
	27.2 Parameters
	Condition
	Inputs
	Condition Value
	Next Input

	27.3 Outputs
	See Also

