

1 Geometry Types
1 GEOMETRY DETAIL

The basis for all geometry creation lies in the knowledge of the different geometry
types that Houdini is capable of producing.

1.1 THE GEO-DETAIL

Geometry in Houdini is stored in the data structure called a geo-detail. A geo-detail
is a comprehensive listing of the entire geometry model that exists within Houdini at
a given time. When you save your work into a .geo or .bgeo Þle, it records the entire
geo-detail.

The geo-detail contains a point list, a primitive list, point groups, and primitive
groups. They are discussed in detail in the following section. The detail manages
attributes per point, vertex, and primitive, and its own detail attributes.

For a detailed breakdown of the .geo Þle format, see .geo File Format Description
p. 281 in the Formats section.

Point Groups Point List Primitive GroupsPrimitive List

Pt.Group 1

Pt.Group 2

x y z w�
pt. attributes

Point 01

x y z w�
pt. attributes

Point 02

x y z w�
pt. attributes

Point 03

x y z w�
pt. attributes

Point 97

prim. attribs

Prim. 01�
(Metaball)

prim. attribs

Prim. 02�
(Tube)

prim. attribs

Prim. 10�
(Sphere)

Prim.Group1

Prim.Group6

�
�

�

�
�

� �

geo-detail (includes all point & primitive lists and groups)detail attributes
223 1 Houdini 6.0 Reference | 13 - Geometry Types

The P

oint List

2 THE POINT LIST
The geo-detail stores all points � both those attached to primitives and those that are
free-ßoating � in a list. These points are simply X Y Z W locations in space. The W
component is the spline weight (not mass, but the amount of pull on a spline hull).
Each point can also contain attributes like colour, normal, and mass (see Attributes
p. 233).

Every point in the point list can be referenced by one or more primitives in the prim-
itive list. For example, a sphere primitive may reference a point in the point list as its
deÞnition for the location of its centre, and the same point might also be the control
vertex of a NURBS curve.

WHAT IS THE DIFFERENCE BETWEEN POINTS AND VERTICES?

The difference between points and vertices is that a point can be shared between
primitives while vertices are unique. A point is simply �a place in space� as deÞned
by four numbers (X, Y, Z, W).

A vertex on the other hand is a reference to a point. Primitives use vertices to refer-
ence a point (e.g. the nodes of a polygon, the centre of a sphere, or the control vertex
of a spline).

For example, if three polygons have one of their vertices in exactly the same place,
and share the same point in the list, that place will contain three vertices, even
though it is only a single point in the point list. Similarly, each vertex may reference
a unique point, even though the points coincide in space.

It is also possible for certain primitives to use a point more than once.

To sum up, the vertices of a primitive are always unique, while the points they refer-
ence might be shared between one or more primitives in the geo-detail.

1 point � 3 vertices

A point being reused: seven points and eight CVs

0

1

2 and 6
3

4

5
7

224 1 Houdini 6.0 Reference

The Primitiv

e List

3 THE PRIMITIVE LIST
The primitive list may contain any number of primitives of the following types:

3.1 POLYGONAL

POLYGONS

Polygons are shapes constructed from a series of straight edges. These edges are
deÞned by a series of vertices.

types of polygons

a) Closed or Open

A closed polygon shares its Þrst and last vertex and is ßagged internally as �closed�.
Thus, if an open polygon has Þve vertices, it will still have Þve vertices when
closed. The last (closing) vertex is only implied.

b) Planar or Non-planar

Planar polygons are those whose vertices lie in the same plane in 3D space.
Non-planar polygons have vertices that do no lie in the same plane in 3D space.

c) Convex or Concave

A polygon can be convex or concave, as illustrated below:

A polygon is convex if any vertical or horizontal axis intersects it at most twice.

Open Polygon

Vertex (v)

Closed Polygon

Edge

Convex Polygons

Concave Polygons
13 - Geometry Types 1 225

The Primitiv

e List

3.2 MESHES

Meshes are a collection of edges and vertices that can be represented as having a
number of rows and columns based on a UV co-ordinate system. They can be modi-
Þed into various shapes such as tubes and spheres by changing the point coordinates
and/or closing the mesh in U or V, while maintaining their row/column-like topol-
ogy. For example, below right is a mesh modiÞed into a sphere by wrapping the
mesh in U.

Both primitives have the same m × n point topology, only the point coordinates are
different. What looks like individual polygons in the above Þgure are actually intrin-
sic parts of the primitive.

A Þgure that doesn�t have an m × n topology cannot be a primitive mesh.

3.3 SPLINES

Houdini allows you to create both Bézier and NURBS curves and surfaces. Refer to
the section Splines p. 238 for a complete discussion of these types.

U

V

This is not a primitive mesh, because�
it does not have an m x n topology

This is a 5 x 4 primitive mesh.
226 1 Houdini 6.0 Reference

The Primitiv

e List

3.4 QUADRICS

ELLIPSE (CIRCLE)

These are circles whose X and Y radii are speciÞed independently of each other.
Ellipses are stored as primitives rather than as polygons, NURBS, or Bézier curves.
They contain their own set of parameters: centre xyz, x-radius, y-radius, and a 3×3
rotation matrix which determines which direction the primitive faces. If both radii
are equal, the ellipse is known as a circle.

Ellipses have only one vertex � their centre. They are very light (in terms of data)
objects, so avoid building them as polygons and splines unless it is necessary.

ELLIPSOID (SPHERE)

Ellipsoids are the three-dimensional analogue of an ellipse. They are deÞned by the
parameters centre xyz, x-radius, y-radius, z-radius, and a 3×3 rotation matrix which
determines the orientation of the ellipsoid. The ellipsoid is known as a sphere if all
three radii are equal.

Ellipsoids have only one vertex � their centre. They are very light objects, so avoid
building them as polygons and splines unless it is necessary.

TUBE (CYLINDER)

Tubes are primitive types which resemble cylinders, with the exception that the
upper and lower diameter can be changed independently of each other. They also
have the ability to have �Caps� � coverings over their end surfaces.

Tubes are deÞned by a centre xyz, a top radius, a bottom radius, a height, and a 3×3
rotation matrix which determines the orientation of the tube. Tubes degenerate into
cones if one of the radii is zero.

Tubes have only one vertex � their centre. They are very light objects, so avoid
building them as polygons and splines unless it is necessary.

