

1 Expression
Language

The built-in Expression Language allows
you to animate values in many Þelds.

1 EXPRESSION LANGUAGE

Values in many Þelds can be animated using math functions and expressions, pro-
viding very powerful capabilities. Valid math expressions include:

� Numbers
� Strings
� Vectors
� Matrices
� Variables
� Arithmetic Operators
� Math Functions
� Interpolation Functions

1.1 NUMBERS

Three types of numbers can be used:

Integers Integers are those numbers which have no decimal or
fractional part, e.g.: 15, -3

Floating point numbers Floating point numbers contain all numbers including
Integers, and numbers with decimals, e.g.: 15.25

Exponential Notation Exponential notation is a concise way of representing
large numbers with a minimal amount of digits,
e.g.: 3.2e-5 (equivalent to: 0.000032)

1.2 STRINGS

There are two methods for punctuating a command string:

"string" Enclosing your command string with double-quotes
will expand the variables within the string.

�string� Enclosing your command string with single close-
quotes won�t expand the variables within the string
1 1 Houdini 6.0 Reference | 11 - Expression Language

Expr

ession Language

1.3 BUILT-IN VARIABLES

Two built-in Variables are re-computed automatically every frame. These Variables
are $F (frame number) and $T (time in seconds).

Following, is a list of Houdini�s built-in Variables and their function:

GLOBAL VARIABLES

PI The value of the mathematical constant π (3.14159...).
Use it to calculate the lengths of arcs.
2*$PI*r (radius of circle) equals the circumference.
Also, π = 180û expressed in radians.

E The value of the mathematical constant e (2.71828...).

NFRAMES Number of frames in the animation. The length is set
with the Playbar Controls.

FPS Number of frames per second.
Set with the Playbar Controls.

FSTART Start frame. Set with the Playbar Controls.

FEND End frame. Set with the Playbar Controls.

F The current frame, set with the Playbar Controls. Very
important and commonly used Variable, especially for
rendered picture Þlename numbering.

FF Floating point frame number.

T Current time in seconds. Equals ($F-1)/$FPS

TLENGTH Total length of animation in seconds.

TSTART Start time of animation in seconds.

TEND End time of animation in seconds.

HIP Job directory. This defaults to the directory where you
started Houdini. You can set it through the Textport.

HIPNAME The name of the current .hip Þle.

CHANNEL VARIABLES

OS Operator String. Contains the current OP�s name.

CH Current channel name.

IV In value (value at start of segment).

OV Out value.
2 1 Houdini 6.0 Reference

Expr

ession Language

IM In slope

OM Out slope

IA In acceleration

OA Out acceleration

LT Local time - not including stretch or offset

IT Start time of segment

OT End time of segment

LIT Local start time of segment

LOT Local end time of segment

PREV_IT Previous segment start time

NEXT_OT Next segment end time

COP SPECIFIC VARIABLES

CSTART Start frame of the current COP.

CEND End frame of the current COP.

CFRAMES Number of frames for the current COP.

CFRAMES_IN Number of frames available from the Þrst input COP.

CINC Gets the global frame increment value.

W Current image width.

H Current image height

OP SPECIFIC VARIABLES & CHANNELS

Consult the speciÞc OP section for their local variables. You will also Þnd the appli-
cable parameter channel names listed beside the Parameter titles.

OUTPUT DRIVER SPECIFIC VARIABLES

N Current frame being rendered.

NRENDER Number of frames being rendered.
11 - Expression Language 1 3

Expr

ession Language

1.4 ARITHMETIC OPERATORS

Following is a list of the arithmetic operations, in order of precedence:

() Operations in parentheses

- Negation (e.g. 3 + -3 evaluates to 0)

* / ^ % Multiplication, division, exponent and modulus

+ - Addition and subtraction

< > == != | | && ! Logical operators

All operators with the same priority are evaluated from left to right.

EXAMPLES

This: Evaluates to:

3 + 4*5 23

2 * 3^2 + 4 * 6 / 2 48 (that is: 36+12)

((3 + 4) * 5 - 5) / 6 5

13 % 5 + 13 / 5 5.6 (that is: 3+2.6)

3.1 + 1 4.1

Note: %, the modulus operator, which is useful for cycling values, works on real
numbers, not just integers. Therefore, the values returned might not be the values
you expect. For example:

3.1415 % 1 Evaluates to .1415
34.999 % 5 Evaluates to 4.999

$F % 120 Gives a ramp from 0 to 119 which repeats starting at frame 120, 240 etc.
4 1 Houdini 6.0 Reference

Ma

th & String Expr

ession Functions

2 MATH & STRING EXPRESSION FUNCTIONS
The following math functions can be used:
(All angles in degrees unless otherwise noted)

abs(val) This is a mathematical function used to express the
absolute value of the number.
e.g. abs(-2.6) = 2.6

acos(val) Trigonometric arccosine of val.
e.g. acos(0) = 90

arg(string line, ßoat argNum)
This function extracts an argument from a line. The
example below will extract the time out of the date
string returned by the system function. Indexing
begins at 0.
e.g. arg(system(date), 3) = 20:17:46

argc(string line) Returns the number of arguments in the line. Counts
the number of arguments in the line. Standard parsing
is done, no variable expansion is done on the line.
e.g. argc(�This has four arguments�) = 4

asin(val) Trigonometric arcsine of val.
e.g. asin(.866025) = 60

atan(val) Trigonometric arctangent of val.
e.g. atan(1.73205) = 60

atan2(ßoat y, ßoat x) Compute the arctangent of y/x. This is more stable than
atan() since it can use the signs of y and x to determine
the quadrant the angle is in. It also handles the case
where x is zero correctly, returning 90 or -90.
e.g. atan2(1, 0) = 90
 atan2(0, 1) = 0
 atan2(0, -1) = 180

atof(string source) Will convert a string into a ßoating point value.

ceil(ßoat) Takes the smallest integer greater than the ßoat passed
in. e.g. ceil(2.718135) = 3

chgroup(string) Returns a string of all channels belonging to a channel
group. This expression is helpful for performing opera-
tions on each channel in a channel group.

clamp(val, min, max) Clamps the value between min and max. Used to pre-
vent val from going outside the speciÞed range.

cos(val) Trigonometric cosine of val (in degrees).
e.g. cos(60) = 0.5

cosh(val) Hyperbolic cosine of val.
11 - Expression Language 1 5

Ma

th & String Expr

ession Functions

deg(val) Convert val to degrees (val is in radians).
e.g. deg($PI) = 180

distance(ßoatx1, ßoaty1, ßoatz1, ßoat x2, ßoat y2, ßoat z2)
Returns sqrt((x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2) - the
distance between the given points.

execute(string command) Performs the Houdini command and returns the results.
Trailing new-lines will be stripped from the returned
result, and all embedded new-lines and tabs in the
result will be converted to spaces.

exp(val) Logarithmic exponentiation function of val.
e.g. exp(2) = 7.38906

eval(string expression) Evaluates the string passed in as an expression. The
result of this function is a ßoating point number.
e.g. % set foo = 1+1
 % set bar = system(date)
 % echo `eval($foo)`
 2

evals(string expression) Evaluates the string passed in as an expression. The
result of this function is a string value.
e.g. % echo `evals($bar)`
 Tue Dec 21 13:58:37 EST 1996

ÞndÞle(string Þlename) Finds a Þle within the Houdini search path. The full
path name of the Þle is returned. This function is useful
when writing scripts.

% opparm read1 Þle (`ÞndÞle(�geos/defgeo.bgeo�)`)

Sets the Þle parameter of the Read SOP to the full path
name of the Þrst Þle which is found in the Houdini
search path.

Þt(num, oldmin, oldmax, newmin, newmax)
Returns a number between newmin and newmax that is
relative to num in the range between oldmin and old-
max. e.g. Þt(3,1,4,5,20)=15

Þt01(num, newmin, newmax)
Return a number between newmin and newmax that is
relative to num in the range between 0 and 1. If the
value is outside the 0 to 1 it will be clamped to the new
range.
e.g. Þt01(.3,5,20)=9.5
See also: Þt Þt11 Þt10 .
6 1 Houdini 6.0 Reference

Math & String Expression Functions
Þt10(num, newmin, newmax)
Returns a number between newmin and newmax that is
relative to num in the range between 1 and 0. If the
value is outside the 1 and 0 it will be clamped to the
new range. e.g. Þt(.3,5,20)=15.5
See also: Þt Þt01 Þt11 .

Þt11(num, newmin, newmax)
Returns a number between newmin and newmax that is
relative to num in the range between -1 and 1. If the
value is outside the -1 to 1 it will be clamped to the new
range. e.g. Þt(.3,5,20)=14.75
See also: Þt Þt01 Þt10 .

ßoor(val) Returns the largest integer smaller than val.
e.g. ßoor(2.78135) = 2

ftoa(ßoat number) This expression will convert a number to a string. Type
conversion is usually done automatically; however, you
may wish to use this to force the conversion.

hsv(ßoat R, ßoat G, ßoat B, string component)
Given the RGB color expressed by R, G, B, this func-
tion will return the HSV component speciÞed. The
component should be one of H, S, or V

if(exp, true_val, false_val) Returns true_val if exp is true (i.e. exp > 0), and
false_val if exp is false (i.e. exp = 0).
Example: if($F>12, $F, 12) will send back the value 12
unless $F is greater than 12, in which case it will return
the current frame number.

index(string source, string pattern)
Finds the Þrst occurrence of pattern in source and
returns the number of characters before the pattern
occurs. If the pattern is not found -1 is returned. See
also: rindex. e.g.
> echo `index(�Testing index�, �sting�)`
2
> echo `index(�Testing index�, �i�)`
4

int(val) Integer value of val by truncating.
e.g. int(1.3) = 1, int(1.8) = 1,
int(0.3) = 0, int(-0.3) = 0, int(-0.8) = 0

length(ßoatx, ßoaty, ßoatz) Returns sqrt(x*x + y*y + z*z) - the length of the vector.

lock(ßoat, ßoat) The lock function returns the value of its argument. It is
special because when a parameter has an expression
surrounded by a lock function, the value of the expres-
sion will not be changed until the lock function is
removed.
11 - Expression Language 1 7

Math & String Expression Functions
log(val) Natural logarithm of val.
e.g. log(2.718281828) = 1

log10(val) Logarithm base 10 of val.
e.g. log10(10) = 1

max(val1,val2) Returns the larger of value1 or value2.
e.g. max (5,3)=5

min(val1,val2) Returns the smaller of value1 or value2.
e.g. min (5,3)=3

modblend (ßoat val1, ßoat val2, ßoat length, ßoat weight)
Blends the two modular values. This function can be
used to correctly belnd two angles or other cyclic val-
ues. For example: modblend(355, 5, 360, 0.5) evaluates
to 0. Simple linear blending of two values would result
in an incorrect value of 180.

noise(x,y,z) Generates random value given a position in space.
Nearby positions will have similar values. The range of
returned values is from 1.0 to -1.0.

padzero(ßoat number, ßoat value)
Returns a string containing value preceded by enough
zeros to make up �number� digits.
e.g. padzero(5, 126) = 00126
 padzerp(5, 23) = 00023
 padzero(1, 23) = 23

pow(ßoat base, ßoat exponent)
This computes the base to the power given.
e.g. pow(2, 3) = 8

pulse(val, min, max) Creates an on/off pulse. If the val <min or >max then
pulse returns 0, otherwise it returns 1.

rad(val) Convert val to radians (val is in degrees).
e.g. rad(180) = 3.1415926

rand(val) Produces a pseudo-random number between 0 and 1
depending on the value. If you use the same value on
each use of this function, you will get the same random
value. If you specify a different fractional value, rand
produces a different result. e.g. rand (12.1) yields a dif-
ferent number from rand (12.2).

Note: A very subtle problem exists because the math libraries on UNIX and NT are
different. Therefore they occassionally yield different results when using the rand()
function. This means that IFD�s or RIB Þles generated on NT may not always be the
same as IFD�s or RIB Þles generated on SGI�s.
8 1 Houdini 6.0 Reference

Math & String Expression Functions
rgb(ßoat H, ßoat S, ßoat V, string component)
Given the HSV color expressed by H, S, V, this function
will return the RGB component speciÞed. The compo-
nent should be one of R, G, or B.

rindex(string source, string pattern)
Finds the last occurrence of pattern in source and
returns the number of characters before the pattern
occurs. If the pattern is not found -1 is returned. See
also: index. e.g.
> echo `rindex(�Testing rindex�, �sting�)`
2
> echo `rindex(�Testing rindex�, �i�)`
8

rint(ßoat) Rounds a number.
e.g. rint(1.3) = 1, rint(1.8) = 2,
rint(0.3) = 0, rint(-0.3) = 0, rint(-0.8) = -1

round(ßoat) Performs the same function as rint.

run(string) Performs the Houdini command and returns the result.
Trailing new-lines will be stripped from the result of
the run(), and all embedded new-lines and tabs in the
result will be converted to spaces.

sign(val) Returns the sign of the value. For example, it returns 1
if the value is any positive number, -1 if the value is a
negative number and 0 if the value is 0.

sin(val) Trigonometric sine of val.
e.g. sin(60) =.866025

sinh(val) Hyperbolic sine of val.

smooth(val, min, max) Returns a smooth interpolation between 0 and 1.
If val <min it returns 0, if val >max it returns 1.
e.g. smooth($F, 12, 55) generates an ease-type curve
between values 0 and 1 starting at frame 12, and ending
at frame 55.

sqrt(val) Square root of val.
e.g. sqrt(144) = 12

strcat(string, string) This will concatenate two strings.
e.g. strcat(�Current motion Þle is; �, $HIPNAME)
Current motion Þle is job1.hip

strcasematch (string pattern, string[s])
Performs a pattern matching comparison for a string
ignoring case. If string matches pattern, return code =1;
if string doesn�t match, the return code =0. Specify
multiple patterns using a comma-separated list.
11 - Expression Language 1 9

Math & String Expression Functions
Examples:
strmatch(�FOO*�, �foobar�) returns 1
strmatch(�?baR�, �fred�) returns 0
strmatch(�FoO*,bAr*, �bar�) returns 1
See also: strcmp, strcasecmp, strcasematch

strcasecmp (string s1, string s2)
Preforms a string comparison which ignores the case of
the string. Return codes are:
negative if s1 < s2
positive if s1 > s2
zero if s1 == s2

strmatch (string pattern, string[s])
Performs a pattern matching comparison for a speciÞed
string. If the string matches the pattern, the return code
is one; if the string doesn�t match, the return code is
zero. Multiple patterns may be speciÞed using a
comma-separated list. Examples:
strmatch(�foo*�, �foobar�) returns 1
strmatch(�?bar�, �fred�) returns 0
strmatch(�foo*,bar*�, �bar�) returns 1
See also: strcmp, strcasecmp, strcasematch

snoise(X, Y, Z) Applies noise based on sparse convolution. The X, Y,
and Z are ßoating-point values. The theoretical bounds
for the noise are about -2 to 2. However, typically, the
bounds tend to be closer to -1 to 1.
e.g. noise($TX, $TY, $TZ)

strcmp(string1, string2) Returns a negative number if string1 is lexicographi-
cally less than string2. Returns a positive number if
string1 is lexicographically greater than string2.
Returns a zero if string1 is equal to string1.
e.g. strcmp(�abc�, �xyz�) = -23
 strcmp(�xyz, �abc�) = 23
 strcmp(�abc�, �abc�) = 0

strlen(string) Returns the number of characters in the string.
e.g. strlen(�abcde�) = 5

sturb(X, Y, Z, depth) Generates spatially coherent noise based on sparse
convolution. The depth passed in is the amount of
�fractalisation� which is done to the noise. The X, Y, Z,
and depth parameters are ßoating point values.
e.g. sturb($TX, $TY, $TZ, 5)

substr(string, ßoat, ßoat) This extracts a sub-string of the Þrst argument.
e.g. > echo `substr(�abcdefghijklm�, 3, 4)`
 defg
Note: The Þrst character is speciÞed by a start of 0
10 1 Houdini 6.0 Reference

Math & String Expression Functions
system(string) Returns the output of a UNIX command.
e.g. system(�Þnger�)`
 Directory: /usr/staff/john Shell: /bin/csh

systemES(string) Returns the exit status of a UNIX command.
e.g. > echo `systemES(�test -r $HOME�)�
 0

tan(val) Trigonometric tangent of val.
e.g. tan(60) = 1.73205

tanh(val) Hyperbolic tangent of val.

tolower (string[s]) Converts all the characters in the string to lower case.

toupper (string[s]) Converts all the characters in the string to upper case.

trunc(val) Truncates all digits to the right of the decimal
e.g. trunc(4.5678) = 4

turb(x,y,z, depth) Like the noise() function, but allows for fractalisation
of the noise. Thus, at a depth of three, the noise will be
fractalised three times.

wrap(val, min, max) Similar to clamp() in that the resulting value always
falls between min and max. The difference is that it cre-
ates a sawtooth wave for continuously increasing and
decreasing values of the value.
11 - Expression Language 1 11

Vector / Matrix Expressions
3 VECTOR / MATRIX EXPRESSIONS

3.1 VECTOR TYPES

Vectors are arbitrary-length arrays of ßoats. The operations listed below have been
deÞned for vectors in Houdini.

