
gSOAP 2.2.3 User Guide

Robert van Engelen
Genivia inc. and Florida State University

engelen@acm.org

March 2, 2003

Contents

9 gSOAP Serialization and Deserialization Rules 71

9.1 Primitive Type Encoding . 71

� Includes HTTP, TCP/IP, XML, and DIME stacks.

� Supports one-way messaging, including asynchronous send and receive operations.

� Supports saving and loading of XML serialized C/C++ data structures to/from �les.

�

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC-2119.

3 Di�erences Between gSOAP Versions 2.1 (and Earlier) and 2.2

Run-time options and
ags have been changed to enable separate recv/send settings for transport,
content encodings, and mappings. The
ags are divided into four classes: transport (IO), content
encoding (ENC), XML marshalling (XML), and C/C++ data mapping (C). The old-style
ags
soap disable X and soap enable X, where X is a particular feature, are depricated. See Section 7.10 for
more details.

4 Di�erences Between gSOAP Versions 1.X and 2.X

gSOAP versions 2.0 and higher have been rewritten based on versions 1.X. gSOAP 2.0 and higher

Function
Description

soap init(struct soap *soap) Initializes a runtime environment (required only once)
struct soap *soap new()

soap serve(&soap);
g

Or alternatively:

int

Endpoint URL: http://services.xmethods.net:80/soap
SOAP action: "" (2 quotes)

Note that the parameters of the soap call ns1 getQuote

soap end(&soap); // clean up all deserialized data
...

This client composes an array of stock quotes by calling the ns1 getQuote stub routine for each
symbol in a portfolio array.

This example demonstrated how easy it is to build a SOAP client with gSOAP once the details of
a Web service are available in the form of a WSDL document.

method name speci�ed in the getQuote.h header �le. In general, if a function name of a remote
method, struct name, class name, enum name, or �eld name of a struct or class has a pair of

The namespace pre�x is separated from the name of a data type by a pair of underscores (

#include "soapH.h"
class Quote
f public:

struct soap *soap;
const char *endpoint;
Quote() f soap = soap new(); endpoint = "http://services.xmethods.net/soap"; g;
~Quote() f if (soap) f soap destroy(soap); soap end(soap); soap done(soap); free((void*)soap);
gg;

int getQuote(char *symbol,
oat &result) f return soap ? soap call ns getQuote(soap, end-
point, "", symbol, result) : SOAP EOM; g;
g;

The validation of this service response by the stub routine takes place by matching the names-
pace names (URIs) that are bound to the xsd namespace pre�x. The stub also expects the
getQuoteResponse element to be associated with URI urn:xmethods-delayed-quotes through the
binding of the namespace pre�x ns1

This use of a struct or class

<first>John</first>
<last>Doe</last>
</m:getNamesResponse>
...

where first and last are the output parameters of the getNames remote method of the service.

As another example, consider a remote method copy with an input parameter and an output pa-
rameter with identical parameter names (this is not prohibited by the SOAP 1.1 protocol). This
can be speci�ed as well using a response struct:

// Contente of �le "copy.h":
int X rox copy name(char *name, struct 0 Td[(*name,)]TJ/F32 9.963 Tfr.568 0 Td[(*name,)]TJ/F32 9.963 Tt040

parameters. The remote method name is getFlightInfo and the method has two string parameters:
the airline code and
ight number, both of which must be encoded as xsd:string types. The method
returns a getFlightResponse response element with a return output parameter that is of complex type

Content-Length: 634
SOAPAction: "urn:galdemo:flighttracker"

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:ns1="urn:galdemo:flighttracker"
xmlns:ns2="http://galdemo.flighttracker.com"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

cout << r.return .equipment << "
ight " << r.return .airline << r.return .
ightNumber
<< " traveling " << r.return .speed << " mph " << " at " << r.return .altitude
<< " ft, is located " << r.return .currentLocation << endl;

This code displays the service response as:

A320 flight UAL184 traveling 497 mph at 37000 ft, is located 188 mi W of Lincoln,
NE

6.1.14 How to Specify a Method with No Input Parameters

To specify a remote method that has no input parameters, just provide a function prototype with
one parameter which is the output parameter. However, some C/C++ compilers (notably Visual
C++TM) will not compile and complain about an empty struct. This struct is generated by gSOAP
to contain the SOAP request message. To �x this, provide one input parameter of type void*