3.5 METABALLS

Metaballs can be thought of as force Þelds whose surface is an implicit function
deÞned at any point where the density of the force Þeld equals a certain threshold.
This Þeld can currently be speciÞed as an elliptical or super-quadric shape around a
point. When two metaballs overlap in space, their Þeld effects are added together.

The Þeld is speciÞed by a weight and a kernel function. The kernel function results
in a value of 0 at the outside edge of the metaball and a value of 1 at the centre. The
kernel function is scaled by the weight to shift the location of the surface closer or
further away from the centre.

Because the density of the force Þeld can be increased by the proximity of other
metaball force Þelds, metaballs have the unique property that they change their
shape to adapt and fuse with surrounding metaballs. This makes them very effective
for modeling organic surfaces.
13 - Geometry Types 1 227

The Primitive List
For example, below we have a metaball. The surface of the metaball exists whenever
the density of the metaball�s Þeld reaches a certain threshold:

When two or more metaball force Þelds are combined, as in the illustration below,
the resulting density of the force Þelds is added, and the surface extends to include
that area where the force Þelds intersect and create density values with a value of
one.

Metaballs are deÞned by the parameters Centre x/y/z, Radius x/y/z , Exponent x/y/z ,
and a 3 × 3 rotation matrix which determines the orientation. A metaball is known as
a super-quadratic if either exponent is not equal to one.

You can see a metaball�s sphere of inßuence by turning on Display Hulls in the
Viewport Options dialog (see Primitives Display p. 124 in the Interface section).

In the Model Editor, a metaball can be selected only by its hull.

PUSHER METABALLS

It is possible for metaballs to have negative Weights (�Pusher� Metaballs). This
allows holes to be created by effectively subtracting from the surface.

WHAT DOES AN EXPONENT DO?

In the instance of metaballs, the XY and Z exponent determines the inßation
towards �squarishness� or contraction towards �starishness� as described below:

Value > 1 Results in metaballs that appear more like a �star�.
Value < 1 Results in metaballs that appear more �squarish�.
Value = 1 Results in metaballs that appear spherical.

In Houdini, metaballs are often used as force Þelds for particle systems (see How
Force Fields Work p. 251). You can create metaballs with a Metaball SOP, or in the
Model Editor.

Field Density of Metaball equals
the Threshold Value here (e.g. 0.5)

Density = 1.0

Density = 0.0

and creates a surface
228 1 Houdini 6.0 Reference

The Primitive List
METABALL MODEL TYPES

blinn kernal

Always puts a sphere at the blob centre, even if the weight is less than 1.0.
The Blinn model is the fastest and most stable of all the models.

wyvill and elendt kernals

These models are very similar; only the weight distribution function is different.

links kernal

This is the slowest method, but provides a good compromise between the Blinn and
Wyvill methods in terms of weight distribution.

renderman kernal

This kernel is used by Pixar's Renderman (and possibly other RIB renderers).
It is deÞned as: Density = 1 - 3*R^2 + 3*R^4 - R^6 .

hart kernal

This is a kernal function suggested by the mathematician, John Hart.

Blinn Elendt Hart

Links RenderMan Wyvill
13 - Geometry Types 1 229

The Primitive List
3.6 PARTICLE SYSTEMS

A particle system consists of a group of discrete particles which change over time.
Each particle has its own attributes controlling size, position, velocity, etc. They can
generate new attributes depending on their age, or they may die. Assigning values
discretely to each particle enables realistic modelling of systems involving turbu-
lence such as: smoke, wind, Þre, dust, and hair.

You can use any point or set of points as the basis for the particles in a particle sys-
tem. Grid or Sphere SOPs are often employed for this purpose. You can set the parti-
cle system into motion by applying POPs or a Particle SOP. You can then
subsequently inßuence the particle system with a Force SOP.

See the Particles (POPs) section of the manual for more information.
230 1 Houdini 6.0 Reference

Point Groups
4 POINT GROUPS
Point groups are collections of associated points that are treated as a set. This is
important because you can apply operations to them as a whole � saving you from
having to apply discrete operations to each element. Furthermore, point groups can
be used to Þlter-out points not needed for a speciÞc operation; rather than affecting
an entire input, grouping restricts the scope of an operation to the points in a group.

4.1 CREATING POINT GROUPS

To group points in Houdini use the Group SOP (see Group OP p. 592 in the Editing
Geometry section), any SOP with a point group input Þeld, or the Select state in a
Viewport.

To group points in the Select state:

1. Use the Select state, and in the sub-icons, choose the Point Groups icon.

2. Select the desired points with the cursor.

3. Call up the Parameters dialog by clicking the M button, and click on the Combine
Groups page-tab.

4. Type a new group name in the edit Þeld, and type R.

5. Click on the Group <� Selection button.

4.2 ORDERED AND UNORDERED GROUPS

A point group can be ordered or unordered. In the Model Editor�s Select state, a sin-
gle click of the mouse button performs an ordered selection. Bulk selections are
made by dragging the cursor across the points. This action creates a marquee box
that encloses a number of points. Points selected in this fashion generate an unor-
dered group.

The only time bulk selections generate or maintain an ordered selection is when
only one point is caught in the marquee box. Unordered groups store their points in
creation order; ordered groups store points in selection order.

If you want to reselect the points in the group, you can do so by calling up the
Parameters dialog from the Select state, and selecting the group name from the N
pop-up menu under the Combine Groups page-tab. Then click on the button Selec-
tion <� Group.

When a point is deleted, Houdini automatically removes the point from all the point
groups it might belong to.
13 - Geometry Types 1 231

Primitive Groups
5 PRIMITIVE GROUPS
Primitive groups are a collection of associated primitives that are treated as a set.
This is important because you can apply operations to them as a whole � saving you
from having to apply discrete operations to each element. Moreover, primitive
groups can be used to Þlter-out primitives that aren�t needed for a speciÞc operation.
Rather than affecting an entire input, grouping restricts the scope of an operation to
the primitives in the group.

5.1 CREATING PRIMITIVE GROUPS

To group primitives in Houdini use a Group SOP (see Group OP p. 592 in the Edit-
ing Geometry section), any SOP with a point group input Þeld, or the Select state in
a viewport.