OPERATIONS

vector[idx] Extract the �idx� component from the vector

-vector Negation

+vector Positive

vector * vector Cross product

vector / ßoat Divide a vector by a ßoat

vector * ßoat Scale a vector by a ßoat (associative)

vector + vector Addition

vector - vector Subtraction

vector == vector Equality

vector != vector Inequality

All of these operations result in vectors.

3.2 VECTOR TYPE FUNCTIONS

dot(vector v0, vector v1)
Computes the dot product between two vectors (returns ßoat).

normalize(vector v)
Returns the normalized vector (returns vector).

vangle(vector v0, vector v1)
Returns the angle between the two vectors speciÞed (returns ßoat).

vector(string pattern)
The pattern passed in will be converted to a vector. The pattern should consist of a
leading square bracket followed by a comma separated list of values and a closing
square bracket (returns vector).
Example: vector(�[1,2,3,4,5]�)

vector3(ßoat x, ßoat y, ßoat z)
Creates a 3 vector with the x, y, and z components speciÞed (returns vector).
12 1 Houdini 6.0 Reference

Vector / Matrix Expressions
vector4(ßoat x, ßoat y, ßoat z, ßoat w)
Creates a 4 vector with the x, y, z, and w components speciÞed (returns vector).

vlength(vector v)
Computes the length of the vector speciÞed. This is equivalent to: sqrt(dot(v, v))
(returns ßoat).

vlength2(vector v)
Computes the square of the length of the vector speciÞed. This is equivalent to:
dot(v, v) (returns ßoat).

vorigin (string obj1, string obj2)
Returns all the values of the origin function at once. They are returned as a vector.
The vector will contain �[TX, TY, TZ, RX, RY, RZ]�. In many cases this will pro-
vide faster performance since the origin function is quite expensive to compute.

vrorigin (string obj1, string obj2)
Returns a vector specifying the rotations required to transform obj1 into the space
of obj2. The vector takes the form �[RX, RY, RZ]�.

vtorigin (string obj1, string obj2)
Returns a vector specifying the translation required to transform obj1 to the space
of obj2. The vector takes the form �[TX, TY, TZ]�.

vscale(vector v, ßoat scale)
Multiplies the vector by the scale. This is equivalent to: vec*scale (returns vec-
tor).

vset(ßoat size, ßoat value)
Creates a vector of the size speciÞed. Each component of the vector will be set to
the value given (returns vector).

vsize(vector v)
Returns the number of elements in the vector (returns vector).
Examples:
vsize(�[1,2]�) = 2
vsize(�[3,4,5,6]�) = 4

3.3 MATRIX TYPE

The Matrix type allows for matrices of arbitrary rows and arbitrary columns to be
used in expressions. Some functions will only work under certain conditions (i.e.
square matrices or a speciÞc number of rows/columns).

LIMITATIONS

3×3 or 4×4 This operation/function only works on 3×3 or 4×4
matrices. If the matrix speciÞed is larger than 4x4, it
will be converted to a 4×4 matrix for the operation. If
the matrix size is less than 3×3, the matrix will be
�enlarged� to a 3×3 matrix for this operation. The
11 - Expression Language 1 13

Vector / Matrix Expressions
results of �enlargement� of a matrix are not well
deÞned (meaning the result may not be what is
expected).

OPERATIONS

-matrix Negation

+matrix Positive

matrix * matrix Matrix multiplication. Limitation: 3×3 or 4×4

vector * matrix Multiply a vector by a matrix. Limitation: 3×3 or 4×4.
For this operation, the vector will be truncated to the
�best Þt�. The result of this operation is a vector.

matrix * ßoat Multiply every element of the matrix by the ßoat value
(associative).

matrix / ßoat Divide every element of the matrix by the ßoat value.

matrix + matrix Addition

matrix - matrix Subtraction

matrix == matrix Equality

matrix != matrix Inequality

3.4 MATRIX TYPE FUNCTIONS

determinant(matrix mat)
Computes the determinant of the matrix. Limitation 3×3 or 4×4 (returns ßoat).

dihedral(v0 v1)
Computes the dihedral matrix between v0 and v1. This is a rotation matrix which
will rotate vector v0 to vector v1.

explodematrix(mat trs xyz component)
This explodes a 3×3 or 4×4 matrix into the euler rotations required to rebuild it.
These components can be stuffed directly into Houdini rotation, scale, and trans-
late channels.

mat is the matrix to transform. trs and xyz give the order of the expansion. In trs,
a "t" represents translation, "r" rotation, and "s" scale. The xyz refers to the order
of the rotations. The component is a string describing which channel to extract. It
is "[trs][xyz]", where the trs chooses the channel between translate, rotate, and
scale, and the xyz chooses the dimmension.

For example:

explodematrix(mlookat(vector("[1,0,0]"),vector("[0,1,0]")), "RST", "XYZ", "RZ")
explodematrix(identity(3)*2, "RST", "XYZ", "SZ")
14 1 Houdini 6.0 Reference

Vector / Matrix Expressions
identity(ßoat size)
Creates an identity matrix of the size speciÞed. That is, the resulting matrix will
have size rows and size columns (returns matrix).

invert(matrix mat)
Inverts the matrix. Limitation: 3×3 or 4×4 (returns matrix).

matrix(string pattern)
Converts a string pattern to a matrix. The pattern should start with a square
bracket, followed by a series of rows (speciÞed as vector patterns - see the vec-
tor() function), followed by a trailing square bracket (returns matrix).
Example: matrix(�[[1,2,3][2,3,5],[-3,2,-3]]�)

mcols(matrix m)
Returns the number of columns in a given matrix.

mlookat(from to)
Computes a transform matrix specifying a lookat from the from point to the to
point. The from and to vectors are converted to 3 vectors for this computation.
The resulting matrix will be a 3x3 matrix.

morient(zaxis yaxis)
Computes the transform matrix to rotate the x,y,z axes such that the speciÞed
zaxis is the new zaxis and yaxis the new yaxis. The resulting matrix is a 3x3
matrix.

 mrows(matrix m)
Returns the number of rows in a given matrix.

mzero(matrix mat)
Sets all values of the matrix to 0.

rotate(angle axis)
Computes a 4x4 rotation matrix of a rotation speciÞed by the angle (in degrees)
around an axis. The axis should be a string which is one of 'x', 'y', or 'z'.
See also: rotaxis, scale, translate

rotaxis(angle axis)
Computes a 4x4 rotation matrix of a rotation speciÞed by the angle around the
axis speciÞed by the vector. The vector is converted to a 3 vector for the purposes
of this computation. See also: rotate, scale, translate

scale(sx sy sz)
Computes a scale matrix given by the three scale values.
See also: rotate, rotaxis, translate

translate(tx ty tz)
Computes a translation matrix given the three translate values.
See also: rotate, rotaxis, scale

transpose(mat)
Computes the transpose of the matrix speciÞed.
11 - Expression Language 1 15

Vector / Matrix Expressions
stripmatrix(mat)
This function will strip out all non-essential characters from the string representa-
tion of a matrix or vector. This allows users to pass matrix or vector expression
results to VEX or RenderMan. A string containing the ßoating point numbers
(and only the numbers) which make up the matrix will be returned.
Example: stripmatrix(identity(3)) = "1 0 0 0 1 0 0 0 1"
Example: stripmatrix(vector3(1,2,3) = "1 2 3"

transpose(matrix mat)
Computes the transpose of the matrix speciÞed (returns matrix).

3.5 TRANSFORMATION FUNCTIONS

dihedral(vector v0, vector v1)
Computes the 3×3 dihedral matrix between v0 and v1. This is a rotation matrix
which will rotate vector v0 to vector v1 (returns matrix).

mlookat(vector from, vector to)
Computes a 3×3 rotation matrix specifying a lookat from the from point to the to
point. The from and to vectors are converted to three vectors for this computation
(returns matrix).

optransform(string object_name)
Returns a matrix containing the transform for the given object.

rotate(ßoat angle, string axis)
Computes a 4×4 rotation matrix of a rotation speciÞed by the angle (in degrees)
around an axis. The axis should be a string which is one of �x�, �y�, or �z� (returns
matrix).

rotaxis(ßoat angle, vector axis)
Computes a 4×4 rotation matrix of a rotation speciÞed by the angle around the
axis speciÞed by the vector. The vector is converted to a 3 vector for the purposes
of this computation (returns matrix).

scale(ßoat sx, ßoat sy, ßoat sz)
Computes a 4×4 scale matrix given by the three scale values (returns matrix).

translate(ßoat tx, ßoat ty, ßoat tz)
Computes a 4×4 translation matrix given the three translate values (returns
matrix).

3.6 EXAMPLES

Expression vector(�[1,2,3,4,5]�)
Result [1,2,3,4,5]

Expression vector3(1, 2, 3)*2
Result [2,4,6]
16 1 Houdini 6.0 Reference

Vector / Matrix Expressions
Expression vector3(1, 2, 3) + vector4(5, 4, 3, 1)
Result [6,6,6,1]

Expression normalize(�[1,2,3]�)
Result [0.267261,0.534522,0.801784]

Expression vlength(�[1,2,3]�)
Result 3.74166

Expression dot(�[1,2,3]�, �[-3,2,2]�)
Result 7

Expression matrix(�[[1,2,3][3,2,1][-1,-1,0]]�)
Result [[1,2,3][3,2,1][-1,-1,0]]

Expression rotate(45, �y�)
Result [[0.707107,0,-0.707107,0]

[0,1,0,0]
[0.707107,0,0.707107,0]
[0,0,0,1]]

Expression rotate(45, �y�)*rotate(45, �z�)
Result [[0.5,0.5,-0.707107,0]

[-0.707107,0.707107,0,0]
[0.5,0.5,0.707107,0]
[0,0,0,1]]

Expression rotate(45, �y�)*translate(1, 0, 0)
Result [[0.707107,0,-0.707107,0]

[0,1,0,0]
[0.707107,0,0.707107,0]
[1,0,0,1]]

Expression translate(1, 0, 0)*rotate(45, �y�)
Result [[0.707107,0,-0.707107,0]

[0,1,0,0]
[0.707107,0,0.707107,0]
[0.707107,0,-0.707107,1]]

Expression vector(�[1, 0, 0]�)*rotate(45, �y�)
Result [0.707107,0,-0.707107]

Expression vector(�[0,1,2,3,4,5]�)[3]
Result 3

Expression (vector(�[1,0,0]�)*rotate(45, �y�))[0]
Result 0.707107
11 - Expression Language 1 17

Channel Interpolation Functions
4 CHANNEL INTERPOLATION FUNCTIONS

4.1 CHANNEL INTERPOLATION FUNCTIONS

The following interpolation functions generate smooth values between 1 and 0:

bezier() Interpolates the in and out point by Þtting a Bézier
curve using the slopes and accelerations.

cubic() Interpolates the in and out point using the slopes.
This results in a cubic polynomial.

constant() Value is the same for the entire segment.

ease() Values ease in smoothly starting at 1 and easeout
smoothly at 0.

easein() Ease in smoothly at the start only.

easeout() Ease out at the end only.

easep(val) An ease-in ease-out curve which is weighted by the
power. This weighting has the effect of shifting the
inßection point.

easeinp(val) Same as easep() but it�s an ease in curve.

easeoutp(val) Same as easep() but it�s an ease out curve.

linear() Straight line interpolation from 1 to 0.

match() A channel expression which matches the incoming and
outgoing slope. The curve produced moves smoothly
from the incoming value to the outgoing value.

matchin() A channel expression which matches the incoming
slope and extends the previous segment in a straight
line from where it completes.

matchout() A channel expression which calculates a straight line
with the same slope as that of the next segment. The
line is computed such that there is a smooth transition
to the next segment.

quintic() Interpolates the in and out point using slopes and accel-
erations. This results in a quintic (i.e. degree 5) polyno-
mial.

raw() The raw() interpolation function takes an array, or list
of numbers and will use them as values for the channel.
18 1 Houdini 6.0 Reference

Channel Interpolation Functions
repeat(frame1, frame2) The repeat() function takes a frame range and repeats
the animation curve in the speciÞed range. For exam-
ple, repeat(1, 30) repeats the animation curve between
frames 1 and 30. You must make the repeated range
outside of the current segment to avoid an impossible
situation.

repeatt(time1, time2) The repeatt() function is the �time� counterpart of the
repeat() function. The repeatt() function takes a time
range as opposed to frame range. repeatt(0, 1) repeats
the animation curve between 0 and 1 seconds.

spline() The spline() function takes each span of the neighbour-
ing spline segments, and creates one smooth section.

vmatch() A channel expression which matches the incoming and
outgoing slope. However, this function allows you to
override the values at the in and out points of the seg-
ment.

vmatchin() A channel expression which matches the out going
slope of the previous segment. A straight line will be
generated starting at the value speciÞed at the begin-
ning of the segment.

vmatchout() A channel expression which matches the in coming
slope of the next segment. A straight line will be gener-
ated which will terminate at the value speciÞed at the
end of the segment.