(gSOAP can not serialize void* data). For example:

struct ns3

6.2 How to Use the gSOAP Stub and Skeleton Compiler to Build SOAP Web
Services

// Contents of �le "calc.cpp":
#include "soapH.h"
#include <math.h> // for sqrt()
main()
f

soap serve(soap new()); // use the remote method request dispatcher
g
// Implementation of the "add" remote method:
int ns add(struct soap *soap, double a, double b, double &result)
f

result = a + b;
return

This service application can be readily installed as a CGI application. The service description
would be:

Endpoint URL: the URL of the CGI application
SOAP action: "" (2 quotes)
Remote method namespace: urn:simple-calc
Remote method name: add

Input parameters: a of type xsd:double and b of type xsd:double
Output parameter: result of type xsd:double

Remote method name: sub
Input parameters: a of type xsd:double and b of type xsd:double
Output parameter: result of type xsd:double

Remote method name: sqrt
Input parameter: a of type xsd:double
Output parameter: result of type xsd:double or a SOAP Fault

The soapcpp2

soap end(soap thr[i]); // deallocate data of old thread
g
soap thr[i]->socket = s;
pthread create(&tid[i], NULL, (void*(*)(void*))soap serve, (void*)soap thr[i]);
g
g

g
return 0;
g

g
void

WSDL �le. If multiple namespace pre�xes are used to de�ne remote methods, multiple WSDL �les
will be created and each �le describes the set of remote methods belonging to a namespace pre�x.

In addition to the generation of the ns.wsdl

xmlns:tns="http://location/Service.wsdl"
xmlns:ns="http://tempuri.org">

<types>
<schema
xmlns="http://www.w3.org/2000/10/XMLSchema"
targetNamespace="http://tempuri.org"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<complexType name="addResponse">
<all>
<element name="result" type="double" minOccurs="0" maxOccurs="13/hr/>

<operation name="sub">
<input message="tns:subRequest"/>
<output message="tns:subResponse"/>

</operation>
<operation name="sqrt">
<input message="tns:sqrtRequest"/>
<output message="tns:sqrtResponse"/>

</operation>
</portType>
<binding name="ServiceBinding" type="tns:ServicePortType">
<SOAP:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="add">
<SOAP:operation soapAction="http://tempuri.org#add"/>
<input>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>
<operation name="sub">
<SOAP:operation soapAction="http://tempuri.org#sub"/>
<input>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>
<operation name="sqrt">
<SOAP:operation soapAction="http://tempuri.org#sqrt"/>
<input>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="Service">
<port name="ServicePort" binding="tns:ServiceBinding">
<SOAP:address location="http://location/Service.cgi"/>

</port>
</service>
</definitions>

36

6.2.7 How to Import WSDL Service Descriptions

Note: see README.txt in the wsdlcpp directory for installation instructions for the importer.

The creation of SOAP Web Service clients from a WSDL service description is a two-step process.

First, execute java wsdlcpp �le.wsdl

soap

quotex.cgi AOL uk

returns the quote of AOL in uk pounds by communicating the request and response quote from
the CGI application. See http://xmethods.com/detail.html?id=5 for details on the currency
abbreviations.

When combining clients and service functionalities, it is required to use one header �le input to
the compiler. As a consequence, however, stubs and skeletons are available for all remote methods,
while the client part will only use the stubs and the service part will use the skeletons. Thus,
dummy implementations of the unused remote methods need to be given which are never called.

Three WSDL �les are created by gSOAP: ns1.wsdl, ns2.wsdl, and ns3.wsdl. Only the ns3.wsdl �le

and if the data contains cycles. The second function (soap put) generates the SOAP encoding output
for that data type.

The function names are speci�c to a data type. For example, soap serialize
oat(&soap, &d) is called to
serialize an
oat value and soap put

This produces:

<ns:element-name xmlns:SOAP-ENV="..." xmlns:SOAP-ENC="..." xmlns:ns="..."
... xsi:type="ns:type-name">

<name xsi:type="xsd:string">...</name>
</ns:element-name>

The serializer is initialized with the soap

In principle, encoding MAY take place without calling the soap serialize functions. However, as the
following example demonstrates the resulting encoding is not SOAP 1.1 compliant. However, the
messages can still be used with gSOAP to save and restore data in XML.