To group primitives in the Select state:

1. Use the Select state, and in the sub-icons, choose the Primitive Groups icon.

2. Select the desired primitives with the cursor.

3. Call up the Parameters dialog by clicking the M button, and click on the Combine
Groups page-tab.

4. Type a new group name in the edit Þeld, and type R.

5. Click on the Group <� Selection button.

5.2 ORDERED AND UNORDERED GROUPS

A primitive group can be ordered or unordered. In the Model Editor�s select state, a
single click of the mouse button performs an ordered selection. Bulk selections are
made by dragging the cursor across the primitives. This action creates a marquee
box that encloses a number of primitives. Primitives selected in this fashion generate
an unordered group.

The only time bulk selections generate or maintain an ordered selection is when
only one primitive is caught in the marquee box. Unordered groups store their prim-
itives in creation order; ordered groups store primitive in selection order.

If you want to reselect the primitives in the group, you can do so by calling up the
Parameters dialog from the Select state, and selecting the group name from the N
pop-up menu under the Combine Groups page-tab. Then click on the button Selec-
tion <� Group.

When a primitive is deleted, Houdini automatically removes the primitive from all
the primitive groups it might belong to.
232 1 Houdini 6.0 Reference

Attributes
6 ATTRIBUTES

6.1 INTRODUCTION

Attributes include information about an entity such as its color, velocity, normal,
and so on. There are many different attributes. Some of the most common ones are
discussed below. Attributes can be attached to vertices, points, primitives, or the
whole geometry. Since there are usually more vertices than points, having a vertex
attribute will consume more memory than a point attribute. Similarly, since there are
usually more points than primitives, having a point attribute will consume more
memory than a primitive attribute. However, point attributes are interpolated across
primitives, allowing more local ßexibility than primitive attributes (e.g. color). Also,
vertex attributes deal with the situation where shared points need different values for
the attributes, like the seam of a polar texture map for example.

6.2 TYPES OF ATTRIBUTES

There are three different attribute data types. Each is handled slightly differently
internally.

Vector Data This data type represents a 3D vector in space. When
any transforms occur on the detail, this attribute will
also be transformed. Examples of a vector attribute are
normals (N) or velocity (V).

Floating Point Data This data type represents an array of ßoating point val-
ues. The values are not transformed when the geometry
gets transformed. Some examples of this type of
attribute are diffuse colors (Cd), and texture co-ordi-
nates (UV).

Indexed String Data This attribute consists of an ordered list of character
strings. The attribute stored with the element is an inte-
ger representing the offset into the array of strings. A
value outside the bounds of the array is considered to
be �not assigned�. An example of this is the material
attribute.

The following are examples of the most commonly used attributes.

6.3 NORMALS

A normal is a directional vector associated with a particular geometric entity, com-
monly perpendicular to it. The normal to a surface at a given point is a vector per-
pendicular to the surface at that point, and is computed as the cross product of the
tangent vectors at that point.
13 - Geometry Types 1 233

Attributes
The direction the normals take (up or down) is dependent on the order in which the
cross product is computed (imagine a cork moving up or down depending on the
direction the cork screw turns).

Normals are used for such things as: the basis for the direction things move over
time, and for determining shading. In the Model Editor you can use point and prim-
itive normals to pick, and even translate geometry along the normal.

TYPES OF NORMALS

Normals come in four varieties: plane normals, point normals, vertex normals, and
surface normals. They indicate the orientation (direction) of a point, plane, vertex,
or surface curve. If a curve is planar and does not share its points with other primi-
tives, its default point, vertex, and primitive normals are identical, perpendicular to
the plane of the curve.

ACTIVATING NORMALS DISPLAY

Activate the Point, Vertex, and Primitive Normal Display in Houdini by enabling the
normals option in the View Options dialog (Viewport Options Dialog p. 122), avail-
able by clicking the M button at the bottom of the viewport.

Note that the point normals must have been computed Þrst (in a Point SOP, for
example). Primitive normals are computed on the spot and only when they are
turned on for display. Some systematic primitives, like sphere and cylinder do not
have a normal.

CHANGING NORMALS

You can change the normal of an entity in Houdini with SOPs such as the Point and
Magnet SOPs. See the Editing Geometry section for further information.

Surface normals indicate
the direction a surface faces.
This is used to determine the
amount of shading that a
surface receives; the more
it faces the light, the lighter
the shading it receives.
234 1 Houdini 6.0 Reference

Attributes
6.4 POINT UV’S (TEXTURE COORDINATES)

Normally items are located spatially by XYZ values. To differentiate texture coordi-
nate space from XYZ space, the labels U and V are used instead of X and Y.

In order to place texture maps (images) onto geometry, we must assign texture coor-
dinates to the geometry. A texture map resides in its own (U, V) texture coordinate
space. When assigned to the geometry, the (U, V) coordinates designate how to map
the image onto the geometry. Texture space should not be mistaken for the paramet-
ric space of splines.

Texture coordinates can be visualized in the following manner: Texture maps have
their own coordinate space. If the texture were a table cloth with a grid pattern, the
color at location 3, 4 on the table cloth remains at location 3, 4 even when the cloth
is wrapped around an irregularly shaped object. The color at location 3,4 can be said
to be in the table-cloth�s coordinate space.

Production Tip: By using a Point SOP, you can swap the position and the texture
coordinates. This allows you to model the �texture space�. Another Point SOP
allows you to swap the position and texture back to their original locations.

6.5 SOME TYPICAL POINT ATTRIBUTES

POINT WEIGHT (W)

This denotes the amount of inßuence or �pull� a control vertex (CV) has on a Bézier
or NURBS curve or surface (if the point happens to be included as a part of one). It
should not be confused with the mass of a particle, or the weight of a metaball. See
Splines p. 238.

DIFFUSE COLOR (CD)

The surface color speciÞed by a triplet of RGB values which range from 0-1.
000 yields black and 111 produces white.

ALPHA

The transparency of a given element, where 1 is fully opaque, and 0 is fully trans-
parent.

VELOCITY (V)

The distance per second the element travels.
13 - Geometry Types 1 235

List of Attributes
7 LIST OF ATTRIBUTES
These are the attributes which are currently reserved for Houdini use. The list may
change with no notiÞcation or fear of consequence by users who have deÞned their
own attributes. This is a suggested list, not a deÞnitive list.