REVERSING THE FUNCTIONS

You can reverse most of these functions by multiplying the function by -1.
For example:

linear() * -1 ease() * -1 easein() * -1

It also possible to use these with other functions. For example:

ch("spare1")*ease()
11 - Expression Language 1 19

Channel / Operator Expression Functions
5 CHANNEL / OPERATOR EXPRESSION FUNCTIONS

5.1 FOLDER PATH CONVENTIONS

When referencing any parameter or any object in houdini using the scripting lan-
guage or expression functions, you should Þrst be aware of the naming conventions
used within Houdini to reference objects.

FOLDER PATHS

The nomenclature of Houdini folder paths is very similar to that of UNIX. The world
is represented by / and then comes the editor�s name, the OP name, and Þnally the
channel name.

You can specify a pathname to any object, OP, or channel within Houdini. An exam-
ple of a complete pathname to a channel would look like this:

You do not necessarily have to specify a complete pathname. You can use a portion
thereof. For example, if you were referencing another SOP from an existing SOP,
your pathname might only include: ../sphere2/radiusy . In this case, the .. speciÞes
that you are referencing one level up from the SOP, and then the /sphere2 speciÞes
that you are referencing the SOP /sphere2.

LIST TYPES

When specifying a complete pathname within Houdini, you need to specify one of
the following list types:

List Name Alias(es) References to

obj o Objects
ch ch CHOP Networks
comp c Composite Networks
mat m Materials
out dr, driver Output Drivers
part p Particles

/obj/geo1/sphere1/radiusx

Editor Type (from Types below)

the object called �geo1�

the SOP within geo1 called �sphere1�

the radius X parameter of the sphere1 SOP
Channel Name

OP Name

Object Name
20 1 Houdini 6.0 Reference

Channel / Operator Expression Functions
EXAMPLES

/comp/COPnet1/bright1/brightness

This means that you are referring to a composite list (/comp), you would like to
examine /COPnet1 out of many possible Composite networks. Within /COPnet1
you want to select the /bright1 COP, and access the /brightness channel of that COP.

/mat/blinn1/ortho1/wrapu

This means that you will be querying a material list, speciÞcally the material
/blinn1, and you want to access the /wrapu parameter of the ortho1 TOP within the
/blinn1 material.

PATH AND POINT EXPLANATION

The syntax for the point() function is:

 point("../box2") This object, the SOP named �box2�

 ch("../box2/spare1") This object, SOP �box2�, channel spare1

 point("../../geo2/box2") Object geo2, SOP box2 (note that here it�s probably
easier to use the full path)

Note that in the point() function, you�re trying to Þnd the OP, while in the channel
function, you�re trying to Þnd the channel.

example

Say that you�re in object geo1, SOP point1. Therefore, the full path of this SOP is:

/obj/geo1/point1

Let�s say that you want to reference the SOP box2 of this object. Therefore, you
want to get to:

/obj/geo1/box2

So, the relative path would be "../box2". The .. takes you up to your current object,
the box2 tells you to get the box2 OP from whatever object you belong to.

It�s very similar to the ch() function, but in the channel function, you�re specifying a
channel of the OP that you're interested in. For example, if we wanted to get at the
"tx" channel of the box2 SOP in the previous example, the relative path would be:
"../box2/tx". When in doubt, use the full path name since you can�t easily go wrong.

SHORTHAND NOTATION WITHIN A NODE

Note: If you want to access another OP of the same type, for the path you can use:

../opname if you are sourcing information from another OP.
opname if you are sourcing information from within the OP.
11 - Expression Language 1 21

Channel / Operator Expression Functions
5.2 CHANNEL EXPRESSION FUNCTIONS

ch("path/channel")
This extremely useful and frequently used function allows you to copy another
OP�s channel value at the current frame into the current channel.
path/channel enter a Houdini folder path and channel here

Example: Entering the expression: ch("/obj/geo1/sphere1/tx") into some object�s
translate parameter will make that translate parameter the same as the /tx (Trans-
late X) parameter of /geo1/sphere1 .^

chexist (channel_name)
This function returns 1 if the speciÞed channel exists, 0 if it doesn�t.
Example: echo `chexist("/obj/geo1/tx")`

chf("path/channel", frame)
Copy another OP�s channel at a speciÞed frame into the current channel.
path/channel enter a Houdini folder path and channel here
frame The frame at which to evaluate (accepts ßoat)

Tip: If you want the current frame + an offset rather a speciÞc frame, use $F+n
where n is the offset. For example $F+12 evaluates at the current frame + 12.

chgroup(string groupName)
Returns a string containing all of the channels contained in the group speciÞed. It
is useful in the command language for traversing all channels in a group. For
example:

foreach channel (�chgroup("group_name")�)
 echo $channel is in group_name
end

chs("path/channel")
Copy another OP�s channel value into the current channel as a string. This is sim-
ilar to ch(). For example:

echo `chs(�/objects/geo1/lookat�)`

echos the lookat parameter of object geo1.

cht("path/channel", time)

Copy another OP�s channel at a speciÞed time into the current channel.

path/channel enter a Houdini folder path and channel here
time The time at which to evaluate

5.3 GENERIC OPERATOR EXPRESSION FUNCTIONS

isvariable (variable_name)
Is there a system variable named variable_name , returns 1 if the variable is
deÞned, and 0 if it isn�t. See also: ishvariable .
22 1 Houdini 6.0 Reference

Channel / Operator Expression Functions
ishvariable (variable_name)
Is there an houdini variable named variable_name , returns 1 if the variable is
deÞned, and 0 if it isn�t. See also: isvariable .

opnchildren (name)
Returns the number of nodes contained in the speciÞed node. This returns the
number of nodes in a sub-network or the number of SOPs in an Object. It is non-
recursive in that only the direct contents of the node are counted, not all of their
nodes as well.

opdigits(string name)
Return the numeric value of the last set of consecutive digits in an OP�s name. For
example, it gets 23 from an OP named leg23right . It is used when building sev-
eral similar networks with small changes in each. For example:

opdigits("/obj/geo1") = 1
opdigits("..") = 1 (at the sop level of geo1)

opexist (op_name)
This function returns 1 if the speciÞed node exists, 0 if it doesn�t.
Example: echo `opexist("../box1")`

opßag (string network, string ßag)
Returns a space-separated string of all nodes in the network which have the spec-
iÞed ßag set. Recognized ßags are:
d Display Flag
r Render Flag
t Template Flag
l Locked Flag
s Selected Flag
c Current Flag
b Bypass Flag

Example:

hscript -> foreach obj (`opflag(�/obj�, �d�)`)

Loops through all the objects which are currently displayed.

hscript -> opgop group_name add `opflag(�/obj�, �d�)`

Adds all the display objects to the group.

opfullpath (op)
This function returns the full path to the operator speciÞed.
See also: opname, opsubpath.

opinput (string name, ßoat index)
Displays the name of the operator that is connected to the input of the given
index.

opsubpath (op)
This function will return the path of the speciÞed operator including any contain-
ing subnets. It is similar to opfullpath, except instead of returning the full path to
the op, it returns the name of the op preceded by any containing sub-networks.
11 - Expression Language 1 23

Channel / Operator Expression Functions
For example, opsubpath("/obj/sub1/geo1") returns: sub1/geo1 .
See also: opfullpath(), opname().

opname ()
Returns the name of a SOP/COP or Object. It is used primarily to determine the
name of an Object operator containing a SOP. For example, working from a Font
SOP: text:= �opname("..")� returns the name of the object that the Font SOP is in.

opselect (string network)
Returns a space-separated string of all the nodes which are selected in the speci-
Þed network. This is very useful for scripting. For example:

hscript -> foreach obj (`opselect(�/obj�)`)

loops through all the selected objects.

optype(string opname)
Returns the type of operator that the speciÞed operator is (returns string).
For example:

hscript-> echo `optype("/obj/geo1")`
geo
hscript-> echo `optype("/obj/geo1/font1")`
font

5.4 SOP-SPECIFIC EXPRESSION FUNCTIONS

Many of the variables required in the following expression functions are listed in
Attributes p. 233 in the Geometry Types section.

bbox("path", D_XMIN | D_XMAX | D_YMIN...)
Returns the component of the bounding box of the speciÞed SOP.
path enter a Houdini folder path and channel here
bbox spec D_XMIN, D_XMAX,

D_YMIN, D_YMAX,
D_ZMIN, D_ZMAX
D_XSIZE, D_YSIZE, or D_ZSIZE.

centroid (string sop, ßoat type)
This function will return centroid information for a SOP. The type can be one of
D_X, D_Y, D_Z for the corresponding components of the centroid (returns ßoat).

curvature("path", prim_num, u, v)
Evaluates the curvature of the surface at the parametric (u,v) location. u and v are
unit values, deÞned in the [0,1] interval. Note that if the primitive is a mesh, u and
v are deÞned in terms of the number of its rows and columns.
path Enter the SOP path and name here.
prim_num primitive number to evaluate
u, v u and v location on surface

degree("path", prim_num)
Returns the degree of the polynomial deÞning the face or hull whose primitive
24 1 Houdini 6.0 Reference

Channel / Operator Expression Functions
number is speciÞed. Polygons and meshes are expressed as linear functions, so
their degree is 1. Spline types � NURBS and Bézier curves and surfaces � have
degrees ranging from 1 to 10.
path Enter the SOP path and name here
prim_num primitive number to evaluate.

path Enter the SOP path and name here for the point.
point_num Point number to evaluate.
path Enter the SOP path and name here for the primitive.
prim_num Primitive number to evaluate.

return_type 0 - returns the distance
1 - returns the u parametric value closest to the point
2 - returns the v parametric value closest to the point

haspoint("group_name", "path/channel", point_number)
If target OP has the speciÞed point, the function returns 1, if not, it returns 0.
group_name Name of group (if speciÞed); if not, the entire graphics

detail is checked.
path/channel Enter a Houdini folder path and channel here
point_number point number to search for.

hasprim("group_name", "path/channel", prim_number)
If target OP has the speciÞed primitives, the function returns 1, if not, it returns 0.
group_name name of group if speciÞed; if not, the entire graphics

detail is checked.
path/channel enter a Houdini folder path and channel here.
prim_number primitive number to search for.

iscollided("soppath", point_number)
This function can be used to determine whether a particle is �collided�. For this
function to work properly, the SOP speciÞed should contain a particle system. The
function will return 1 if the particle collided during last cook, 0 otherwise.
soppath Houdini folder path of the SOP speciÞed
point_number point number to search for.

isspline("path", prim_num)
Returns 1 if the primitive is a spline, i.e. a NURBS or Bézier curve or surface. Oth-
erwise, the value returned is 0.
path enter the SOP path and name here
prim_num primitive number to evaluate

isstopped("soppath", point_number)
This function can be used to determine whether a particle is �stopped�. For this
function to work properly, the SOP speciÞed should contain a particle system. The
function will return 1 if the particle is stuck, 0 if the particle is not stopped (or if
there is no particle matching the point passed in).
soppath Houdini folder path of the SOP speciÞed
point_number point number to search for

isstuck("soppath", point_number)
This function can be used to determine whether a particle is �stuck�. For this
function to work properly, the SOP speciÞed should contain a particle system. The
11 - Expression Language 1 25

Channel / Operator Expression Functions
function will return 1 if the particle is stuck, 0 if the particle is not stuck (or if
there is no particle matching the point passed in).
soppath Houdini folder path of the SOP speciÞed
point_number point number to search for

mindist("path", point_num, "path", prim_num, return_type)
This expression is an alias for the pointdist() function. Given a point and a primi-
tive, this function will Þnd the distance between the point and the closest spot on
the primitive.

normal("path", prim_num, u, v, index)
Evaluates the X, Y, or Z component of the surface normal at the parametric (u,v)
location. u and v are unit values, deÞned in the [0,1] interval. Note that, if the
primitive is a mesh, u and v are deÞned in terms of the number of its rows and col-
umns.
path enter the SOP path and name here
prim_num primitive number to evaluate
u, v u and v location
index x, y, or z component to evaluate

npoints("path/channel")
Returns number of points in a speciÞc OP.
path/channel enter a Houdini folder path and channel here

nprims("path/channel")
Returns number of primitives in a speciÞc OP.
path/channel enter a Houdini folder path and channel here

origin("path/object1", "path/object2", "parameter_type")
This function will return one of TX, TY, TZ, RX, RY, RZ value necessary to
transform object1 to object2, depending on the type argument ("TX", "TY", "TZ",
"RX", "RY" or "RZ"). This can also be thought of as the position of object2 rela-
tive to object1. It will compute the position of object1 relative to object2 and
returns one of TX, TY, TZ, RX, RY, RZ based on the type argument.

Note: The rotate values returned by the origin/vorigin/vrorigin functions are only
valid if there is no difference in the scale channels between the two objects.

originoffset (obj1 pos1 obj2 pos2 constant_type)
This function will return one of TX, TY, TZ, RX, RY, RZ value necessary to
transform the point pos1 in the space of object obj1 to point pos2 in the space of
object obj2, depending on the type argument ("TX", "TY", "TZ", "RX", "RY" or
"RZ"). This can also be thought of as the position of pos2 in obj2 relative to pos1
in obj1. See also: origin(), vorigin(), vtorigin(), vrorigin().

opoutput(name, index)
This allows you to Þnd out which nodes use the given node as an input (i.e. which
nodes are outputs of the given node). For example, in objects, you can Þnd out
who your children are by querying the outputs. (You can Þnd out the parent of an
OP by using opinput()).

opninputs(name)
Returns the maximum number of inputs that the node receives input from. In
26 1 Houdini 6.0 Reference

Channel / Operator Expression Functions
some cases, it is possible to have blank inputs. For example, the Particle SOP takes
three inputs (the source, the collision geometry and the metaball force geometry).
If the SOP has the source and force inputs connected, opninputs() will return 3
(indicating that there are a maximum of three inputs). However, opinput() will
return a blank for the second input (i.e. opinput(particle1, 1) == "").

opnoutputs(name)
Returns the number of nodes which reference this node as their inputs. Unlike
opninputs(), there will be no blank entries in the list. The order of the outputs is
arbitrary.

param(string param Name, ßoat value)
This function is only applicable in conjunction with the Copy SOP. It retrieves a
value into a Þeld from another SOP based on the value of param Name. See exam-
ple in Ref. Volume I > Creating Stamped Geometry p. 523.

point("path/channel", point#,"attrib_type", subtype)
Extract attribute information from a point in a SOP�s geometry. You can Þnd a list
of attribute names for the point(), and prim() functions by looking at the list of
attributes in the SOP�s info pop-up. The attributes have a number in square brack-
ets after them � this indicates how many parameters exist in the attribute. For
example, uv[3] means there is a UV Attribute with three parts: u, v, and w, for
which you use the ordinal numbers 0, 1, and 2 respectively.

point("../point1", 55, "uv", 0) -> 0 is for u
point("../point1", 55, "uv", 1) -> 1 is for v

path/channel enter a Houdini folder path and channel here
point# point number to acquire information from
attrib_type Type of attribute. This is the same as the attribute name

in a SOP�s info pop-up.
Cd Color
P Position
N Normals
v Velocity

subtype The address of the actual variable held within the type.

e.g.: "P", 0 X position
"P", 1 Y position
"P", 2 Z position

This allows for the inclusion of any number of actual
variables held within a variable type.

e.g.: point("../xform1", 0, "P", 0) in X Þeld
point("../xform1", 0, "P", 1) in Y Þeld
point("../xform1", 0, "P", 2) in Z Þeld

pointavg("path", "attribute")
Returns the average value for the speciÞed attribute.
Example: pointavg("/obj/geo1/sop1", "P", 0)
This returns the average X position of the points in the SOP.
11 - Expression Language 1 27

Channel / Operator Expression Functions
pointdist("path", point_num, "path", prim_num, return_type)
Given a point and a primitive, this function will Þnd the distance between the
point and the closest spot on the primitive.
return_type 0 yields the minimum distance.
return_type 1 yields the U knot value at the point of minimum distance.
return_type 2 yields the V knot value at the point of minimum distance.
return_type 3 yields the primitive number that was closest.
For example: pointdist("/obj/geo1/add1", 0, "/obj/geo1/grid1", 0, 0)
Returns the distance between point 0 of add1 and the closest spot from the surface
of grid1 primitive number 0. If the return_type was 1 then the U knot value that is
closest to the point would be returned.
See also: primdist(), nearpoint(), xyzdist() .