Consider the following struct:

// Contents of �le "tricky.h":
struct Tricky
f

int *p;
int n;
int

T1 var1;
T2 var2;
struct soap soap;
...
soap init(&soap); // initialize at least once
[soap imode(&soap,
ags);] // set input-mode
ags
soap begin(&soap); // begin new decoding phase
[soap.recvfd = an input stream;]
soap begin

public:
xsd string street;
xsd unsignedInt number;
xsd string city;
g;
class ns Person
f

public:
xsd Name name;
enum ns

soap end(&soap);
soap done(&soap);

g
struct Namespace namespaces[] =
f
f"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/"g,

</address>
</father>
</johnnie>

The following program fragment decodes this content from standard input and reconstructs the
orignal data structure on the heap:

#include "soapH.h"
int main()
f

struct soap soap;
ns

ns Person *mother, *father, john;
soap init(&soap);
soap imode(&soap, SOAP ENC ZLIB); // optional
soap begin(&soap);
soap begin recv(&soap);
soap default ns Person(&soap, &john);
if (soap get ns Person(&soap, &john, "johnnie", NULL))

... error ...
...
g
struct1 0 0 1 32.118 0 cn.(-332(NIyamespaceer,)-3namespaces[]er,)-3=nal

...

Caution: SOAP 1.2 requires the use of SOAP ENV Code, SOAP ENV Reason, and SOAP ENV Detail

�elds in a SOAP ENV Fault fault struct, while SOAP 1.1 uses faultcode, faultstring, and detail �elds.
Use soap receiver fault(struct soap *soap, const char *faultstring, const char *detail)

...
// A remote method invocation:

soap call some remote

g;
...

When the gSOAP service is compiled and installed as a CGI application, the soap

serve function acts
as a service dispatcher. It listens to standard input and invokes the method via a skeleton routine
to serve a SOAP client request. After the request is served, the response is encoded in SOAP and
send to standard output. The method must be implemented in the server application and the type

C and C++ programming statements All class methods of a class should be declared within
the class declaration in the header �le, but the methods should not be implemented in code.
All class method implementations must be de�ned within another C++ source �le and linked
to the application.

In addition, the following data types cannot be used in the header �le (they can, however be used
as a class method return type and as class method parameter types of a class declared in the header
�le):

union

Caution: The SOAP XML TREE

typedef int xsd int;
class X f ... g;
class ArrayO�nt f xsd int * ptr; int size; g;
ns

char *msg = (char*)soap malloc(soap, 1024); // allocate temporary space for detailed message
sprintf(msg, "...", ...); // produce the detailed message
return soap receiver fault(soap, "An exception occurred", msg); // return the server-side fault
g
...
g soap

receiver fault�ge

struct soap *soap; // set by soap new ns myClass()
char *name;
void setName(const char *s);
...
g const ch0tructconst ch0truct

Caution: The client and server applications may run slow due to the logging activity.

Caution: When installing a CGI application on the Web with debugging activated, the log �les may

8 The gSOAP Remote Method Speci�cation Format

A SOAP remote method is speci�ed as a C/C++ function prototype in a header �le. The function
is REQUIRED to return int, which is used to represent a SOAP error code, see Section 8.2. Multiple
remote methods MAY be declared together in one header �le.

outparam is the declaration of an output parameter of the remote method

The general form of a remote method speci�cation with a response element declaration for (multiple)
output parameters is:

[int] [namespace pre�x]method name([inparam1, inparam2, ...,] struct [namespace pre�x]response element name
foutparam1[

8.3 C/C++ Identi�er Name to XML Name Translations

One of the \secrets" behind the power and
exibility of gSOAP’s encoding and decoding of remote
method names, class names, type identi�ers, and struct or class �elds is the ability to specify
namespace pre�xes with these names that are used to denote their encoding style. More speci�cally,
a C/C++ identi�er name of the form

[namespace

8.4 Namespace Mapping Table

A namespace mapping table MUST be de�ned by clients and service applications. The mapping
table is used by the serializers and deserializers of the stub and skeleton routines to produce a valid

http://tempuri.org

struct Namespace namespacesTable1[] = f

enables the implementation of built-in XML schema types (also known as XSD types) such as
positiveInteger, xsd:anyURI, and xsd:date

typedef bool xsd boolean;