7.1 ORDER OF ATTRIBUTE PRECEDENCE

The order of precedence for attributes from highest to lowest is:

� Vertex Attributes
� Point Attributes
� Primitive Attributes
� Detail Attributes

Attributes with a higher order of precedence override similar attributes with a lower
order of precedence. For more information on Attributes, see Attributes p. 233.

7.2 MATERIAL & PHYSICAL ATTRIBUTES

Location can be:

d Detail attribute
pr Primitive attribute
pt Point attribute
v Vertex attribute

MATERIAL GROUP

Name Type Size Location Description

mat index 1 d, pr Material name speciÞcation
rishade index 1 d, pr RenderMan shader name

Ca ßoat 3 d, pr, pt, v Ambient color (override)
Cd ßoat 3 d, pr, pt, v Diffuse color (override)
Cs ßoat 3 d, pr, pt, v Specular color (override)
Cr ßoat 3 d, pr, pt, v Reßect color (override)
Ct ßoat 3 d, pr, pt, v Transmit color (override)
Ce ßoat 3 d, pr, pt, v Emission color (override)
Alpha ßoat 1 d, pr, pt, v Alpha para/perp (override)

rough ßoat 1 d, pr, pt, v Roughness (override)
fresnel ßoat 1 d, pr, pt, v Fresnel coeff (override)
apara ßoat 1 d, pr, pt, v Alpha parallel (override)
aperp ßoat 1 d, pr, pt, v Alpha perp (override)
aroll ßoat 1 d, pr, pt, v Alpha rolloff (override)
shadow ßoat 1 d, pr, pt, v Shadow intensity (override)
sbias ßoat 1 d, pr, pt, v Shadow bias (override)
236 1 Houdini 6.0 Reference

List of Attributes
PHYSICAL GROUP

Name Type Size Location Description

N vector 3 pr, pt Surface Normal
v vector 3 pt Velocity
uv ßoat 3 pt, v Texture coordinates (UVW)
lod ßoat 1 d, pr Level of detail
dir vector 3 pr Vector for attractor force
fedge ßoat 1 pr Edge force for attractor
fvortex ßoat 1 pr Vortex force for attractor
fspiral ßoat 1 pr Spiral force for attractor
mass ßoat 1 pt Mass
drag ßoat 1 pt CoefÞcient of drag
life ßoat 2 pt Life time (index 0=time alive

 index 1=death time)
id ßoat 1 pt Identifying tag
rest ßoat 3 pt Rest position

7.3 WHERE ATTRIBUTES CAN BE SET

Following, is a list of where attributes can be adjusted or set:

Attribute Type SOP to Create SOP Where it�s Used

Point Cd Point
Point Alpha Point
Primitive Cd Point
Primitive Alpha Point
Point N Facet, Point Point
Point v Facet Particle, Spring
Point uv Texture, Point
Primitive dir Attractor Particle, Spring
Primitive fedge Attractor Particle, Spring
Primitive fvortex Attractor Particle, Spring
Primitive fspiral Attractor Particle, Spring
Point mass Point Particle, Spring
Point drag Point Particle, Spring
Point life Particle, Spring Particle, Spring, Point
Point id Particle, Spring
13 - Geometry Types 1 237

Splines
8 SPLINES

8.1 INTRODUCTION

Houdini allows you to create both Bézier and NURBS curves and surfaces (for the
purposes of this discussion, however, we�ll only be referring to curves). Spline
curves and polygons are collectively termed �faces�, while grids and spline surfaces
are termed �hulls�. As opposed to polygonal types, NURBS and Bézier entities are
inherently smooth primitives known as splines. It isn�t necessary to master the math-
ematics behind what differentiates the two spline types. It is, however, useful to
understand some of the concepts that arise from the mathematics of computer-gen-
erated curves because they affect your choice of curve type when you start creating
in Houdini, and they inßuence the way you draw that curve.

8.2 LINEAR SPLINES

The most straight-forward way of drawing a curve is by connecting a sequence of
points. The resulting curve is a linear spline, and is equivalent to a polygon. There
are two major drawbacks to this method of producing a curve. First, in order to pro-
duce anything that actually appears curved, you would need a large number of
points. Storing and computing all those points is not an efÞcient use of the compu-
ter�s resources. Second, manipulating a curve created in this fashion is very cumber-
some because, once a point is moved, you lose the smoothness of the shape.

8.3 HIGHER DEGREE SPLINES

The way around the jaggedness produced by linear connectivity is through a series
of blending functions. The blending functions, or bases, are the mathematical foun-
dation for generating a smooth connection between the control vertices (CVs) of the
curve. A spline curve generates a smooth transition between its control vertices by a
mathematical blending function that operates on these points. The set of CVs con-
trolling the curve is referred to as the �hull�.

hull

curve

control vertex (CV)
238 1 Houdini 6.0 Reference

Splines
8.4 CURVE SEGMENTS

NURBS and Bézier curves in Houdini are piecewise curves made of a number of
connected curve segments. The main difference between NURBS and Bézier curves
is the level of continuity at the points where the curve segments touch. A NURBS
curve will typically be very smooth at these joints (the higher the degree of the
blending function, the smoother the connection). Bézier curves have a discontinuity
every degree plus one points.

8.5 ORDERS

The �degree plus one� formulation is often referred to as the order of the curve. A
cubic curve, for example, has a degree of three and, therefore, an order of four.

The degree of the spline in given by the degree of the underlying blending functions.
Houdini supports splines whose degrees vary from 1 to 10. The upper bound was
chosen for practical reasons and efÞciency.

You�ll Þnd that cubic splines are sufÞciently smooth and well behaved for most
applications. You will seldom need to use other degrees.

From this illustration, we can see that the minimum number of points needed to
build a curve equals the order of that curve, unless the curve is closed, in which case
only degree CVs will sufÞce, since the remaining CV is taken to be equivalent to the
Þrst CV.

8.6 BREAKPOINTS, KNOTS, AND SPLINE BASIS

The point where curve segments come together is called a breakpoint. It is important
to stress that this breakpoint is on the curve itself, not away from the curve like the
CVs, which make up the hull.

Breakpoints are images of special values, called �knots�, in what is known as the
parametric space or the domain of the spline. The domain, which is simply a
sequence of knots in ascending order, together with the spline order and the spline
type deÞne a spline basis.

Imagine the domain of a curve as a segment going from zero to one or (for example)
-12.7 to 83.2, whose size and origin are given by the values of its two end-knots.