Note: You need to scale the knot vector using the Basis SOP if you want to use
pointdist() in a UV situation like a Carve SOP.

pointlist(string sopname, string group_name)
Returns a space-separated list of points contained within the group.

points (SOP, point_number, attribute)
This function returns the value of a string attribute for a given point of a SOP.
For example: points("/obj/geo1/facet1", 3, "instance") returns the string associ-
ated with the string attribute �instance� for point 3 in the SOP facet1 located within
geo1 .

prim("path/channel", prim_number, "var_type", subtype)
Extract information from a primitive in a SOP.
path/channel enter a Houdini folder path and channel here
prim_number primitive number to acquire information from
var type type of variable. This is the same as the attribute name

in the geo info button.
Cd Color
P Position
N Normals
v Velocity

subtype The address of the actual variable held within the type.

e.g.: "P", 0 x position
"P", 1 y position
"P", 2 z position
This allows for the inclusion of any number of actual
variables held within a variable type.

e.g.: prim("../transform1", 0, "P", 0) in x Þeld
prim("../transform1", 0, "P", 1) in y Þeld
prim("../transform1", 0, "P", 2) in z Þeld

primdist(SOP prim1_num SOP prim2_num return_type)

This expression Þnds the minimum distance between two primitives.
return_type 0 yields the minimum distance.
return_type 1 yields prim1�s u value at the point of minimum distance.
return_type 2 yields prim1�s v value at the point of minimum distance.
28 1 Houdini 6.0 Reference

Channel / Operator Expression Functions
return_type 3 yields prim2�s u value at the point of minimum distance.
return_type 4 yields prim2�s v value at the point of minimum distance.

Currently, primdist() will return 0 unless given face types (polygons and/or
curves) or spline surfaces. For example:
primdist("/obj/geo1/sphere1", 0, "/obj/geo1/grid1", 0, 0)
Will return the distance between the Þrst primitives in both sphere1 and grid1.
See also: pointdist().

primduv("path", prim_num, attrib_name, attrib_index, u, v, du, dv)
Evaluates the (partial) derivatives of a face or hull primitive attribute at a paramet-
ric (u,v) position. u and v are unit values, deÞned in the [0,1] interval. When given
the "P" or "Pw" attribute, the positional derivative of (u,v)'s image on the primi-
tive will be returned. If the primitive is a face type, v and dv are ignored. If both
du and dv are 0, primduv becomes equivalent to primuv. Note that if the primitive
is a polygon or a mesh, u and v are deÞned in terms of the number of vertices, or
rows or columns respectively.

path enter the SOP path and name here
prim_num primitive number to evaluate
attrib_name name of attribute to evaluate; similar to var_type above
attrib_index index of the attribute; similar to subtype above
u, v u and v location
du, dv partial derivatives of u and v

Example:

primduv("/obj/geo1/tube1", 12, "P", 2, 0.4, 0.5, 1, 0)

Evaluates the Z component of the Þrst-order partial derivative of primitive 12 with
respect to u, at the parametric location (0.4, 0.5).

primlist(string sopname, string group_name)
Returns a space-separated list of primitives in the speciÞed group.

prims (SOP, primitive_number, attribute)
This function returns the value of a string attribute for a given primitive in a SOP.
For example: prims("/obj/geo1/facet1", 3, "texturemap") returns the string asso-
ciated with the string attribute �texturemap� for primitive 3 in the facet1 SOP in
geo1 .

primuv("path", prim_num, attrib_name, attrib_index, u, v)
Evaluates the speciÞed attribute of a face or hull primitive at a parametric (u,v)
position. u and v are unit values, deÞned in the [0,1] interval. When given the "P"
or "Pw" attribute, the x, y, or z image of the (u,v) domain point will be returned. If
the primitive is a face type, v is ignored. If the primitive is a polygon or a mesh, u
and v are deÞned in terms of the number of vertices, or rows or columns respec-
tively.
path enter the SOP path and name here
prim_num primitive number to evaluate
attrib_name name of attribute to evaluate; similar to var_type above
attrib_index index of the attribute; similar to subtype above
u, v U and V location
11 - Expression Language 1 29

Channel / Operator Expression Functions
Example1: Finding the Color on a Surface

 primuv("/obj/geo1/tube1", 0, "Cd", 1, 0.7, 0.3)

Evaluates the Green component of the diffuse color attribute at a location on primi-
tive 0 given by the parametric coordinates uv=(0.7, 0.3).

Example 2: Finding the Radius of a Sphere

To compute the radius of a sphere for which you know the point number, you can
use an expression like the one below to Þnd the radius. Why not just use the ch()
function? Because the sphere may be deformed and resized subsequent to deÞnition
in the Sphere SOP.

length(
primuv(sop, num, �P�, 0, 0, .5) - point(sop, num, �P�, 0),
primuv(sop, num, �P�, 1, 0, .5) - point(sop, num, �P�, 1),
primuv(sop, num, �P�, 2, 0, .5) - point(sop, num, �P�, 2)
)

This gives the X radius (i.e. evaluates the sphere at uv=(0, .5)). To get the Y radius,
you would evaluate at uv=(0, 1). For the Z radius, evaluate for uv=(0.25, 0.5).

realuv(SOP, prim_num, uv_unit, D_U|D_V)
Returns the real u or v parametric value given the unit value of the same parame-
ter. The unit value is deÞned in the [0,1] interval. The real value is deÞned in the
valid interval of the primitive's domain if the primitive is a spline type. If the
primitive is a polygon or a mesh, the size of its domain is given by the number or
vertices, or rows or columns respectively. If the primitive is a polygon or a curve,
D_U and D_V are irrelevant. Note that the result is undeÞned if the primitive is
neither a face nor a hull.
path enter the SOP path and name here
prim_num primitive number to evaluate
uv_unit a value between 0 and 1
D_U|D_V deÞnes operation in u or v parametric direction

spknot("path", prim_num, knot_index, D_U|D_V)
This spline-speciÞc function returns the ßoating-point knot value given the knot
index in the U or V knot sequence. The Þrst valid knot index is 0. If the primitive
is a Bézier curve or surface, the values returned are those of its breakpoints. If the
primitive is a curve, D_U and D_V are irrelevant.
path enter the SOP path and name here
prim_num primitive number to evaluate
knot_index the number (>=0) of a knot in the knot sequence
D_U|D_V deÞnes operation in u or v parametric direction

 unituv("path", prim_num, uv_real, D_U|D_V)
Returns the unit u or v parametric value given the real value of the same parame-
ter. The unit value is deÞned in the [0,1] interval. The real value is deÞned in the
valid interval of the primitive's domain if the primitive is a spline type. If the
primitive is a polygon or a mesh, the size of its domain is given by the number or
vertices, or rows or columns respectively. If the primitive is a polygon or a curve,
D_U and D_V are irrelevant. Note that the result is undeÞned if the primitive is
neither a face nor a hull.
path enter the SOP path and name here
30 1 Houdini 6.0 Reference

Channel / Operator Expression Functions
prim_num primitive number to evaluate
uv_real real value of U and V
D_U|D_V deÞnes operation in U or V parametric direction

uvdist (SOP prim1_num u1 v1 SOP prim2_num u2 v2)
This expression Þnds the distance between two primitives at two parametric loca-
tions. Valid U and V values are between 0 and 1. Any primitive type is allowed.
For example:

uvdist("/obj/geo1/sphere1", 0, 0.1, 0.8, "/obj/geo1/grid1", 2, 1,
0.5)

Returns the distance between point (0.1, 0.8) on the Þrst primitive in sphere1 and
point (1, 0.5) on the third primitive in grid1. See also: distance(), primdist(), point-
dist(), unituv()

vertex("path/channel", prim#, vertex#, "attrib_type", subtype)
The vertex() function is similar to the point() function. It extracts attribute infor-
mation from a vertex in a SOP�s geometry. It is necessary to specify the primitive
and the vertex numbers in order for this function to work.

path/channel enter a Houdini folder path and channel here
prim# primitive number to acquire information from
vertex# vertex number to acquire information from
attrib_type Type of attribute. This is the same as the attribute name

in a SOP�s info pop-up.
Cd Color
Alpha Transparency
uv Texture
P Position

 subtype The ordinal index of the actual variable held within the
attribute.

Two special attributes exist, P and Pw , which represent the position of the point
in space. Pw allows you to access the W component of the position. For example:

vertex("/obj/geo1/facet1", 2, 3, "P", 0)

Returns the X component of vertex 3 of primitive2 in the SOP facet1.

vertex("/obj/geo1/facet1", 2, 3, "Cd", 2)

Returns the Z component of the colour attribute of vertex 3 of primitive 2 in the
facet1 SOP of the object geo1.

You can Þnd a list of attribute names by looking at the list of attributes in a SOP�s
info pop-up. The attributes have a number in square brackets after them � this
indicates how many parameters exist in the attribute. For example, uv[3] means
there is a UV Attribute with three parts: u, v, and w, for which you use the ordinal
numbers 0, 1, and 2 respectively.

Note: This function will interpolate between values if the vertex number is frac-
tional, such as 3.35.
11 - Expression Language 1 31

Channel / Operator Expression Functions
vertexs (SOP, primitive_number, vertex_number, attribute)
This function returns the value of a string attribute for a given vertex (of a given
primitive) in a SOP. For example: vertexs("/obj/geo1/facet1", 1, 3, "instance")
returns the string associated with the string attribute �instance� for vertex 3 of
primitive 0 in the facet1 SOP in geo1 .

xyzdist(x, y, z, SOP, prim_num, return_type)
Finds the distance between the point (x, y, z) and the speciÞed SOP�s primitive. If
the prim_num is -1, it Þnds the closest distance to any primitive in the mentioned
SOP.

return_type 0 yields the minimum distance.
return_type 1 yields the u parametric value at the point of minimum distance.
return_type 2 yields the v parametric value at the point of minimum distance.
return_type 3 yields the primitive number that was closest.

For example: xyzdist(1, 2, 3, "/obj/geo1/grid1", 0, 0)
returns the distance between (1, 2, 3) and the closest spot from the surface of
grid1 primitive number 0. If the return_type were 1, the u parametric value that is
closest to the point would be returned. See also: primdist, nearpoint, pointdist .

5.5 POP-SPECIFIC EXPRESSION FUNCTIONS

popevent(string, event_name)
Returns whether a POP event is occurring or not. This function should be used
from within a POP.

popeventtime(string, event_name)
Returns the time at which the named event occurred. It returns -1 if the event has
no yet occurred. This function should be used from within a POP.

poppoint(point_number, attribute_type, index)
Returns the value of an attribute for a speciÞc particle within a pop function. Use
this only from within a POP.
point_number Point number to acquire information from.
attribute_type Type of attribute. This is the same as the attribute name

in a POP�s info pop-up:
v Velocity
accel Acceleration
life Life of particle
id Unique particle ID

index The address of the actual variable held within the type.
32 1 Houdini 6.0 Reference

Channel / Operator Expression Functions
5.6 COP-SPECIFIC EXPRESSION FUNCTIONS

These functions become available when the Þrst COP is created:

pic(copname, U, V, color_type)
Look up a pixel colour. The pixel value returned will be between 0 and 1, and the
U and V parameters must be between 0 and 1.

picni(copname, U, V, color_type)
Look up pixel colour (without interpolation). The pixel value returned will be
between 0 and 1, and the U and V parameters must be between 0 and 1.

res(copname, res_type)
Look up the �natural� resolution of a COP where res_type is one of:

D_XRES Horizontal resolution (width).
D_YRES Vertical resolution (height).

e.g. res("/comp/ice1/color1", D_XRES)

5.7 CHOP-SPECIFIC EXPRESSION FUNCTIONS

CAN BE USED ANYWHERE IN HOUDINI

chop(�choppath/channelname�)
This evaluates choppath/channelname at the current time/frame. An example is
�/ch/ch1/wave1/chan1�.

chopf(�choppath/channelname�, frame)
This evaluates the channel at the speciÞed frame.

chopt(�choppath/channelname�, time)
This evaluates the channel at the speciÞed time, expressed in seconds.

chopi(�choppath/channelname�, index)
This evaluates the channel at the speciÞed index .

chopcf(�choppath�, channelnum, frame)
Like chopf() this evaluates the channel at the speciÞed frame, but the channel is
speciÞed with two Þelds: the CHOP name and the channel number, as an index
that starts at 0. Example: chopcf(�/ch/ch1/wave1�, 0, 61) .

chopct(�choppath�, channelnum, time)
Like chopt() this evaluates the channel at the speciÞed time, but the channel is
speciÞed with two Þelds: the CHOP name and the channel number.

chopci(�choppath�, channelnum, index)
Like chopi() this evaluates the channel at the speciÞed index, but the channel is
speciÞed with two Þelds: the CHOP name and the channel number.
11 - Expression Language 1 33

Channel / Operator Expression Functions
chopstr(�choppath/channelname�)
Like chop(), this evaluates a CHOP output channel at the current time/frame. It
returns not a ßoat (a raw number) like the other functions here, but a text string in
ASCII containing the same number. (Both output out the same, so they appear
similar.)

chopn(�choppath�)
This returns the number of channels in the CHOP.

chops(�choppath�)
This returns the start index of CHOP, expressed as samples. To express the start of
the CHOP in seconds, divide this by chopr() .

chope(�choppath�)
This returns the end index of CHOP.

chopl(�choppath�)
This returns the length of the CHOP in samples.

chopr(�choppath�)
This returns sample rate of the CHOP.

example

To get the value of a channel from a Wave CHOP at the previous frame:

As it is in UNIX, / is the root of all data, and in Houdini, /ch is where the CHOP Net-
works are located. So if the CHOP Network is ch1, and the Wave CHOP is called
wave1, you need: /ch/ch1/wave .