Type xsd boolean declares a Boolean (0 or 1), which is encoded as

<xsd:boolean xsi:type="xsd:boolean">...</xsd:boolean>

xsd:byte Represents a byte (-128...127). The corresponding type declaration is:

typedef char xsd byte;

Type xsd byte declares a byte which is encoded as

<xsd:byte xsi:type="xsd:byte">...</xsd:byte>

xsd:dateTime Represents a date and time. The lexical representation is according to the ISO
8601 extended format CCYY-MM-DDThh:mm:ss where "CC" represents the century, "YY"
the year, "MM" the month and "DD" the day, preceded by an optional leading "-" sign to

<xsd:double xsi:type="xsd:double">...</xsd:double>

xsd:duration Represents a duration of time. The lexical representation for duration is the ISO
8601 extended format PnYn MnDTnH nMnS, where nY represents the number of years, nM
the number of months, nD the number of days, T is the date/time separator, nH the number

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

xsd:long Corresponds to a 64-bit integer in the range -9223372036854775808 to 9223372036854775807.
The type declaration is:

typedef long long xsd long;

Or in Visual C++:

typedef LONG64 xsd long;

Type xsd long declares a 64-bit integer which is encoded as

<xsd:long xsi:type="xsd:long">...</xsd:long>

xsd:negativeInteger Corresponds to a negative unbounded integer (< 0). Since C++ does not
support unbounded integers as a standard feature, the recommended type declaration is:

typedef long long xsd negativeInteger;

Type

typedef char *xsd normalizedString;

Type xsd normalizedString declares a string type which is encoded as

<xsd:normalizedString xsi:type="xsd:normalizedString">...</xsd:normalizedString>

It is solely the responsibility of the application to make sure the strings do not contain carriage
return (#xD), line feed (#xA) and tab (#x9) characters.

xsd:positiveInteger Corresponds to a positive unbounded integer (� 0). Since C++ does not
support unbounded integers as a standard feature, the recommended type declartupegers-332(feature,2 9.963 Tf 24 -20.921 Td[(t)30(yp)-30(edef)-410(unsigned)-333(long)-348(long)]TJ/F31 9.963 Tf 125.939 0 Td[(xsd)]TJ
ET
113.521 -113.973 2.989 0.398 re f
118.768 -113.973 2.989 0.398 re f
1 0 0 1 121.757 -113.973 cm
BT
/F31 9.963 Tf 0 0 Td[(p)-27(ositiveInteger;)]TJ/F15 10.909 Tf -172.333 -22.515 Td[(T)28(yp)-28(e)]TJ/F31 9.963 Tf 26.97 0 Td[(xsd)]TJ
ET
-131.205 -22.515 2.989 0.398 re f
-125.958 -22.515 2.989 0.398 re f
1 0 0 1 -122.969 -22.515 cm
BT
/F31 9.963 Tf 0 0 Td[(p)-27(ositiveInteger)]TJ/F15 10.909 Tf 62.781 0 Td[(declares)-223(a)-222(64-bit)-222()-332(feat125.958 -22.515 2.9891 9.963(h)-333(is7-334.515 22(64-bd)-333(as)]TJ/(h)-a22(64-bit63 Tf -27.272 -2225(xsd1]TJ
ET
-13teger)]TJ/F15 10.909 Tf 104.83 0 Td922376]TJ
ET
:963 Tf -27.272 -22.445.702.445.702.445.702.445.702.445.702.445.702.age)]9.3d3)]TJ
ET
113.521 -113. 0 TddString>)]T.521 -113. 0 Td-24 -22.515 Td[(It)-246(is)-24teger)A.54h.age358r

xsd:positiveInteger

xsd:token Represents tokenized strings. Tokens are strings that do not contain the line feed (#xA)
nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no
internal sequences of two or more spaces. It is recommended to use strings to store

<xsd:unsignedShort xsi:type="xsd:unsignedShort">...</xsd:unsignedShort>

Other XML schema types such as gYearMonth, gYear, gMonthDay, gDay, xsd:gMonth, QName, NOTATION,
etc., can be encoded similarly using a typedef declaration.