Linear�
degree 1�
order 2

Quadratic�
degree 2�
order 3

Cubic�
degree 3�
order 4
13 - Geometry Types 1 239

Splines
Similarly, a surface is deÞned by two knot sequences forming a rectangular (U,V)
domain. The knot sequences must always be sorted in ascending order.

Since knots are the ingredients of the domain, they divide a curve�s domain segment
and a surface�s domain rectangle into smaller pieces whose size relative to each
other is often more important than the total size of the domain. Similarly, in world
space, the areas delimited by breakpoints divide a curve into curve segments and a
surface into patches.

Depending on the type of spline, the relative knot distances usually determine the
shape of the spline given a Þxed set of control vertices. The size and the origin of the
domain are relevant when identifying a surface�s texture space with its parametric
space. Then, if the texture is expected to cover the entire surface only once, the
domain of the surface must be a unit square. Mapping a domain to a new range and
origin does not affect the shape of the spline primitive because the knot ratios are
preserved.

The knots need not be evenly spaced in the domain. The more knots there are in one
area, the smaller the spline segments and, therefore, you have a greater degree of
control over the spline in that area. If several knots are placed at one value, some-
thing called a multiplicity is produced. Not all spline types allow multiplicities to
occur.

8.7 RATIONAL SPLINES

Houdini supports two types of rational splines: NURBS, and Bézier. Each CV of the
curve has X, Y, and Z coordinates that determine its position in world space. There is
also a fourth component for each CV called W. The W component determines a CV�s
weight (see also: Point Weight (W) p. 235). The weight determines the �pull� (like a

Relation of World Space and Domain Space

World Space

Domain Space

Knots

Breakpoints

U

Ratios between knots are maintained during transformation
U

V

240 1 Houdini 6.0 Reference

Splines
magnet) of a CV on the spline curve. The value of the W component makes a spline
rational or non-rational. A non-rational spline has only equal weights (typically,
W=1), while a rational spline contains at least one different weight. While non-posi-
tive weights (where W is less than or equal to zero) make sense in theory, they tend
to generate unintuitive shapes and cause the spline to break away from its convex
hull. For practical reasons, Houdini supports only positive weights (W > 0).

The higher the weight of a CV, the sharper the spline around that CV. For large
weight values, the spline will almost go through the CV. Similarly, weights smaller
than one tend to ßatten the spline in the area inßuenced by that CV.

However, it isn�t simply the size of the weight that causes a ßuctuation in sharpness.
An equally, if not more, important element is the relative difference between
weights. The more equal the neighbouring weights, the smaller their inßuence over
the given region and, consequently, the less rational the spline. For example, if all
the weights of a spline curve are one thousand, the shape of the curve will be identi-
cal to a non-rational curve.

In Houdini, certain models, like the perfect NURBS circles, are normally built ration-
ally. Although you can create rational models yourself in the modeller and else-
where, we recommend that you use weights sparingly because they increase the
complexity of the model (which may result in decreased system performance) and
they may also lose their effectiveness when applied to neighbouring curve regions.

Of the spline types supported in Houdini, NURBS curves give you a greater degree
of control over local portions of the curve and over its smoothness.

8.8 NURBS CURVES AND SURFACES

NURBS is an acronym for Non-Uniform Rational B-Spline. A NURBS curve
employs a series of blending functions called �bases� to generate a smooth curve
from a sequence of control vertices (CV�s) which deÞne a NURBS hull.

The primary advantage of using a NURBS curve is that moving a CV only affects a
local portion of the spline while also maintaining the continuity of the curve, even at
its breakpoints. This allows you to �pull and tug� on the CVs of the NURBS curve or
surface to generate a desired shape without causing kinks or discontinuities.

The shape of a NURBS curve is greatly inßuenced by the relative distances between
its knots. The knots appear in ascending order, and are possibly repeated. A repeated
knot is said to have a multiplicity.

In a Bézier curve, all knots are unique and, therefore, multiplicities aren�t produced.
The parallel between Bézier and NURBS knots is that a Bézier knot is similar to a

W = 1 0 < W < 1 W > 1

Effect of CV weight
13 - Geometry Types 1 241

Splines
NURBS knot with maximum multiplicity. The Bézier discontinuities mentioned ear-
lier happen at these knots. Similarly, a NURBS curve will have a discontinuity where
a knot is at maximum multiplicity. Maximum multiplicity occurs when a knot is
repeated degree times in a NURBS basis. Both NURBS and Bézier curves will have a
CV on the curve at the point of discontinuity.

If the multiplicity happens at the end of the curve, the NURBS curve is considered
�clamped.� Typically, NURBS curves are clamped at both ends but closed curves are
usually unclamped; Bézier curves are always clamped.

From this, it follows that the shape of a NURBS curve, given a set of CVs, is deter-
mined by the relative distance between knots. Typically, there are two types of knot
parameterizations: uniform and chord length. In the Þrst, knots are spaced evenly. In
the second, the distances between knots are determined by the distances between
successive CVs. Uniform parameterization is recommended for regular shapes
while chord length is used for free-form shapes. A third type of parameterization,
called �centripetal�, is similar to chord length and is best suited for sharp curves.

CREATING A SHARP POINT IN A NURBS CURVE

It is sometimes desirable to simulate a discontinuity (a sharp corner point) along a
NURBS curve. This can be done one of three ways:

i) Change the weight of a selected CV via the Curve > Parameters dialog in the
Model Editor to something high like 10,000. This gives the CV so much �pull� that
it draws the curve almost right through it.

ii) If you drag the two adjacent CVs of a cubic curve onto a middle CV, it will look
like a sharp corner point. When this is done, it is called raising the Multiplicity of the
CV. Maximum CV multiplicity occurs when adjacent �degree� CVs overlap.

iii) Make �degree� knots identical. When this is done, it is called raising the multi-
plicity of the knot. You can do this in the ReÞne SOP by choosing the Subdivision
option, or in the Model Editor by selecting the ReÞne state and dividing with the
middle mouse button (]).

A clamped Quadratic (degree 2) curve on�
U = [0, 0, 0, 1/6, 2/6, 3/6, 4/6, 4/6, 1, 1, 1]�
with a cusp at u = 4/6, because 4/6 is repeated degree times

1 2

3

4 5

6

7

World Space

Domain Space

0

242 1 Houdini 6.0 Reference

Splines
CLAMPED AND UNCLAMPED NURBS CURVES

A clamped curve touches its endpoints. An unclamped curve doesn�t. Much of the
time you will work with clamped curves. The unclamped case is generally useful for
closed curves.