But this identiÞes the CHOP, not its channels. So you need to append the channel
you want to this, resulting in: /ch/ch1/wave/chan1 . So the channel function is:

chopf("/ch/ch1/wave1/chan1�, $F-1)

CAN ONLY BE USED LOCALLY WITHIN CHOPS

If you are working within the context of CHOPs � say by putting math expressions in
the Expression CHOP and fetching channels from Expression�s input � you should
use the faster functions:

beat(keyname parameter)
Get the value attached to one of the keyboard keys. The Þrst argument is the key
name, including the 0 to 9 keys, named KEY0 to KEY9, the a to z keys named
KEYA to KEYZ, and the keypad keys named KEYPAD0 to KEYPAD9. The second
argument is the parameter to retrieve: VAL, SPEED, BINARY, ANALOG, TICK,
COUNT, PERIOD, CYCLE.

icn(input)
The returns the number of input channels at input, where 0 is the Þrst input to the
CHOP.

ics(input)
This returns the �start index� of the input.
34 1 Houdini 6.0 Reference

Channel / Operator Expression Functions
ice(input)
This returns the �end index� of the input.

icl(input)
This returns the length of the input, expressed in samples.

icr(input)
This returns the sample rate of the input.

icmax(input, channelindex)
This returns the maximum value in the channel channelindex of input.

icmin(input, channelindex)
This returns the minimum value in the channel channelindex of input.

ic(input, channelindex, sampleindex)
This returns the value of the channel number channelindex, of input number
input, at sample number sampleindex. They all start at 0.

oc(channelindex, sampleindex)
This gets values from the output channel as the CHOP�s output is being calculated.
While, for example the Expression CHOP is computing its output at index $I, it
can access the output values at the previous index, $I-1. This is useful when step-
ping forward frame-by-frame. The oc() function is only valid for sampleindex <
$I.

Note: ics, ice, icl, chops, chope, chopl return values in terms of �sample index� and
represent the entire CHOP.
11 - Expression Language 1 35

Custom Expression Functions
6 CUSTOM EXPRESSION FUNCTIONS

6.1 INTRODUCTION

Custom Expression Functions are a way of extending the built-in expression lan-
guage using a simple �C� like scripting language. These functions can then be used
anywhere you use a built-in function.

BASIC FORM

The basic form of a custom expression is:

 # Function to double a number.

 double(number)
 {
 number = number * 2;
 return number;
 }

Once you have entered this custom expession function, you can use it within any
Houdini edit Þeld as if it were a regular function. For example, you could then type:

sin(double($F))

into the Centre-X Þeld of a Sphere SOP, and it would provide values to the sin()
function that are equal to double that of $F at a given frame.

EDITING

The source for expression functions is stored within a .hip Þle. Therefore any
changes made to the source must be made from within Houdini. This can be done
using exedit (see exedit p. 110 of the Scripting Section).

You can also edit Expression Functions via the Dialogs > Aliases/Variables... dia-
log. Once the dialog appears, select the Expressions tab to view a list of currently
existing functions. Select one, and click the Edit button to edit the function in a text
editor (default = vi . Set this with the EDITOR environment variable � see Reference
> Interface > Edit Fields p. 213 for how to change this). Once you have Þnished
editing and saved, the function will be available throughout Houdini.

For more information on creating your own expression functions, also see the
Expressions section of the User Guide.
36 1 Houdini 6.0 Reference

Custom Expression Functions
6.2 EXAMPLES

FACTORIAL()

All variables in expression functions are floating point,
therefore, no declaration block is needed.
This function computes the factorial of a number.

factorial(number)
{
 result = 1;
 for (i = 2; i < number; i++)
 result *= number;
 return result
}

SIGN_INC()

Add the sign of a number to itself.

sign_inc(number)
{
 if (number < 0)
 {
 number--;
 }
 else if (number > 0)
 {
 number++;
 }
 return number;
 }

WAVENOISE()

Comuputes noise for waves (as used in the UG > Rendering > Water example).

wavenoise(x, y, z, amp, rough, exponent)
{
 n = 0;
 l = 1;
 for (i = 0; i < 3; i++)
 {
 n += snoise(x, y, z) * l;
 x *= 2;
 y *= 2;
 z *= 2;
 l *= rough;
 }
 if (n < 0)
 n = -pow(-n, exponent);
 else n = pow(n, exponent);
 return n * amp;
}

11 - Expression Language 1 37

Pattern Matching
7 PATTERN MATCHING

7.1 STRING MATCHING

String matching characters are used to incorporate or specify larger numbers of ref-
erenced items in an expression using special characters and rules.

* Wild card � matches any character or group of charac-
ters

? Matches any single character

[string] Matches only a character in the string. Does not sup-
port the hyphen syntax of [a-z].

^ Only signiÞcant at the beginning of a pattern. SpeciÞes
removal from a previous match.

@ SpeciÞes an object or channel group (depending on the
context). Allows you to use a group wherever you
might have listed speciÞc OP names before.

EXAMPLES

geo* Matches everything beginning with �geo�.

[gG]eo* Matches everything beginning with �geo� or �Geo�.

?eo* Matches everything that has any character followed by
�eo� and then any number of characters.

* ^geo1 Matches everything except the string �geo1�.

7.2 NUMERIC PATTERN EXPANSION – USED FOR GROUP PARSING

There are three places where this happens:

� The Group SOP
� During Group speciÞcation in SOPs

The Group SOP is slightly different from speciÞcation in SOPs.
38 1 Houdini 6.0 Reference

Pattern Matching
THE GROUP SOP

* Matches all points/primitives.

number Matches a single number.

start-end Matches all numbers between start to end (inclusive).

start-end:step Matches numbers between start and end skipping every
"step" numbers.

start-end:keep,step Matches numbers between start and end skipping every
"step" numbers. However, in each step, "keep" number
are selected from the beginning.

!pattern SpeciÞes everything except the speciÞed pattern. The
pattern can be any of the above.

^pattern SpeciÞes removal of the pattern from a previous match.

Note: Multiple patterns must be speciÞed as a space separated list. Commas are not
allowed as separator characters.

examples

10-20 Choose numbers 10 through 20 (including 10 and 20)

0-30:2 Choose every other number between 0 and 30
(i.e. 0, 2, 4, 6, ... 30)

0-30:2,3 Choose every 2 of 3 numbers between 0 and 30
(i.e. 0, 1, 3, 4, 6, 7, ... 30)

!3-5 Choose everything except 3-5

0-100:2 ^10-20 Choose every other number between 0 and 100 except
for numbers between 10 and 20.

GROUP SPECIFICATION & MODEL COMMANDS

The group speciÞcation and model commands are slightly different than the Group
SOP. The patterns here include not only the numeric patterns, but also group name
pattern matching. This combines the string matching with the numeric matching.

*, ?, [] String matching wild cards. These apply to group name
speciÞcations. It is important to note that the asterix (*)
has a different meaning in these patterns than in the
Group SOP. In these patterns, it matches all group
names instead of all numbers.

number_pattern All number patterns are the same as the group SOP.

Note: As with the Group SOP, multiple patterns must be speciÞed as a space sepa-
rated list. Commas are not allowed.
11 - Expression Language 1 39

Pattern Matching
examples

g* All groups starting with "g"

g* ^group1 All groups starting with "g" except for group1

* ^10-20 All groups but not numbers 10 to 20

g* 10-20:2,3 All groups starting with "g" as well as every two of
three numbers between 10 and 20.

Primitive Numbers in Patterns

A paste hierarchy created with the Paste SOP displays it�s the paste hierarchy�s prim-
itive number in brackets � e.g. (5) � when primitive numbers are enabled in the
Viewport options. However, the brackets should not be used when specifying the
primitive number. It should be treated just like any other primitive number.
40 1 Houdini 6.0 Reference

Expressions in File Names
8 EXPRESSIONS IN FILE NAMES
Tip: Don�t use spaces in Þlenames. Although both Unix and NT recognise their
usage, a space in a Þlename will sometimes be interpreted as seperating the two
parts of the Þlename into two seperate Þlenames, and cause endless trouble with
getting your paths recognised correctly. Instead of a space, use a dash (-).

USING $F IN FILENAMES

Use $F in a Þle name to key on the frame numbers for a sequence of images
For example:

mine$F.pic produces Þlenames: mine1.pic, mine2.pic, mine3.pic...

FILENAMES WITH LEADING ZEROS

To key image names with leading zeros, put a single digit non-zero number (N) after
$F, and it will generate N digit frame numbers. For example:

mine$F3.pic produces Þlenames: mine001.pic, mine002.pic, mine003.pic...

FILENAMES BASED ON RESOLUTION

To store images in directories based on image resolution, use a path like this:

Pics${W}x${H}/$F.pic

Then output at different resolutions gets put into different directories.

FILENAMES WITH THE NAME OF THE CURRENT OPERATOR

To store the name of the current operator (say in the name of a Z-depth map, you
want the name of the light within the Þlename), you can use $OS.

$OS-$F.pic

Gives Þlenames like: light1-1.pic, light1-2.pic, light1-3.pic, etc. Changing the name
of the operator (say from �light1� to �light1wHalo�) automatically updates the out-
put Þlenames as well.

FILENAMES WHICH OFFSET FROM THE CURRENT FRAME

If you�re loading a sequence of images, say into the COP Editor, or as a Texture
map, and you want the Þlename to increment with the frame number, but be offset
from the current frame by a certain amount (say you want to read in the current
frame + 12), you could use something like:

MyImage`$F+12`.pic

The backquotes cause Houdini to evaluate the expression within them, so when
you�re at frames 1, 2, and 3, it will read in the images: MyImage13.pic ,
MyImage14.pic , and MyImage15.pic .
11 - Expression Language 1 41

Expressions in File Names
FILENAMES WHEN RENDERING FIELDS

If you�re rendering Þelds, the frame number may not be the best solution, as integer
values for frame 5.0 and 5.5 would both evaluate to 5 � causing frame 5.5 to over-
write frame 5.0. In this case $N or $FF might be a better choice.

Following, is a table which compares Þlenames, rendering frame 30 to 33 by frame
increment of 0.5 .

advantages / disadvantages

$F.pic Since $F is an integer, it rounds at the half frames.
This causes the previous output Þles to be overwritten.

$FF.pic Aside from having ßoating point frame numbers, you
may end up with binary-to-decimal arithmetic errors
(like 31.9999), which produces bad Þlenames.

$N.pic $N doesn�t pick up the starting frame, it only counts
the total frames rendered. So, if you render a sequence
of 1-10, then render 11-20, they would all have the
same Þlename.

Pick your poison.

$N $FF
Filename

$F
Filename

$FF
Filename

$N
1 30 30.pic 30.pic 1.pic
2 30.5 30.pic 30.5.pic 2.pic
3 31 31.pic 31.pic 3.pic
4 31.5 32.pic 31.5.pic 4.pic
5 31.9999 32.pic 31.9999.pic 5.pic
6 32.5 32.pic 32.5.pic 6.pic
7 33 33.pic 33.pic 7.pic
42 1 Houdini 6.0 Reference

Introduction
2 Expression
Cookbook

1 INTRODUCTION

You know that you can type a value into a parameter Þeld, and the number you type
in is then a Þxed value assigned to that parameter. For example, if you type �5� into
the Translate-X Þeld of an object, it will move over 5 units in the Viewport, and it
will stay there until you type in another number.

You also know that if you want to animate the position of the object, you can Key-
frame the positions using the either Select state or the Channel Editor.

Two other ways also exist to control the values being plugged into the various
parameters � you can use CHOPs to feed in the values, or you can use a mathemati-
cal expression to describe changes in value over time.

In Houdini, time is refered to through the use of global variables. The number of
frames through which you have played is accessed by using the variable $F.
Because the value of $F changes from frame to frame � it allows us to introduce the
element of time into our expressions. For example, if we wanted to move an object
back and forth using a sine wave, we could type an expression like: sin($F*10) into
an object�s Translate-X parameter. Try this:

1. Start-up Houdini, place a Geometry object and in the parameters, type the
expression: sin($F*10) into the Translate-X Þeld, type R, and click the Play

button.

You should see the object move back and forth in the Viewport. This is because the
value of $F constantly changes the result of the sin() function. If we simply typed $F
into the Translate-X Þeld without putting it inside a sin() function, you would

enter the
expression here
then type R
11 - Expression Language 2 43

Introduction
quickly see the logo move offscreen from 0 to 300 units to the right (assuming the
default animation length of 300 frames).

2. If you want to see a graphical representation of the oscillating values generated
by the sin() function, simply \ click on the Translate parameter , and in the menu
that appears, select Scope Channels. You should then see a graph of the values
being fed into the Translate-X Þeld by our sin($F*10) expression. You can see
that as the values go up and down, the logo moves back and forth.

3. Now say we wanted to make the logo move back and forth twice as fast. If we
were keyframing, this would be a rather tedious process. With expressions, we
simply double the frequency used in the sin() expression. Change the expression
to: sin($F*20) . You should see logo move back and forth twice as fast � you have
just saved yourself a lot of keyframe work.

Note: From here on in, any time you enter an expression, you should automati-
cally type R after typing it in.

4. Now say we want the logo to oscillate up and down along the Y axis instead of
left and right along the X axis. To do this: Stop the playback, select the expression
and copy it with C c. Then \ on the Translate parameter and select Delete
Channels from the menu that appears. Set the X value back to 0. Now, in the
Translate-Y Þeld, paste the expression with C v, and type R to accept the
entry. Click Play. You now see logo moving up and down along the Y axis.

5. To increase the amplitude of the oscillations, we multiply the expression by some
number. Multiplying it by 1.0 makes it the same height; multiplying by a number
less than 1 (i.e. 0.0 - 0.999) shrinks it; and a number greater than 1.0 makes it big-
ger. To make it double the size, we multiply by 2 . So, change the expression to:
sin($F*20) * 2 . You should now see the logo object moving twice as high.

SUMMARY

Using mathematical expressions to control the values of parameters gives us a
greater amount of control than if we had manually keyframed the bouncing motion.
44 2 Houdini 6.0 Reference

Introduction
Changes in the frequency and amplitude are easily adjustable in a way that would be
quite difÞcult with keyframing.
11 - Expression Language 2 45

Using abs() to Make it Bounce
2 USING ABS() TO MAKE IT BOUNCE

2.1 INTRODUCTION

We have seen how the sin() function allows us to make something oscillate back and
forth. Is there a way we could change that behaviour into a bounce? We can do it by
enclosing the sin() expression within an abs() function.

2.2 EXERCISE

1. Change the SOPs of the logo object. Click on the logo object with \ and select
Edit SOPs. Then in the SOPs, delete the Þle1 and xform1 SOPs, and place a
Sphere SOP. You now have a sphere in the Viewport instead of a Houdini logo.

2. Go back up to the Object Editor, and select logo to edit its parameters. It should
still have the sin($F*20) expression in the Translate-Y Þeld. We want to change it
by enclosing it within an abs() function. We do this quite literally � in the Trans-
late-Y parameter, change the expression to read:

Note: For each open bracket (we always need a corresponding close bracket) .