9.2.1 How to Use Multiple C/C++ Types for a Single Primitive XSD Type

Trailing underscores (see Section 8.3) can be used in the type name in a typedef to enable the

class xsd anyURI xsdaSimpleTypessxsdanyURI

Note the use of the trailing underscores for the class names to distinhuish the typedef type names
from the class names. Only the most frequently used built-in schema types are shown. It is also
allowed to include the xsd:base64Binray and xsd:hexBinary types in the hierarchy:

class xsd base64Binary: public xsd anySimpleType f public: unsigned char * ptr; int size;
g;
class xsd hexBinary: public xsd anySimpleType f public: unsigned char * ptr; int size; g;

See Sections 9.9 and 9.10.

Methods are allowed to be added to the classes above, such as constructors and getter/setter
methods.

Wrapper structs are supported as well, similar to wrapper classes. But thay cannot be used to

not indicate the possible loss of precision of
oating point values due to the textual representation

The proxy of the remote method is used by a client to request a piece of information and the service
responds with:

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: nnn

<SOAP-ENV:Envelope Tf 27.91 e:SOAP-ENV="http://schemas..91soap.org/soap/envelope/"
.91 e:SOAP-ENC="http://schemas..91soap.org/soap/encoding/"
.91 e:xsi="http://www.w3.org/1999/XMLSchema-instance"
.91 e:xsd="http://www.w3.org/1999/XMLSchema"

<SOAP-ENV:Body>
<getInfoResponse>
<detail>

9.2.7 INF, -INF, and NaN Values of
oat and double Types

The gSOAP runtime stdsoap2.cpp and header �le stdsoap2.h

9.3.4 How to \Reuse" Symbolic Enumeration Constants

A well-known de�ciency of C and C++ enumeration types is the lack of support for the reuse
of symbolic names by multiple enumerations. That is, the names of all the symbolic constants

enum SOAP ENC boolean fg;

The value 0, for example, is encoded with an integer literal:

<SOAP-ENC:boolean xsi:type="SOAP-ENC:boolean">0<SOAP-ENC:boolean>

9.3.6 Bitmask Enumeration Encoding and Decoding

T4n>

Certain �elds of a class can be (de)serialized as XML attributes. See 9.5.5 for more details.

A class instance is encoded as:

<[namespace-prefix:]class-name xsi:type="[namespace-prefix:]class-name">
<basefield-name1 xsi:type="...">...</basefield-name1>
<basefield-name2 xsi:type="...">...</basefield-name2>
...
<field-name1 xsi:type="...">...</field-name1>
<field-name2 xsi:type="...">...</field-name2>
...
</[namespace-prefix:]class-name>

where the field-name accessors have element-name representations of the class �elds and the
basefield-name

The namespace URI of the namespace pre�x ns must be de�ned by a namespace mapping table,
see Section 8.4.

9.5.2 Initialized static const Fields

A data member �eld of a class declared as static const is initialized with a constant value at compile
time. This �eld is encoded in the serialization process, but is not decoded in the deserialization
process. For example:

// Contents of �le "triangle.h":
class ns

The following example declares Base and Derived classes and a remote method that takes a pointer
to a Base class instance and returns a Base class instance:

// Contents of �le "derived.h"
class Base
f

public:
char *name;
Base();
virtual void print();

g;
class Derived : public Base
f

public:
int num;
Derived();
virtual void print();
g;
int method(Base *in, struct methodResponse f Base *out; g &result);

This header �le speci�cation is processed by the gSOAP compiler to produce the stub and skeleton

int main()
f

struct soap soap;
soap init(&soap);
Derived obj1;
Base :at*(f)]TJ/F32 9.963 TJ 0 -11.655 Td[(struct)]TJ/F31 9.963 Tf 29.744 0 TdmethodResponBaserap;

soap

f

This header �le speci�cation is processed by the gSOAP stub and skeleton compiler to produce
skeleton routine which is used to implement a service (so the client will still use the derived classes).

The method implementation of the Base class are:

then x:def is converted to "URI":def where "URI" is the namespace URI bound to x in the message
received.