In Houdini, you can build closed NURBS curves, and these can be clamped or
unclamped (see below). A closed, clamped curve will show a discontinuity where
the two end points touch.

There are four types of end point conditions for NURBS curves:

You can experiment with these properties�both for curves and for surfaces in the
Curve/Hull page of the Primitive SOP.

PERIODIC CURVES

A closed unclamped curve will wrap around itself, and is known as a periodic curve
because the knots of the wrapped portion are actually a cyclical repetition of the
original knots. When you save a periodic NURBS curve to a Þle, the periodic knots
are not saved, but are generated automatically upon loading the Þle.

Open (cubic) NURBS

Open (cubic) NURBS Closed (cubic) NURBS

Closed (cubic) NURBS

unclamped

clamped

unclamped

clamped
13 - Geometry Types 1 243

Splines
8.9 NURBS SURFACES

A NURBS surface has a topology similar to that of a mesh primitive (see Meshes p.
226.) In a NURBS surface, each node of the UV coordinate matrix represents a CV
connected by rows and columns to form a NURBS hull. This allows modelling of
complex smooth surfaces, whose shape is changeable simply by moving the CVs.

Tip: To create an open cubic NURBS surface, you need at least 4 x 4 CVs. In general,
for an open surface with U Order m, and V Order n, you need m x n CVs. For an
open NURBS curve of order m, you will need at least m CVs to deÞne it properly.

8.10 BÉZIER CURVES AND SURFACES

Béziers are similar to NURBS, however, they always touch the end-points of the hull
(are clamped) and possibly CVs in between (depending on the total number of CVs
and the order of the curve). The main difference between Béziers and NURBS is that
Béziers have a discontinuity (which might look like a sharp point in the curve) at
regular intervals based on the order of the curve.

In the Model Editor, you set the order of the curve via the Curve State > Parameters
dialog (Orders p. 239).

For example, if the order of the curve is 4, then the degree will equal 3, meaning you
will have four CVs in each curve span. Between each span there will be a disconti-
nuity. Order four curves are best known as �cubics�.

U Iso-parm

UV Origin

U Parm Direction

V
 P

ar
m

 D
ir

ec
tio

n

Control Vertex (CV)
V Iso-parm

Hull

(curve with
 constant U
 paramater)

(curve with constant V paramater)

hull

control vertex (CV)

span1 span2

discontinuity

u

244 1 Houdini 6.0 Reference

Splines
Whereas NURBS curves change only a local portion of the curve when a control
point is moved, the entire span within a Bézier curve is affected when a control
point belonging to that span is moved.

If we set the order of the curve to a low number like 2, then each span of the Bézier
will be between one CV, and it will look like straight lines. Therefore setting the
order to 2 results in a curve that looks like a polygon (composed of straight lines).
The curve is called �linear�.

The only way to avoid the �sharp corner� of a discontinuity in a Bézier curve is to
make the CVs adjacent to the point of discontinuity collinear as illustrated below.

In the Model Editor, a smooth Bézier curve can be built using the Breakpoints
option in the Curve state.

8.11 BÉZIER SURFACES

A Bézier surface uses a topology similar to that of a mesh. In a Bézier surface, each
node of the UV coordinate matrix represents a CV connected by rows and columns
of Bézier hulls. This allows modelling of complex smooth surfaces, whose shape is
changeable simply by moving the CVs.

discontinuity

points adjacent to
discontinuity are collinear

appears smooth

Iso-parm

Origin

U Parm Direction

V
 P

ar
m

 D
ir

ec
tio

n

Control Vertex (CV)
13 - Geometry Types 1 245

Splines
Note: Open Bézier surfaces can only be built with the number of UVs equal to mul-
tiples of the order-1, plus one. For example, for an order 4 curve the number of Us
or Vs can equal 4, 7, 10, 13, 16, etc. because if the order is 4, then we take the order-
1 (=3) and multiply by the number of spans + 1 as in the following: 4=(1*3)+1,
7=(2*3)+1, 10=(3*3)+1, 13=(4*3)+1, and 16=(5*3)+1. If the Bézier surface is
wrapped in U and/or V, the formula above loses the �+1�

8.12 CURVES ON SURFACES (“PROFILE” OR “TRIM” CURVES)

Houdini supports curves on surfaces (also known as trim curves and proÞle curves
or proÞles for short), which are deÞned in and bound by the size of the parametric
space (i.e. domain) of their parent surface.

TYPES OF PROFILES

There are three types of proÞles in Houdini: polygons, NURBS curves, and Bézier
curves. The deÞnition of each proÞle type is very similar to that of its 3D equivalent.
For example, a NURBS proÞle can be open or closed, clamped or unclamped,
rational or non-rational, and its order can vary between 2 and 11. The fundamental
difference between proÞles and 3D faces is that the proÞles are 2D curves whose
CVs are (U,V,W) points in the domain of the parent surface; CVs of 3D faces are
X,Y,Z,W quadruplets in object space. For both types of faces W is the rational com-
ponent, (W=1 is the non-rational case).

VISUAL PROPERTIES

The visual representation of a proÞle, then, is a curve that is always glued to the sur-
face. The 3D shape that we see is merely an image of the 2D geometry that makes
up the proÞle, on the surface. This means that, whenever the surface changes shape,
the proÞle image on the surface follows it. It also means that no part of the proÞle
can ever be lifted off the surface.

If the entire proÞle or part of it goes outside the boundaries of the surface domain, it
becomes invisible because the surface itself is not deÞned past those limits. An
invisible proÞle is still valid and can be brought back into view. See the ProÞle and
Primitive SOPs for ways to manipulate a proÞle.

A common use of the proÞle curve is for trimming, which keeps or removes the part
of the surface enclosed by the proÞle (see the Trim OP p. 819 in the Editing Geome-
try section). This is why proÞle curves are sometimes also called trim curves.

PROFILE NUMBERING AND DISPLAY

ProÞles are displayed in Houdini as dotted curves. Their numbers can be displayed
using the Display Options dialog, by clicking on the �ProÞle Number� icons in the
Accessories page. A proÞle number is always preÞxed by the primitive number of its
parent surface. For example, �0.2� is the third proÞle of Þrst primitive in the geo
detail (numbering starts at zero).