3. Click Play, and observe how the sphere bounces. Home your view if necessary.

2.3 VIEWING A GRAPH OF THE EXPRESSION

Just as we did before, we can see a graph of the abs(sin()) expression in the Channel
Editor by doing a \ click on the Translate parameter, and selecting Scope Channels
from the pop-up menu. You should see the bounce values for /ty channel like so:

abs(sin($F*20))

Makes all values positive so it�ll bounce

sine wave: makes it oscillate up and down
$F - the current frame (= 1, 2, 3...)
makes it 20 times faster (higher frequency)
46 2 Houdini 6.0 Reference

Using abs() to Make it Bounce
2.4 EXPLANATION

Because a sine function oscillates between 1.0 and -1.0, when we had only the sine
expression: sin($F*20) in the /ty (Translate-Y) Þeld, we saw the sphere oscillate up
and down between +1.0 and -1.0 units. The �absolute� function abs() converts all
negative values (whenever it dips below 0) to positive values � thus we get the
bouncing motion.

abs() converts
all negative values
to positive ones
11 - Expression Language 2 47

ch() Function – Photocopy a Channel
3 CH() FUNCTION – PHOTOCOPY A CHANNEL

3.1 THE CH() FUNCTION

A useful trick is to key one parameter�s values into another parameter with the ch()
function. This allows you to dynamically copy the values of one channel into any
other parameter. This is extremely useful when you want to key one behaviour off of
another existing behaviour.

For example, say you wanted to have a Tube OP change it�s height based on the
translation of of the logo object. To do this, you would use the ch() function to
retrieve that value into the Tube OP. Assuming that you haven�t changed the expres-
sion in the logo object from the previous exercise, you would enter:

ch("/obj/logo/ty")

into the Height parameter of the Tube OP. This way, the height in the Tube OP will
change in direct proportion to the translation of the logo object based on the value it
retrieves from the Translate-Y Þeld of the logo object.

Tip: You can have Houdini do this for you by \ clicking on the name of a parameter,
and selecting Copy Parameter, and then going to the parameter where you want the
channel reference, and \ clicking and selecting Paste Copied References.

3.2 PATHNAMES

To get at any parameter in Houdini with the ch() function, you Þrst need to know it�s
pathname. The nomenclature for a Houdini pathname is very similiar to that of the
UNIX directory structure. The world is represented by / and then comes the list type,
the OP type, the OP name, and Þnally the paramater name.

You can specify a pathname to any object, OP, or channel within Houdini. An exam-
ple of a complete pathname to a channel would look like this:

You do not necessarily have to specify a complete pathname. You can use a portion
thereof. For example, if you were referencing another SOP from an existing SOP �
say /sphere1, your pathname might only include: ../sphere2/radiusy . In this case,
the .. speciÞes that you are referencing one level up from the SOP, and then the /
sphere2 speciÞes that you are referencing the SOP /sphere2 .

/obj/geo1/sphere1/radiusx

Object Type (from List Types below)

the object called �geo1�

the SOP within geo1 called �sphere1�

the radius X paramater of the sphere1 SOP
Channel Name

OP Name

Object Name
48 2 Houdini 6.0 Reference

ch() Function – Photocopy a Channel
You can Þnd out the channel names by viewing them in a Channel List pane. The
channel names for individual parameters are also listed beside the parameter names
in the SOP/COP/POP sections of the Reference manual.

LIST TYPES

When specifying a complete pathname within Houdini, you need to specify one of
the following list types at the beginning of the path:

List Type References to

/obj Objects
/comp Image Composites
/out Output Renderers
/part Particle Systems
/ch Channels (Animation & Audio)
/shop Shaders
/vex Vector Operations

3.3 EXAMPLES

� The Translate X, Y, and Z values of sphere1 inside geo1:

ch("/obj/geo1/sphere1/tx")
ch("/obj/geo1/sphere1/ty")
ch("/obj/geo1/sphere1/tz")

� The amount of Blending in a Sequence blend SOP (sblend2) in geo8:

ch("/obj/geo8/sblend2/blend")

� The Color in RGBA values, of a Color COP (color3) in a COP Network (comp1):

ch("/comp/comp1/color3/colorr")
ch("/comp/comp1/color3/colorg")
ch("/comp/comp1/color3/colorb")
ch("/comp/comp1/color3/colora")

� The Translate-Y value of font1 located inside geo3, when referenced from another
SOP also contained within geo3:

ch("../font1/ty")

� The Scale-X amount of a Transform SOP that you want to put in the Scale-Y Þeld of
the very same SOP so that Scale-Y will always equal Scale-X within that SOP:

ch("./sx")

� To Þnd the X and Y resolution of cam1 in a script (at the current frame):

set xres = `ch("/obj/cam1/resx")`
set yres = `ch("/obj/cam1/resy")`

Tip: You can refer to the object name in the expression with the variable $OS which
refers to the current object � this is useful if you change the name of your objects;
because then you don�t need to change each object reference.
11 - Expression Language 2 49

ch() Function – Photocopy a Channel
3.4 THE CHF() FUNCTION

The chf() function is the same as the ch() function, except that instead of using the
value at the current channel, you can specify a speciÞc frame. For example:

chf("/obj/geo1/sphere1/tx, 13)

Will read the value of geo1/sphere1�s Translate X channel at frame 13. This will be
a constant value, as for every frame, it still references back to frame 13. If instead
you wanted a frame offset of 13 frames, you would add $F to the value:

chf("/obj/geo1/sphere1/tx, $F+13)

3.5 THE CHS() FUNCTION

For parameters that have a check button, you can use the chs() function, which eval-
uates a parameter as a string. You can type the following into a Textport:

> echo `ch("/out/mantra1/tscript")` # Eval toggle as float
0

> echo `chs("/out/mantra1/tscript")` # Eval toggle as string
off

> echo `chs("/out/mantra1/command")` # Eval string parameter
mantra3 -v 0.01

> echo `chs("/obj/light1/lookat")` # Eval menu choice
geo1

3.6 USING CHANNEL VALUES IN AN ARITHMETIC EXPRESSION

You can also use the channel value within an arithmetic expression, for example:

ch("/obj/$OS/spare1") + ch("/obj/$OS/tx") + 2

takes the value of the channel $OS/spare1 and adds the X value of that point plus
two.
50 2 Houdini 6.0 Reference

Adding a Spare Channel
4 ADDING A SPARE CHANNEL

4.1 INTRODUCTION

From our previous example, we have a bouncing sphere, and it bounces at a constant
amplitude for the entire length of the animation. If we want the height of the bounc-
ing to decay over time, we can resort to keyframing and edit the values manually
(which destroys the handiness and of changing it via exprressions), or we can be
smart about it, and add a spare channel to control the decay by multiply the expres-
sion that causes the bouncing by the values held in the spare channel.
Do the following:

1. Select a geometry Object, then C \ click in the Layout Area, and select the
Add Spare Channels... In the dialog that appears, specify the name of a new
�spare� channel. By default, it will add the channel to the selected object (e.g.
�logo�).

2. Click Accept to add the spare channel, and dismiss the dialog. If you have a
Channel Editor pane open, you should see spare1 appear under the object.

3. In the Channel List, go to the object, and click on ty channel. The function deÞn-
ing ty is displayed. Change the function to read: ch(�./spare1�) * abs(sin($F*10))

4. Hold down the S key, and click on spare1 in the Channel list. You should now
see both spare1 and ty selected in the list. However, spare1 initially contains noth-
ing but zero values, so both graphs are ßat.

5. Click and drag the small value handle for spare1 at time 0 upwards. Stop drag-
ging when you get to a value of about 1.2. Be careful not to drag too far.
11 - Expression Language 2 51

Adding a Spare Channel
6. You should see the amplitude of ty�s bounces slowly scaled up within an enve-
lope deÞned by spare1. The graph should look something like the one below.

7. Experiment by dragging the value at 0 for spare1 up and down to control the
decay of the bounce over time.

Using a spare channel gives us very precise and realistic control over the bouncing
behaviour using only a single parameter - this provides a much more ßexible solu-
tion than what we would have got with the tedium of keyframing.

4.2 EXPLANATION

The ty channel controls the value of the Y translation of the sphere over time. By
deÞning the value of ty as a sine function based on $F (the current frame number),
we tell Houdini that the value of Yshould follow a sine wave (oscillating up and
down). We modify this sinusidal motion by bracketing the sin() function with an
abs() function to get the bouncing motion. To scale the bouncing over time, we mul-
tiply this with a spare channel using a ch() function:

ch("./spare1") * something

which yields control of the bounces via spare1 the way we want. You can multiply
any expression function in this way.

Another example of a use of spare channels would be to animate the number of cop-
ies in a Copy SOP by placing an expression like:

ch("./spare1")

into the Number of Copies parameter. We don�t need to use a full pathname in this
instance, because the /spare1 channel resides inside the same object that is calling it.

Tip: As you get better at editing expressions, you may want more space to edit what
you�re typing. Typing A e in any edit Þeld will pop-up a text editor so you can edit
the text using vi. To change the editor, see Edit Fields p. 213 in the Interface section
of the Reference manual (which explains how to set the $EDITOR variable). For
information on vi, see the spy section of the Reference manual.
52 2 Houdini 6.0 Reference

Adding a Spare Channel
4.3 DELETING A SPARE CHANNEL

There is no neat way to remove a spare channel through the GUI, you have to resort
to using a Textport command to do this. You can delete any channel using the chrm
command. For example:

chrm /obj/geo1/spare1

RENAMING CHANNELS

It is difÞcult to rename channels after they are created, so take care to get the desired
name right the Þrst time.
11 - Expression Language 2 53

The Point OP
5 THE POINT OP

5.1 INTRODUCTION

In geometry, every OP has a list of points numbered from 0 up. Each point has an
XYZ location, colour, alpha, texture UV, weight (W), and a normal. Every polygon,
NURBS, or primitive also has a list of vertices, which references this list of points by
their ordinal number (i.e. their position within the list of points � 1st, 2nd, 3rd, etc.).
These points are shared between multiple polygons/NURBS/primitives (you can get
more speciÞc info on this in: Geometry Types > Geometry Detail p. 223).

In the case of polygons, if two adjacent polygons which share an edge use the same
two points at the end of a shared edge, then it will be smooth-shaded across the
shared edge. This shading is controlled by the normals of the shared points.

The Point OP can reference each of these points (and their normals) and modify
them. For example, it can add or double the distance of a point from the centre of the
object�s bounding box (using the local variables: $BBX, $BBY and $BBZ), or
change the color of a point ($CG, $CY, $CZ), or even change the normal of a point
(for example, by doubling it: $NX*2, $NY*2, $NZ*2).

This is useful for a wide variety of things. We can use this to deform the shape of an
object (point positions), create intresting colour effects (point colours), and alter the
initial trajectories of particles by altering the point normals. This is why the Point
OP so powerful � it allows access to the raw data in your geometry.

Tip: To see the point numbers, click the M button at the bottom-right of a Viewport
to see the Viewport Display options. Then enable the Point Numbers icon.

For more information on points, vertices, and primitive types, see the Geometry
Types section of the Reference manual.

5.2 OPS

The Point and Primitive OPs are particularly versatile for using expressions to create
particular forms or animations. Some OPs have local variables that can only be used
in that particular OP, such as $PT for the Point OP. Use the Help button on an OP to
see which local variables are available, or the Reference Manual. For a complete
description of the expression language see the Expression Language section of the
Reference manual. You can also use the $T and $F time variables in any OP expres-
sion to add motion to the expression. The examples in the following section Expres-
sion Cookbook p. 56 were created by using a Point OP.

5.3 SEGMENTS

You can set the segment function of any channel to an expression instead of the
default ease() or constant(). This can be done in the Channel Editor pane.

Point Numbers
54 2 Houdini 6.0 Reference

The Point OP
5.4 POINT() & POINTAVG() FUNCTIONS

POINT()

The point() function is used to extract information about a particular point from a
SOP. The basic form for point() is:

point (SOP, point_number, attribute, index)

This function extracts information from a point in an OP. The attribute parameter is
the name of the attribute (e.g. "Cd" for diffuse colour). Two special attributes exist,
"P" and "Pw" which represent the position of the point in space ("Pw" allows you to
access the W component of the position). For example:

point ("/obj/geo1/facet1", 3, "P", 0)

Returns the X component of point 3 of the facet1 OP in geo1.

point ("obj/geo1/facet1", 3, "N", 2)

Returns the Z component of the normal attribute of point 3 in the facet1 OP of the
object geo1. For a list of valid attributes, see the Geometry Types section.

Note: This function will interpolate between point values if the point number is
fractional, such as 3.35 .

POINTAVG()

pointavg (SOP, attribute, index)

This function works much like the point() function, except that it returns the average
value of the attribute for all points in the speciÞed OP.

5.5 FLIPPING NORMALS

You can ßip the point normals of incoming geometry by using a Point OP, setting it
to Add Normal, and entering:

-$NX -$NY -NZ

in the Þelds. This works, because it takes the existing normals ($NX, $NY, $NZ),
and inverts them with the preceding - sign .

5.6 WHERE TO FIND MORE FUNCTIONS

Look in the Expression Language section of the Reference manual for a complete
listing of all Houdini functions.
11 - Expression Language 2 55

Expression Cookbook
6 EXPRESSION COOKBOOK

6.1 INTRODUCTION

The following expression examples were created by using a Grid OP set to 1 row by
180 columns, and Connectivity set to Rows. To this, a Point OP was appended. The
Position X, Y, and Z (Pos X, Pos Y, and Pos Z) were modiÞed with the expressions
shown to produce the display in the Viewport. To use as a segment expression, use
the same expression in a channel, and replace the position variable ($PT, $TX or
$BBZ) with $T.

6.2 WAVES

The sine (and cosine) function are extremely versatile for the creation of all kinds of
shapes. The basic sine function can be used to transform a line or surface on the XZ
plane into an oscillating wave as follows (see also Anatomy of a Sine Wave Expres-
sion p. 63):

The example shown is set to:

Pos Y = sin ($TX * 1080) * 0.3 + 0.4

The general form for a geometric sine wave is:

Pos Y = sin ($TX * frequency) * amplitude + offset

For wave motion, you could use this segment expression:

geo1/ty = sin ($T * frequency) * amplitude + offset

where:

$TX The basis for the wave: to animate the geometry of the
wave, this could be set instead to ($TX + $F).

frequency Affects the number of waves. This value could be set to
the bounding box position, $BBX, to make the waves
more frequent towards the end of the line.

amplitude Affects the height of waves. This value could be set to
the bounding box position, $BBX, to ßatten the waves
toward the end of the line; or the current frame, $F, to
make the waves larger as the animation progresses.

offset Translates the waves back and forth.
56 2 Houdini 6.0 Reference

Expression Cookbook
6.3 BOUNCES AND PEAKS

Use the absolute value of the sine function to get bounces and peaks:

pos y = abs (sin ($BBX^0.5 * 1080) * $BBX)

Use the negative of the absolute value to invert the wave.