Because a remote method request and response is essentially a struct, XML attributes can also be
associated with method requests and responses. For example

typedef char *xsd string;
int ns myMethod(@ xsd string ns name, ...);

xsd string value;
struct ns list *next;

g;

9.8 Dynamic Arrays

As the name suggests, dynamic arrays are much more
exible than �xed-size arrays and dynamic
arrays are better adaptabe to the SOAP encoding and decoding rules for arrays. In addition,
a typical C application allocates a dynamic array using malloc, assigns the location to a pointer
variable, and deallocates the array later with free. A typical C++ application allocates a dynamic
array using new, assigns the location to a pointer variable, and deallocates the array later with
delete. Such dynamic allocations are
exible, but pose a problem for the serialization of data: how

The deserializer of a dynamic array can decode partially transmitted and/or SOAP sparse arrays,

g
ServiceArray::~ServiceArray()
f

if (ptr)
free(ptr);

size = 0;
o�set = 1;

g
Vector::Vector(int n)

// Contents of �le "matrix.h":
class Matrix
f

public:
Vector * ptr;
int size;
int o�set;
Matrix();
Matrix(int n, int m);
~Matrix();
Vector& operator[](int i);
g;

For example, the following declaration speci�es a matrix class:

typedef double xsd double;
class Matrix
f

public:
xsd double *dptr

end of the list is reached, the bu�ered elements are copied to a newly allocated space on the heap
for the dynamic array.

A list (de)serialization is also in a�ect for dynamic arrays when the pointer �eld does not refer to

Type * ptrarray elt name

unsigned char * ptr;
int

unsigned char
ptr;

int

The following example in C/C++ reads from a raw image �le and encodes the image in SOAP
using the base64Binary type:

...
FILE *fd = fopen("image.jpg", "r");
xsd base64Binary image(�lesize(fd));
fread(image.location(), image.size(), 1, fd);
fclose(fd);
soap begin(&soap);
image.soap serialize(&soap);
image.soap put(&soap, "jpegimage", NULL);
soap end(&soap);
...

where �lesize is a function that returns the size of a �le given a �le descriptor.

Reading the xsd:base64Binary encoded image.

...
xsd base64Binary image;
soap begin(&soap);
image.get(&soap, "jpegimage");
soap end(&soap);
...

The struct or class name soap

9.11 Doc/Literal XML Encoding Style

gSOAP supports doc/literal SOAP encoding of request and/or response messages. However, the
XML schema of the message data must be known in order for the gSOAP compiler to generate the

f"SOAP-ENC", "http://schemas.xmlsoap.org/soap/encoding/"g,
f"xsi", "http://www.w3.org/2001/XMLSchema-instance", "http://www.w3.org/*/XMLSchema-

instance"g,
f"xsd", "http://www.w3.org/2001/XMLSchema", "http://www.w3.org/*/XMLSchema"g,
fNULL, NULLg
g;

The SOAP request is:

else
printf("Time = %s\n", t);

return 0;
g

9.11.1 Serializing and Deserializing XML Into Strings

To declare a literal XML \type" to hold XML documents in regular strings, use:

typedef char *XML;

To declare a literal XML \type" to hold XML documents in wide character strings, use:

typedef wchar t *XML;

Note: only one of the two storage formats can be used. The di�erences between the use of regular
strings versus wide character strings for XML documents are:

� Regular strings for XML documents MUST hold UTF-8 encoded XML documents. That is,
the string MUST contain the proper UTF-8 encoding to exchange the XML document in
SOAP messages.

� Wide character strings for XML documents SHOULD NOT hold UTF-8 encoded XML doc-

<XMLDoc xmlns="http://my.org/mydoc.xsd">
...

</XMLDoc>
</ns:Document>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Important: the literal XML encoding style MUST be speci�ed by setting soap.encodingStyle, where
soap is a variable that contains the current runtime environment. For example, to specify no
constraints on the encoding style (which is typical) use NULL:

struct SOAP ENV Fault
f

char *faultcode; // MUST be string
char *faultstring; // MUST be string
char *faultactor;
Detail *detail; // new detail �eld
char *SOAP ENV Code; // MUST be string
char *SOAP ENV Reason; // MUST be string
char *SOAP ENV Detail; // MUST be string
Detail SOAP ENVB Detail; // new SOAP 1.2 detail �eld
g;

where Detail is some data type that holds application speci�c data such as a stack dump.

When the skeleton of a remote method returns an error (see Section 8.2), then

11 SOAP Header Processing

A predeclared standard SOAP Header data structure is generated by the gSOAP stub and skeleton
compiler for exchanging SOAP messages with SOAP Headers. This predeclared data structure is:

struct SOAP ENV Header
f void *dummy;
g;

which declares and empty header (some C and C++ compilers don’t accept empty structs so a
transient dummy �eld is provided).

client side, the soap.actor attribute can be set to indicate the recipient of the header (the SOAP
SOAP-ENV:actor attribute).