A proÞle can co-exist with 3D primitives in primitive groups. A resulting mixed
group would specify its elements like this: �1 0.2 6 2.9-2.17 4.*� .
246 1 Houdini 6.0 Reference

Splines
8.13 PASTING

Pasting is a process which allows you to take to two or more 3-D surfaces (called
�features�), and add their effect on top of another 3-D surface (called the �base�).
This is done without increasing the complexity of the base surface, yet allows the
added detail to move freely on the base after being pasted. This is useful for such
things as maintaining a library of facial features and pasting them onto the 3-D
model of a person�s head.

In the process of pasting, the 3-D surface moulds itself onto the shape of the under-
lying base surface � in effect, the feature�s UV space is placed within the base�s UV
space.

This process is maintained in a hierarchical fashion, thus allowing multiple features
to be pasted (e.g. nose, ears, mouth) onto a single base. Features may also overlap.
More features may then be pasted onto existing features.

HOW IS THE PASTE CALCULATED?

The angles formed by mapping the domain of the feature to the surface of the fea-
ture are computed . Then, these angles are added to the normals of the base shape in
order to derive the XYZ locations for points on the pasted surface.

SOME NOTES ON PASTING QUALITY

The vectors which connect the feature domain and the feature surface are called
�tentacles�. The length, angles, and the number of tentacles determine the shape and
the quality of the paste.

Feature

Base Feature Pasted
onto Base

α1 α3α2

α1

α3

α2

Feature Surface

Feature Domain

Feature Surface

Base Surface
13 - Geometry Types 1 247

Splines
Thus, if the base has a high amount of curvature and the tentacles diverge inward or
outwards, greater distortion in the paste will result.

From this fact, we can make several observations which will help us in regards to
decisions that affect pasting quality:

� The ßatter the base surface, the less distorted the pasted surface will be.
� The more tentacles on the feature surface (i.e. the more reÞned the feature), the

better its moulding on the base surface.
� The more vertical the initial tentacles, the more closely the pasted surface will fol-

low the features of the base.
� The shorter the tentacle, the closer to the base surface it will be. Therefore, in gen-

eral it is better to start with a ßat base surface, and deform it in the middle, leaving
the edges so their slope is ßat. This yields better boundary continuity across fea-
ture and surface.

� It is also good to ensure that the feature starts out as a rectangular grid and all the
interior deformations don�t �spill-out� of the rectangular area.

SPAWNING

It is also possible to add detail to a base by extracting a pasted sub-surface from it.
The resulting surface will share the shape and the underlying domain of the base in
that area. This procedure is called �spawning�. For more information, see Growing
Detail from Within (Spawning) p. 249, and the Paste OP p. 661 in the Geometry
section.

PASTE HIERARCHIES

A hierarchy of pasted splines is called a �paste hierarchy� or �muli-resolution sur-
face�, and is represented as a primitive in the geo-detail. It�s number is displayed in
brackets (e.g. (5)) when primitive numbers are enabled in the Viewport options.
The brackets should not be used when specifying the primitive number.

A spline surface can belong to only one hierarchy at a time.

CURRENT LIMITATIONS

� You cannot paste across multiple paste hierarchies.
� Most, but not all SOPs support the �Pasted� primitive type.

Those that do not will either ignore the hierarchical primitive or delete it.
248 1 Houdini 6.0 Reference

Splines
TWO WAYS OF BUILDING A PASTE HIERARCHY

There are two ways of building a paste hierarchy; from outside the base surface, and
from inside the base surface.

adding detail from outside (parametric and projective)

This is done using the Paste SOP, with two inputs: the feature and the base.

� Parametric Paste
� Along Vector (Projective) Paste

1. In a Parametric Paste, the Paste SOP places the feature on an area of the base sur-
face delimited by four user-deÞned isoparametric curves. The feature is thus aligned
with base surface isoparametrically.

The advantage of Parametric Pasting is that the feature is guaranteed to �land� on
the base within a well determined parametric area regardless of the base�s shape,
position and orientation; also, the continuity between feature and base is enhanced
by the parametric alignment between the two surfaces.

2. In a Projective Paste, the four corners of the feature surface are projected onto the
base surface Þrst. Then the entire feature is moulded onto the base such that its cor-
ners match the four projected points. The feature is not aligned with the base isopar-
ametrically.

The advantage of the Projective Paste is that it applies the feature onto the base intu-
itively along a vector, without any parametric alignment, generally producing a
mould that is similar in shape and orientation to the original (unpasted feature).

growing detail from within (spawning)

If you use only one input to the Paste SOP, you can still create a pasted surface using
a method called �spawning�. This technique extracts a portion of the base surface
and turns it into a pasted surface that shares the base�s shape and underlying domain
in that area (much like an onion peel).

The new surface can be further reÞned and modeled to generate the desired detail; it
can be spawned recursively to add even more detail. This new surface may be lofted
above the base surface by the amount speciÞed by the Height parameter. This is an
easy way to build offset surfaces. The advantage of the spawning technique is that it
guarantees perfect geometric and texture continuity between feature and base.

8.14 UNPASTING

The deletion of surfaces is available in the Delete and Unpaste SOPs, as well as in
the Model Editor.

The Unpaste SOP removes one or more pasted surfaces from a paste hierarchy, caus-
ing the hierarchy to update. It can keep either the unpasted surfaces or what remains
pasted in the hierarchy after the removal of the unpasted surfaces.

By preserving the hierarchical structure of the unpasted surfaces, the resulting sub-
hierarchy can be re-applied properly to another hierarchy later on.
13 - Geometry Types 1 249

Splines
The shape and the size of the sub-hierarchy may change considerably as a result of
the unpasting operation. This is because the feature surfaces are always mapped
onto the domain of the base surface, and the size of the domain is completely unre-
lated to the size of the actual surface.

By unpasting the root of the paste hierarchy the whole hierarchy becomes undone.

UNPASTED SURFACE HIERARCHIES

An unpasted surface or sub-hierarchy can be repasted later with the Paste SOP. One
case of repasting is worth mentioning for its practical use.