6.4 RIPPLES

To get ripples radiating from a centre, base the sine function on the distance of the
point to the centre of the surface:

pos y= sin(sqrt(($BBX-0.5)^2+($BBZ-0.5)^2)*1080)

To animate this, add a time-based variable to the expression:

sin(sqrt(($BBX-0.5)^2+($BBZ-0.5)^2)*720+$F*4)

6.5 ARCS

Arcs, Circles, Ellipses and Spirals can be made by modifying a point�s position in
two axes using a sine and a cosine function:

pos x = cos ($PT * arcangle) * radiusX + offsetX
pos y = sin ($PT * arcangle) * radiusY + offsetY

or

geo1/tx = cos ($T * arcangle) * radiusX + offsetX
geo1/ty = sin ($T * arcangle) * radiusY + offsetY

where:

The angle subtended by this expression equals arcangle * total number of points.

radiusX and radiusY are the radius of the circle. If differing, then an ellipse is gen-
erated. If set to a variable such as $PT then a spiral may be generated. offsetX and
offsetY translate the arc.

6.6 CIRCLE

pos x = cos ($PT*2)
pos y = sin ($PT*2)

This expression is useful as a segment expression when you want an object to go in
the path of a circle and maintain the same orientation of the object (if you use a rota-
tion channel, the orientation will rotate as well). i.e.

tx = cos ($T * 180)
ty = sin ($T * 180)

For example, using a rotation channel, an arrow would travel a circular path with the
arrow-head rotating as well; whereas using this expression in the tx and ty channels,
the arrowhead would always point in the same direction.
11 - Expression Language 2 57

Expression Cookbook
6.7 ELLIPTICAL ARC

Change values of the multiplier (2 and 0.7) to change the aspect ratio of the arc.

pos x = cos ($PT) * 2
pos y = sin ($PT) * 0.7

6.8 LOGARITHMIC SPIRAL

This creates a logarithmic spiral, reminiscent of nautilus shells.

pos x = cos ($PT * 2) * $PT / 200 - 0.2
pos y = sin ($PT * 2) * $PT / 200 + 0.2

6.9 3D SPIRAL

The height of the spiral versus the spiral size can be controlled by the Position in Z.

pos x = cos ($PT * 5) * $PT / 500
pos y = sin ($PT * 5) * $PT / 500
pos z = $PT / 200

6.10 RANDOMIZE

pos y = $TY + rand ($PT) * 0.2

Often it is desirable to modify point positions by a small amount; this is done with
the random function which generates a random value between 0 and 1 based on an
input number. This value can then be added onto the current position to modify it.

6.11 CLAMPING

pos y = clamp ((sin($TX * 1080) *0.3), -0.1, 0.28)

To ensure that a value stays in a certain range, use clamping. Clamping will use a
speciÞed minimum or maximum if the number generated is below or above the
clamp value. For example:

clamp ($TX, minvalue, maxvalue)

Clamps the x position to be between the minvalue and the maxvalue.
58 2 Houdini 6.0 Reference

Expression Cookbook
6.12 STEP

pos y = int ($TX * 10) * 0.1

General form:

pos y = int ($TX * frequency) * amplitude

6.13 SQUARE WAVE

pos y = int ($TX * 10) % 2 * 0.3

General form:

pos y = int ($TX * frequency) % 2 * amplitude

6.14 SAWTOOTH WAVE

pos y = $TX % 0.15

General form:

pos y = $TX % frequency * amplitude

6.15 TRIANGULAR WAVE

pos y = abs ($BBX * 5 % 1 - 0.5)

General form:

pos y = abs ($BBX * frequency % amplitude - .5 * amplitude)

6.16 STEPPING TRIANGULAR WAVE

pos y = abs(int($BBX*8) % 12 - 3)* 0.2

General form:

pos y = abs(int($BBX * frequency) % step-0.5*step)*amplitude
11 - Expression Language 2 59

Deformation Expressions
7 DEFORMATION EXPRESSIONS

7.1 INTRODUCTION

A Point OP referring to spare channels can be used to deform geometry for such
effects as shear, taper, squash and bend.

These effects can also be achieved with the Twist OP.

SHEAR

Shears geometry in any direction, X, Y, or Z. To shear about the bottom of an object
in the X direction, Þrst add a Point SOP and set it�s display ßag, then add the channel
spare1 (use Edit > Add User DeÞned Channels...). Then in the Point SOP, change
the Translate X to:

Pos X = $TX + $BBY * (ch("spare1"))

The amount of shearing can be animated using the spare channel.

TAPER

Taper is similar to shear; you can taper in any direction. To taper in the X direction,
use a Point OP, and add a spare channel. Change pos x to any of the following:

Pos X = $TX * (ch("spare1") ^ $BBY)
Pos X = $TX * (1 / ch("spare1") ^ $BBY)
Pos X = $TX * (1 - ($BBY * ch("spare1") -1))

The amount of taper can be animated using the spare channel.

Note: For this expression, spare1 must be greater than 0 or an error will occur.

SQUASH AND STRETCH

Squash and stretch is a traditional animation name given to the physical property of
conservation of volume. That is if an object scales up in one direction (stretch) there
will be a corresponding scale down in the other direction.

A simple way of doing squash and stretch is with a Transform SOP and using only
the scaling channels: sx, sy, and sz. Use the sy channel to scale the object using the
any function (ease(), bezier(), etc.) then in the sx and sz channel segment use:

Scale X = 1/sqrt(ch("sy"))
Scale Z = 1/sqrt(ch("sy"))

Now by animating the sy channel, the relative volume of the object is preserved.
60 2 Houdini 6.0 Reference

Deformation Expressions
BULGE AND PINCH

To get a squash and stretch where the only the middle of the object is affected (so it
bulges or pinches), use a Point OP with spare1 channel as your controlling channel.
Change pos x and pos z to:

Pos X = $TX + sin($BBY*180)*(1/(ch("spare1"))-1)*($BBX-0.5)
Pos Z = $TZ + sin($BBY*180)*(1/(ch("spare1"))-1)*($BBZ-0.5)

To get a smooth bulge/pinch, precede the Point OP with a ReÞne OP, and increase
the U and V Divisions over a range of 0 - 1. You can also use a Twist or Lattice OP to
get bulging effects.

TWIST

To twist an object around its centre, append a Point OP and create a spare channel.
Change the pos x and pos z to:

Pos X = ($TX-$CEX) * cos(ch("spare1") * ($BBY-0.5)) -
 ($TZ-$CEZ) * sin(ch("spare1") *($BBY-0.5)) + $CEX
Pos Z = ($TX-$CEX) * sin(ch("spare1") * ($BBY-0.5)) +
 ($TZ-$CEZ) * cos(ch("spare1") *($BBY-0.5)) + $CEZ

For greater control, precede the Point OP with a ReÞne OP, and increase the U and V
Divisions over a range of 0 - 1. You can also use a Twist or Lattice OP to get twist
effects.

BEND

To bend an object, use a Point SOP and create a spare channel. Change the pos x and
pos z to:

Pos X = $TX * cos($BBY*ch("spare1")) - $TY *
 sin($BBY*ch("spare1"))
Pos Y = $TX * sin($BBY*ch("spare1")) + $TY *
 cos($BBY*ch("spare1"))

As with twist, you may want Þner control by preceding the Point OP with a ReÞne
OP, and increase the U and V Divisions over a range of 0 - 1. You can also use a
Twist or Lattice OP to get bend effects.
11 - Expression Language 2 61

Segment Expressions
8 SEGMENT EXPRESSIONS
There are many built-in expressions speciÞcally designed for segments. You should
have already noticed that there are many variants of the ease() function. There are
also linear(), constant(), spline() and bezier(); which are quite versatile. In particu-
lar, with bezier(), you can adjust the tension of the Bezier by dragging the handles
of the Bezier, and the slope (by clicking and dragging on the tension line). In addi-
tion there are some specialized functions:

8.1 EXAMPLE FOR REPEAT()

REPEAT

Use the repeat function to copy or repeat repetitive motion.
The basic form for the repeat function is:

repeat (start_keyframe, end_keyframe)

If you have keyframes at 0, 22, and 36, and you want to repeat the curve from 0 to
36, you select the segment from frames 36- , and enter:

repeat (0,36)

This works within a channel, without referencing another channel.

Note: Your repeat range must be outside the range of the currently selected segment.
For example, if you have keyframes at frames 0, 22, and 36, you cannot select the
segment from 0-22 and assign a repeat() function with values within the range of 0-
22, because it would be trying to repeat values of itself that have not yet been deter-
mined.
62 2 Houdini 6.0 Reference

Anatomy of a Sine Wave Expression
9 ANATOMY OF A SINE WAVE EXPRESSION

9.1 INTRODUCTION

One of the most commonly used functions is the sine function. In general usage, it
takes the form of:

Whenever you need to cause something to oscillate back and forth over time, you
can use a sine expression. For example, to get a bouncing ball, you can enter a sine
expression in the ball�s Translate Y parameter. You can control how the ball bounces
by changing the various aspects of the sine function.

Enter the following expression in the Translate Y Þeld of geo1 to observe the
changes in behaviour by using variations of the formula. Click Play to see the effect.

sin($F*15 * 1) * 2 + 0

9.2 EXAMPLES

PLAIN SINE EXPRESSION

sin($F*15 * 1) * 2 + 0

WITH OFFSET

sin($F*15 * 1) * 2 + 2

sin (frequency * phase) * amplitude + offset

Wave is offset.
Axis moves from
a value of 0 to 2
11 - Expression Language 2 63

Anatomy of a Sine Wave Expression
INCREASED FREQUENCY

sin($F*30 * 1) * 2 + 0

WITH FREQUENCY MODULATION (PHASE)

sin($F*15 * 35) * 2 + 0

SCALED AMPLITUDE

sin($F*15 * 1) * 5 + 0

Increased frequency
bunches the waves
closer together

× =

The two frequencies
combine to form
this type of pattern

The waveform is
spread across a wider
range of values
64 2 Houdini 6.0 Reference

Anatomy of a Sine Wave Expression
INVERTED

sin($F*15 * 1) * -2 + 0

The waveform is
inverted
11 - Expression Language 2 65

Pythagorean Theorem
10 PYTHAGOREAN THEOREM

10.1 INTRODUCTION

It sometimes comes up that you need to calculate the length of a side of a triangle
given the lengths of two other sides of a triangle. The Pythagorean theorem solves
exactly that problem.

10.2 DISCUSSION

This simple formula is the key to Þnding the lengths of the sides of a triangle:

By rearranging of the formula, we can derive:

Using these simple formulas, we can calculate the hypotenuse or sides of any right
angle triangle. These formulae are very useful in any number of applications using
expressions.

Tip: A Houdini function exists to automatically calculate the three-dimensional
hypotenuse for you. The length() function returns the value of:

sqrt(x2 + y2 + z2)

which is the length of the hypotenuse in 3D space. It�s syntax is:

length(floatx, floaty, floatz)

See the Expressions section of the Reference manual for this, and many other useful
built-in functions.

H = A + B 2 22

A

H B

A + B 2 2H =

H - B 2 2A =

H - A 2 2B =
66 2 Houdini 6.0 Reference

Sine Cosine and Tangent
11 SINE COSINE AND TANGENT

11.1 INTRODUCTION

What do we do when we only know the length of one side and an angle? We can
derive the lengths of the other sides and the other angles using Sine, Cosine and
Tangent. This can also help us translate between Cartesian (XYZ) and Polar (Radius
and Angle) systems.

11.2 DISCUSSION

With some simple high school trigonometry, we can solve these problems. The fol-
lowing formula is the key to Þnding the lengths of the sides of a triangle:

By rearranging the formula, we can derive:

To calculate the X and Y coordinates of a point along the circumference of a circle
we can use the above two equations, where R is the radius of the circle (or distance
of some object in space from another object), and ∝ is the angle formed by the X-
axis, the centre of the circle, and point P.

Using these two simple formulas, we can calculate the X and Y coordinates for any
point along the perimeter of a circle. These formulae are also very useful in any
number of applications using expressions.

X = R * cos(∝)

R

∝

P

X

Y

Y = R * sin(∝)

∝ = acos(X/R)
∝ = asin(Y/R)
∝ = atan(X/Y)
R = X / cos(∝)
R = Y / sin(∝)
11 - Expression Language 2 67

Matching Houdini Cam to The Real World
12 MATCHING HOUDINI CAM TO THE REAL WORLD

12.1 INTRODUCTION

This section describes how to match Houdini camera lenses to a real world camera,
using some basic camera mathematics.

12.2 DISCUSSION

ANGLE OF VIEW AND HOUDINI FOCAL LENGTH

You can obtain a good Þt between the Houdini camera and a real world camera by
matching a measured lens� horizontal angle of view, and deriving a Houdini focal
length value that reproduces it with the default aperture 41.4214.

This of course ignores pin-cushion and barrel distortion which must be set using
shots of grids and render tests. You should measure the horizontal angle of view
with respect to the camera�s TV safe transmitted reticule aperture.

SCANNED FILM IMAGES

For scanned Þlm images, you can simply divide the pixel width of the scanned
image by the pixels/mm for the scanner, and plug this number into the aperture
channel. Then set the focal length to the live action focal lens.

12.3 FORMULAS

There are some basic mathematics we can use to relate a real world camera to Houd-
ini cameras. On the following page are some useful formulas.

Note: Notice how fovx is not dependent on resx, resy or, aspect, but fovy is. You can
verify this for yourself by attaching a unit-spaced grid to the camera at the focal
length distance and the number of units in the X direction will be exactly equal to
the aperture. The number of grid units in the y direction (apy) will be dependent on
resx, resy and aspect.
68 2 Houdini 6.0 Reference

Matching Houdini Cam to The Real World
HOUDINI’S CAMERA

VARIABLE DEFINITIONS & CHANNEL DEFAULTS

Variable DeÞnition Channel / Default

fovx Þeld of view in X - / -
fovy Þeld of view in Y - / -
apx aperture in X aperture / 41.4214
apy aperture in Y - / -
focal focal length focal / 50
resx pixel resolution in X resx / 320
resy pixel resolution in Y resy / 243
asp pixel aspect X/Y aspect / 1

THREE KEY RELATIONSHIPS

tan(fovx/2) = (apx/2) / focal
tan(fovy/2) = (apy/2) / focal
apx/apy = (resx * asp) / resy

USEFUL EQUATIONS DERIVED FROM THE ABOVE

fovx = 2 * atn((apx/2) / focal)
apy = (resy*apx) / (resx*asp)
fovy = 2*atan((apy/2) / focal)

SOLVING FOR THE ABOVE GIVEN THE HOUDINI DEFAULTS

fovx = 2*atan((apx / 2) / focal)
= 2*atan((cam1/aperture / 2) / cam1/focal)
= 2*atan((41.4214 / 2) / 50)
= 45û

apy = (resy * apx) / (resx * asp)
= (243 * 41.4214) / (320 * 1)
= 31.454376

fovy = 2*atan((apy/2) / focal)
= 2*atan((31.454376 / 2) / 50)
= 34.9213û

ap
x

fovx
focal
11 - Expression Language 2 69

Iso Surface Examples
13 ISO SURFACE EXAMPLES

13.1 INTRODUCTION

With the Iso surface OP, we can create a multitude of interesting geometry based
strictly on mathematical expressions. The three examples here will illustrate how to
use this SOP to make a wedge of Swiss cheese, a ßame (without a Particle OP), and a
star.