A Web service can read and set the SOAP Header as follows:

int main()
f

struct soap soap;
soap.actor = NULL; // use this to accept all headers (default)
soap.actor = "http://some/actor"; // accept headers destined for "http://some/actor" only
soap serve(&soap);
g
...
int method(struct soap *soap, ...)
f

if (soap->header) // a Header was received
... = soap->header->t

12 DIME Attachment Processing

gSOAP can transmit binary data with DIME attachments with or without streaming. With DIME
output streaming, the binary data is retrieved from an application’s data source at run time in
parts without storing the entire content. With DIME input streaming, the binary data will be
handed to the application in parts. DIME streaming is implemented with function callbacks. See
Section 12.2 for more details.

12.1 Non-Streaming DIME

Without streaming, the binary data is stored in augmented xsd:base64Binary and xsd:hexBinary

structs/classes. These structs/classes have three additional �elds: an id �eld for attachment ref-
erencing (typically a content id (CID) or UUID), a type �eld to specify the MIME type of the
binary data, and an options �eld to piggy-back additional information with a DIME attachment.
DIME attachment support is fully automatic, which means that gSOAP will test for the presence
of attachments at run time and use SOAP in DIME accordingly.

A xsd:base64Binary type with DIME attachment support is declared by

struct xsd base64Binary

soap.fdimewrite = dime write;
soap call ns method(&soap, ...);
...
g
void *dime write open(struct soap *soap, const char

and namespace mapping table �les do not need to be modi�ed by hand (Sections 6.2.5 and 8.4).

soapcpp2 quotex.h

the WSDL of the new quotex Web Service is saved as quotex.wsdl. Since the service name (quotex), lo-
cation (http://www.cs.fsu.edu/~engelen

In this example, class ns myClass has three transient �elds: b, s, and n which will not be (de)serialized
in SOAP. Field n

if (*soap->type && soap match tag(soap, soap->type, type))
f

soap

The following example uses I/O function callbacks for customized serialization of data into a bu�er
and deserialization back into a datastructure:

char buf[10000]; // XML bu�er
int len1 = 0; // #chars written
int len2 = 0; // #chars read
// mysend: put XML in buf[]
int mysend(structar

g

The soap done function can be called to reset the callback to the default internal gSOAP I/O and
HTTP handlers.

The following example illustrates customized I/O and (HTTP) header handling. The SOAP request
is saved to a �le. The client proxy then reads the �le contents as the service response. To perform
this trick, the service response has exactly the same structure as the request. This is declared by
the struct ns test output parameter part of the remote method declaration. This struct resembles
the service request (see the generated soapStub.h �le created from the header �le).

The header �le is:

//gsoap ns service name: callback
//gsoap ns service namespace: urn:callback
struct ns

skip custom header
return SOAP EOF;

return SOAP OK;
g
main()
f

structsoap soap;
struct ns test r;
struct ns person p;
soap init(&soap); // reset
p.name = "John Doe";
p.age = 99;
soap.fopen = myopen; // use custom open
soap.fpost = mypost; // use custom post
soap.fparse = myparse; // use custom response parser
soap.fclose = myclose; // use custom close
soap call ns

soap.�gnore = myignore;
soap call ns method(&soap, ...); // or soap serve(&soap)
...
struct Namespace namespaces[] =
f
f"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/"g,

� Increase the bu�er size SOAP BUFLEN by changing the SOAP BUFLEN macro in stdsoap2.h. Use
bu�er size 65536 for example.

� Use HTTP keep-alive at the client-side, see 13.10, when the client needs to make a series

This setting will not generate a sigpipe but read/write operations return SOAP EOF instead. Note
that Win32 systems do not support signals and lack the MSG NOSIGNAL
ag. The sigpipe handling
and
ags are not very portable.