Assume you have used the Paste SOP to spawn a new surface as a detail added to the
base surface. Now you are ready to model the new feature. You can do so by work-
ing on the pasted feature, making sure to affect only its points and not the points of
the base surface as well. If the point density of the model is high, it may be more
convenient to model the feature separately, then re-attach it to the paste hierarchy as
if it had never been removed.

There are three easy steps to achieve this goal:

� Use the Unpaste SOP with the default parameters: keep the unpasted part and pre-
serve the shape of the feature together with its hierarchical information. Make sure
to specify the feature�s primitive number in the Group Þeld. Notice the shape of the
feature has not changed.

� Model the stand-alone feature with Houdini�s array of tools.

� Repaste the feature on the same base surface using the �As Is� page with Shape
Preservation enabled.
250 1 Houdini 6.0 Reference

How Force Fields Work
9 HOW FORCE FIELDS WORK

9.1 INTRODUCTION

Force Þelds can be used to affect the Particle or Spring SOP. The force Þeld is
deÞned by one or more metaball primitives that have been fed into the Force SOP.
The attractor output is then fed into the third (right-most) input of the Particle or
Spring SOP.

A metaball deÞnes a Þeld of effect. The meta-surface is the point in the Þeld where
the value of the Þeld is 1. Thus when two metaballs are merged, their Þelds get
added. When metaballs are used for attractors, the Þelds are also added together.

9.2 TYPES OF FORCES

When a single metaball is used as an attractor, there are four types of forces which
can be added to the force Þeld. These are:

radial force A force pulling particles to the centre of the force Þeld.
If the force is negative, the particles will be repelled
from the centre.

axial force A force which pulls particles along the axis speciÞed.

vortex force A tangential force which causes the particles to spiral
around the axis speciÞed.

spiral force A force which pulls particles toward the axis speciÞed.
If the force is negative, the particles will be repulsed
from the axis.

9.3 OTHER NOTES

The axis speciÞed is in relation to the space of the metaball. Thus, if the metaball is
rotated by using a Transform SOP, the axis speciÞed will also be rotated. This allows
for different metaballs to push particles in different directions.

When multiple metaballs are merged together as attractors, each metaball acts inde-
pendently on the particle in question. However, the forces of all metaballs are cumu-
lative, causing the particle to be affected by all the different attractors.

Outside the hull of a metaball (visible as a guide geometry in the Particle SOP, or by
turning on display of hulls in the viewport), the attractor will have no effect. At the
centre of the metaball, the scale of the forces will be whatever the weight of the
metaball is set to. By adjusting the weight and kernel type of each metaball, differ-
ent force Þeld types can be generated.
13 - Geometry Types 1 251

Converting Between Geometry Types
10 CONVERTING BETWEEN GEOMETRY TYPES
Houdini handles many geometry types, each with their own uses and strengths. It is
important to be able to convert between them, as different types may be required for
a given situation: creation, editing, and rendering. Houdini has the ability to convert
between different geometry types at any point. This allows a great deal of ßexibility
in the modelling process.

For example, say we are designing a couch for a set in a computer game, and the
game developers require texture mapped quadratic polygons (quads) as the Þnal out-
put. It may be best to create the hulls for the couch using NURBS or Bézier curves
because of their ability to easily handle organic curves. We can then convert these to
polygon meshes for a certain type of surface deformation. Finally, we can convert
the polygon meshes into quad polygons for texture mapping and output. Alternately,
we can do all the work with NURBS

This is one example of mixing geometry in a linear manner. Modelling with differ-
ent geometries is allowed and encouraged. To convert between different geometries,
use the Convert SOP (see Convert OP p. 512 in the Geometry section).

When converting a spline surface containing proÞle curves to a mesh or set of poly-
gons, the proÞle information is lost.
252 1 Houdini 6.0 Reference

	1 Geometry Types
	1 Geometry Detail
	1.1 The Geo-Detail

	2 The Point List
	What is the Difference between Points and Vertices?

	3 The Primitive List
	3.1 Polygonal
	Polygons
	Types of Polygons

	3.2 Meshes
	3.3 Splines
	3.4 Quadrics
	Ellipse (circle)
	Ellipsoid (sphere)
	Tube (cylinder)

	3.5 Metaballs
	Pusher Metaballs
	What Does an Exponent Do?
	Metaball Model Types
	Blinn Kernal
	Wyvill and Elendt Kernals
	Links Kernal
	RenderMan Kernal
	Hart Kernal

	3.6 Particle Systems

	4 Point Groups
	4.1 Creating Point Groups
	4.2 Ordered and Unordered Groups

	5 Primitive Groups
	5.1 Creating Primitive Groups
	5.2 Ordered and Unordered Groups

	6 Attributes
	6.1 Introduction
	6.2 Types of Attributes
	6.3 Normals
	Types of Normals
	Activating Normals Display
	Changing Normals

	6.4 Point UV’s (Texture Coordinates)
	6.5 Some Typical Point Attributes
	Point Weight (W)
	Diffuse Color (Cd)
	Alpha
	Velocity (v)

	7 List of Attributes
	7.1 Order of Attribute Precedence
	7.2 Material & Physical Attributes
	Material Group
	Physical Group

	7.3 Where Attributes can be Set

	8 Splines
	8.1 Introduction
	8.2 Linear Splines
	8.3 Higher Degree Splines
	8.4 Curve Segments
	8.5 Orders
	8.6 Breakpoints, Knots, and Spline Basis
	8.7 Rational Splines
	8.8 NURBS Curves and Surfaces
	Creating a sharp point in a NURBS curve
	Clamped and unclamped Nurbs curves
	Periodic Curves

	8.9 NURBS Surfaces
	8.10 Bézier Curves and Surfaces
	8.11 Bézier Surfaces
	8.12 Curves on Surfaces (“Profile” or “Trim” Curves)
	Types of Profiles
	Visual Properties
	Profile Numbering and Display

	8.13 Pasting
	How is the Paste Calculated?
	Some Notes on Pasting Quality
	Spawning
	Paste Hierarchies
	Current Limitations
	Two Ways of Building a Paste Hierarchy
	Adding Detail from Outside (Parametric and Projective)
	Growing Detail from Within (Spawning)

	8.14 Unpasting
	Unpasted Surface Hierarchies

	9 How Force Fields Work
	9.1 Introduction
	9.2 Types of Forces
	9.3 Other Notes

	10 Converting Between Geometry Types