The action of the Isosurface OP is conceptually simple � it takes a user speciÞed
expression in R3 (a mathematical term meaning, �having three dimensions, each
taking a Real value�), and creates a surface where the function goes from being pos-
itive to being negative. In the case of the default expression ($X2 + $Y2 + $Z2), the
expression is less than zero within a unit sphere, and greater than zero outside. As
the OP cooks, it marches through the bounding volume speciÞed (by default from -1
to +1 in X, Y and Z), and creates geometry where the expression equals zero.

This may seem like a difÞcult way to deÞne a sphere, but there�s much potential
beyond this simple example using the rich array of mathematical functions (see the
Expressions section). A simple illustration is with the noise() function. Try inputting
the following expression. Intriguiging?

Expression: noise($X, $Y, $Z)
70 2 Houdini 6.0 Reference

Iso Surface Examples
13.2 A SLICE OF SWISS CHEESE

An important thing to know when sculpting with expressions is that the if() function
is a valid component to use in creating an isosurface. This allows you to construct
your function, and thus your geometry in a piecewise fashion. This has been made
use of in the following example � a wedge of cheese. At Þrst glance, this function
can seem somewhat daunting, but when broken down piece by piece, it�s easier to
understand. Try entering this Expression (should be entered as a single line):

if(($Y>0) && ($Y<0.3) && ($X>-$Z/3) && ($X<$Z/3) &&
($Z<.9), noise($X*10,$Y*10,$Z*10)-0.3, 1)

This can seem a bit overwhelming at Þrst, but breaking it down piece by piece, it
becomes understandable:

This function says that it should deÞne a surface according to a noise() function if
some things are true, and should equal to 1 if any of those things aren�t true. Since
geometry exists only where the whole expression is zero, no geometry will exist if
the criteria are false. In this way, we set up boundary conditions for the geometry we
are create. What are these conditions?

Several things; there are Þve conditions being met � each seperated by an �and�
operator �&&�. This means that each of the conditions; ($Y>0), ($Y<0.3), etc. must
be satisÞed in order for geometry to be created. If all Þve of these criteria are met,
then it is up to the noise() function to determine what the geometry looks like.

if(conditions, noise(something, 1))

conditions: ($Y>0) && ($Y<0.3) && ...

if these conditions then use this

this must AND this must
be true be true

AND so on...

are met expression
When conditions aren�t
met, return a value of 1.
(i.e. empty space)
11 - Expression Language 2 71

Iso Surface Examples
The Þrst two conditions involving the $Y variable cause the upper and lower bounds
of the geometry (in the Y direction) to be constrained between 0 and 0.3. This is
what causes the upper and lower surfaces of the cheese wedge to be deÞned.

The next two criteria relating $X to $Z deÞne the two side faces of the cheese. By
relating the X component to the Z component, we can deÞne a planar surface that is
on an angle to any of the axis planes.

The last component, ($Z<0.9) deÞnes the back plane of the triangular proÞle of the
cheese. By altering the boundary conditions, we can alter the shape of the cheese.

If any of these conditions aren�t met, the expression returns a value of 1, and no
geometry results. If all of these conditions are met, the expression returns a noise
function which can have a value between -1 and positive 1. If the noise function
returns a positive value, then a hole is deÞned in the cheese. If the noise function
returns a value less than zero, then cheese is deÞned.

13.3 A FLAME

Below is an expression to deÞne a ßame:

if(($X>-.9) && ($X<.9) && ($Z>-.9) && ($Z<.9) &&
($Y>-.9), 0.2+turb($X,$Y-$T/2,$Z,2)-$Y/8, -1)

In this case, the conditions of the if() function limit the ßame to exist within a
square. The interesting features of this expression are the taper which has been
introduced, and the animation of the Y parameter of the noise function.

The offset of �-$Y/8� at the end of the noise function (in this case, turbulence) has
the effect of causing the noise function, which would normally return a value
between -1 and +1 to be more and more biased to the negative as the coordinate
increases in Y. That is, the surface, deÞned where the function as a whole returns a
zero value, eventually lies totally on the negative side of that threshold at a great
enough value of Y. The net result of this is that the thickness of the ßames dimin-
ishes to nothing as the noise function is evaluated at greater values of Y.

The second interesting feature is that the Y value of the noise function is itself being
animated by means of the time variable � $T. This causes the features of the noise
function to translate upward in Y over time. The overall result is that the ßame rises
and diminishes into nothingness.
72 2 Houdini 6.0 Reference

Iso Surface Examples
13.4 A STAR

Here is an expression to deÞne a ßaming star:

noise(($X*$X+$Y*$Y+$Z*$Z)^.5/3, atan2($Y,$X)/8,
atan2($Z,$Y)/8)+(1-($X*$X+$Y*$Y+$Z*$Z)^.5/5)

You must also set the following parameters:

Minimum Bounds: -10 -10 -10
Maximum Bounds: 10 10 10
Divisions: 40 40 40

In this equation, The rectangular (i.e. Cartesian) coordinate system has been moved
to a spherical (i.e. polar) coordinate system. Where the ßame diminished as the
coordinate increased in Y, the star diminishes as the distance from the centre
increases.

Apply a colour ramp and render to see a ßaming ball of Þre.
11 - Expression Language 2 73

Custom Expression Functions
14 CUSTOM EXPRESSION FUNCTIONS
Houdini has a wide variety of expression functions built-in, and they will cover
almost all your requirements. However, there come times when you may need a cer-
tain custom expression function that Houdini doesn�t have. Houdini�s Expression
Function Language lets you program your own expression functions.

The expression functions are loosely based on the C language. The language is sim-
pler in many respects and different in many others. The expression function lan-
guage allows you to extend the Houdini expression language by writing your own
functions which are integrated seamlessly into the internal expression language.

The expression language includes support for string, vector and matrix types. These
can be used as return codes, parameters or variables inside the function.

You can also edit Expression Functions via the Edit > Edit Aliases/Variables... dia-
log. Once the dialog appears, click on the Expressions button to view the currently
available custom expression functions. Select one, and click the Edit button to edit
the function in a text editor (default = vi . Set this with the EDITOR environment
variable � see Reference > Interface > Edit Fields p. 213 for how to change this).

14.1 BASIC SYNTAX

Comments are denoted by a '#' character anywhere within the line.

A function is declared as:

[Type]
functionName([Parameter], [Parameter]...)
{
 Scope_Block
}

The Type speciÞes the return type of the function and can be one of:

� ßoat
� string
� vector
� matrix

If the return type is not deÞned, it is assumed to return a ßoat.

14.2 PARAMETERS TYPES

Each parameter is deÞned as:

PARAMETER := [Type] parameter_name

If no Type is speciÞed for a parameter, it is assumed to be a ßoat parameter.
74 2 Houdini 6.0 Reference

Custom Expression Functions
TYPES OF STATEMENTS

The body of the function is deÞned as a series of statements. There are several types
of statements allowed by the function language:

Expession <a single expression>

Operator = | += | ++ | -- | -= | *= | /= | %=

Assignment Symbol Operator Expression ;

For for (Assignment ; Expression ; Assignment)
Scope_Block

While while (Expression)
Scope_Block

If if (Expression)
Scope_Block
[else Scope_Block]

Return return Expression

LoopGoto continue ; | break ;

Statement Assignment | For | While | If |
Return | LoopGote

Block { Scope_Block }

Scope_Block Statement | Block

14.3 EXAMPLES

Following are several examples of custom expression functions.

FIND MINIMUM VALUE

Function to find the minimum value of two
floating point numbers

min(v1, v2)
{
if (v1 < v2) return v1;
else return v2;

}

11 - Expression Language 2 75

Custom Expression Functions
REVERSE ORDER OF STRING

Function to reverse the order of a string

string
strreverse(string in)
{
float len = strlen(in);
string result = "";

for (src = len-1; src >= 0; src--)
 result += in[src];

return result;
}

FIND MINIMUM ELEMENT

Example to find the minimum element in a vector

float
vecmin(vector vec)
{
min = vec[0];
for (i = 1; i < vsize(vec); i++)
 if (vec[i] < min)

min = vec[i];
return min;

}

TRANSFORM A VECTOR

Example to transform a vector into the space
of an object passed in.

vector
opxform(string oname, vector v)
{
matrix xform = 1;
if (index(oname, "/obj/"))
 xform = optransform(oname);
else xform = optransform("/obj/"+oname);
return v * xform;

}

FIND DISPLAY OBJECTS

Example to find all objects which have their
display flag set

string
opdisplay()
{
string objects = run("opls /obj");
string result = "";
76 2 Houdini 6.0 Reference

Custom Expression Functions
nargs = argc(objects);
for (i = 0; i < nargs; i++)
{
 string obj = arg(objects, i);
 if (index(run("opset " + obj), " -d on") >= 0)

result += " " + obj;
}
return result;

}

14.4 HOUDINI / HSCRIPT INTERFACE

In addition to use the Edit > Edit Variables/Aliases... dialog, Houdini also has sev-
eral Textport commands to read and manage expression functions. These commands
are:

EXLS

Usage: exls

List all the current expression functions.

See also: excat, exedit, exread, exrm

EXRM

Usage: exrm pattern

All expression functions matching the pattern will be removed.

See also: excat, exedit, exls, exread

EXEDIT

Usage: exedit [pattern]

This command allows the user to edit expression functions. If no pattern is speci-
Þed, you can add new functions to the current list. If a pattern is speciÞed, the func-
tions which match the pattern will be edited.

Warning: If a function is renamed or removed from the edit session, this does not
mean that the old function will be removed from the current function list. This must
be done through the exrm command.

See also: excat, exls, exread, exrm
11 - Expression Language 2 77

Custom Expression Functions
EXCAT

Usage: excat [pattern]

Displays the source to all expression functions in the current .hip Þle. If a pattern is
speciÞed, only function names matching the current pattern will be listed.

See also: exedit, exls, exread, exrm

EXREAD

Usage: exread diskÞle [diskÞle2...]

This command can be used to source in external Þles of expression functions.

See also: excat, exedit, exls, exrm
78 2 Houdini 6.0 Reference

	1 Expression Language
	1 Expression Language
	1.1 Numbers
	1.2 Strings
	1.3 Built-in Variables
	Global Variables
	Channel Variables
	COP Specific Variables
	OP Specific Variables & Channels
	Output Driver Specific Variables

	1.4 Arithmetic Operators
	Examples

	2 Math & String Expression Functions
	3 Vector / Matrix Expressions
	3.1 Vector Types
	Operations

	3.2 Vector Type Functions
	3.3 Matrix Type
	Limitations
	Operations

	3.4 Matrix Type Functions
	3.5 Transformation Functions
	3.6 Examples

	4 Channel Interpolation Functions
	4.1 Channel Interpolation Functions
	Reversing the Functions

	5 Channel / Operator Expression Functions
	5.1 Folder Path Conventions
	Folder Paths
	List Types
	Examples
	Path and Point Explanation
	Example

	Shorthand Notation Within a Node

	5.2 Channel Expression Functions
	5.3 Generic Operator Expression Functions
	5.4 SOP-Specific Expression Functions
	5.5 POP-Specific Expression Functions
	5.6 COP-Specific Expression Functions
	5.7 CHOP-Specific Expression Functions
	Can Be Used anywhere in Houdini
	Example

	Can Only Be Used Locally Within CHOPs

	6 Custom Expression Functions
	6.1 Introduction
	Basic Form
	Editing

	6.2 Examples
	factorial()
	sign_inc()
	wavenoise()

	7 Pattern Matching
	7.1 String Matching
	Examples

	7.2 Numeric Pattern Expansion - Used for group parsing
	The Group SOP
	Examples

	Group Specification & Model Commands
	Examples

	8 Expressions in File Names
	Using $F in Filenames
	Filenames with Leading Zeros
	FileNames Based on Resolution
	Filenames with the name of the Current Operator
	Filenames Which Offset from the Current Frame
	Filenames When Rendering Fields
	Advantages / Disadvantages

	2 Expression Cookbook
	1 Introduction
	Summary

	2 Using abs() to Make it Bounce
	2.1 Introduction
	2.2 Exercise
	2.3 Viewing a Graph of the Expression
	2.4 Explanation

	3 ch() Function - Photocopy a Channel
	3.1 The ch() Function
	3.2 Pathnames
	List Types

	3.3 Examples
	3.4 The chf() Function
	3.5 The chs() Function
	3.6 Using Channel Values in an Arithmetic Expression

	4 Adding a Spare Channel
	4.1 Introduction
	4.2 Explanation
	4.3 Deleting a Spare Channel
	Renaming Channels

	5 The Point OP
	5.1 Introduction
	5.2 OPs
	5.3 Segments
	5.4 Point() & Pointavg() Functions
	point()
	PointAvg()

	5.5 Flipping Normals
	5.6 Where to Find More Functions

	6 Expression Cookbook
	6.1 Introduction
	6.2 Waves
	6.3 Bounces and peaks
	6.4 Ripples
	6.5 Arcs
	6.6 Circle
	6.7 Elliptical arc
	6.8 Logarithmic Spiral
	6.9 3D Spiral
	6.10 Randomize
	6.11 Clamping
	6.12 Step
	6.13 Square wave
	6.14 Sawtooth wave
	6.15 Triangular wave
	6.16 Stepping triangular wave

	7 Deformation Expressions
	7.1 Introduction
	Shear
	Taper
	Squash and Stretch
	Bulge and Pinch
	Twist
	Bend

	8 Segment Expressions
	8.1 Example for repeat()
	Repeat

	9 Anatomy of a Sine Wave Expression
	9.1 Introduction
	9.2 Examples
	Plain Sine Expression
	With Offset
	Increased Frequency
	With Frequency Modulation (Phase)
	Scaled Amplitude
	Inverted

	10 Pythagorean Theorem
	10.1 Introduction
	10.2 Discussion

	11 Sine Cosine and Tangent
	11.1 Introduction
	11.2 Discussion

	12 Matching Houdini Cam to The Real World
	12.1 Introduction
	12.2 Discussion
	Angle of View and Houdini Focal Length
	Scanned Film Images

	12.3 Formulas
	Houdini’s Camera
	Variable Definitions & Channel Defaults
	Three Key Relationships
	Useful Equations Derived From the Above
	Solving for the Above Given the Houdini Defaults

	13 Iso Surface Examples
	13.1 Introduction
	13.2 A Slice of Swiss Cheese
	13.3 A Flame
	13.4 A Star

	14 Custom Expression Functions
	14.1 Basic Syntax
	14.2 Parameters Types
	Types of Statements

	14.3 Examples
	Find Minimum Value
	Reverse Order of String
	Find Minimum Element
	Transform a Vector
	Find Display Objects

	14.4 Houdini / Hscript interface
	exls
	exrm
	exedit
	excat
	exread