A connection will be kept open only if the request contains an HTTP 1.0 header with "Connection:
Keep-Alive" or an HTTP 1.1 header that does not contain "Connection: close

((struct soap*)soap)->send timeout = 60; // Timeout after 1 minute stall on send
soap serve((struct soap*)soap);
soap destroy((struct soap*)soap);
soap end((struct soap*)soap);
soap done((struct soap*)soap);
free(soap);
returnre f
1 0 0 1 0 -11p

13.17 Secure SOAP Clients with HTTPS/SSL

You need to install the OpenSSL library on your platform to enable secure SOAP clients to
utilize HTTPS/SSL. After installation, compile all the sources of your application with option
-DWITH OPENSSL. For example on Linux:

g++ -DWITH OPENSSL myclient.cpp stdsoap.cpp soapC.cpp soapClient.cpp -lssl -lcrypto

or Unix:

g++ -DWITH OPENSSL myclient.cpp stdsoap.cpp soapC.cpp soapClient.cpp -lxnet -lsocket -lnsl
-lssl -lcrypto

or you can add the following line to soapdefs.h:

#de�ne WITH OPENSSL

and compile with option -DWITH SOAPDEFS H to include soapdefs.h

g++ -DWITH OPENSSL -o myprog myprog.cpp stdsoap2.cpp soapC.cpp soapServer.cpp -lssl -
lcrypto

Let’s take a look at an example SSL secure multi-threaded stand-alone SOAP Web Service:

int main()
f

int m, s;
pthread t tid;
struct soap soap, *tsoap;
soap init(&soap);
// soap.rsa = 1; // use RSA (or use DH which requires a DH �le: see below)
soap.key�le = "server.pem"; // must be resident key �le
soap.ca�le = "cacert.pem"; // must be resident CA �le
soap.dh�le = "dh512.pem"; // if soap.rsa == 0, use DH with resident DH �le
soap.password = "password"; // password
soap.rand�le = "random.rnd"; // (optional) some �le with random data to seed PRNG
m = soap

In case Web services have to verify clients, use a key �le, CA �le, a �le with random data, and
password in an SSL-enabled client:

...
soap init(&soap);
soap.key�le = "client.pem";
soap.password = "password";
soap.ca�le = "cacert.pem";
soap.rand�le = "random.rnd";
if (soap call ns method(&soap, "https://linprog2.cs.fsu.edu:18000", "", ...)
...

Make sure you have signal handlers set in your service and/or client applications to catch broken
connections (SIGPIPE):

signal(SIGPIPE, sigpipe

� Answer the rest of the questions intelligently. The common name would be how this certi�cate

gSOAP supports two compression formats: de
ate and gzip. The gzip format is used by default.
The gzip format has several bene�ts over de
ate. Firstly, gSOAP can automatically detect gzip
compressed inbound messages, even without HTTP headers, by checking for the presence of a gzip
header in the message content. Secondly, gzip includes a CRC32 checksum to ensure messages
have been correctly received. Thirdly, gzip compressed content can be decompressed with other
compression software, so you can decompress XML data saved by gSOAP in gzip format.

Gzip compression is enabled by compiling the sources with -DWITH GZIP. To transmit gzip com-
pressed SOAP/XML data, set the output mode
ags to SOAP ENC ZLIB. For example:

soap

To restrict the compression to the de
ate format only, compile the sources with -DWITH ZLIB. This
limits compression and decompression to the de
ate format. Only plain and de
ated messages
can be exchanged, gzip is not supported with this option. Receiving gzip compressed content is
automatic, even in the absence of HTTP headers. Receiving de
ate compressed content is not
automatic in the absence of HTTP headers and requires the
ag SOAP ENC ZLIB to be set for the
input mode to decompress de
ated data.

return SOAP OK;
g

13.23 Connecting Clients Through Proxy Servers

When a client needs to connect to a Web Service through a proxy server, set the soap.proxy host

string and soap.proxy port integer attributes of the current soap runtime environment to the proxy’s
host name and port, respectively. For example:

struct soap soap;
soap init(&soap);
soap.proxy host = "proxyhostname";
soap.proxy port = 8080;
if (soap call ns

13.25.2 Creating Client and Service DLLs

Client side DLL serves as the common code which all clients will use to access the server. This
DLL consists of the �les soapC.cpp

#include "stdsoap2.h"
#de�ne PLUGIN ID "PLUGIN-1.0" // some name to identify plugin
struct plugin data // local plugin data
f

int (*fsend)(struct soap*, const char*, size t); // to save and use send callback
size t (*frecv)(struct soap*, char*, size t); // to save and use recv callback

g;
int plugin(struct soap *soap, struct soap plugin *plugin, void

struct plugin data *data = (struct plugin data*)soap lookup plugin(soap, plugin id); // fetch
plugin’s local data

fwrite(buf, len, 1, stderr); // write message to stderr

